

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Swiss Confederation

KENDA Activities at MeteoSwiss

Daniel Leuenberger, Claire Merker, Alexander Haefele, Maxime Hervo, Giovanni Martucci and Marco Arpagaus MeteoSwiss Zurich and Payerne, Switzerland COSMO General Meeting, 9. 12. September, Rome, Italy

Overview

- Summary of activities during the last year
- Comparison of Nudging and KENDA driven forecasts with independent Lidar observations
- Assimilation of Meteodrone observations
- First results of KENDA-1 with a 1.1km grid

Summary of Activities

- Changes to the operational KENDA
 - Introduction of Additive Covariance Inflation on 16.10.2018
 - Introduction of new FG check for radiosonde data in case of strong inversions on 20.12.2018
- Assimilation of MODE-S observations
 - Current obs cover only ca ¼ of our domain
 - Very small positive impact in T and wind in upper atmosphere

Discussions with Skyguide to provide Swiss Data

Summary of Activities

- Comparison of Nudging and KENDA driven forecasts with independent Raman Lidar observations independent Raman Lidar observations
- Assimilation of Meteodrone observations in this talk
- Implemented KENDA-1 system using <u>COSMO@1.1km</u>
 later in this talk
- Assimilation of Brightness Temperatures from Microwave Radiometers Claire's talk this afternoon

 +
 *
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +</t

Comparison of Nudging and KENDA

- From radiosonde verification we know that usually, KENDA driven forecast skill of T and RH are equal to Nudging driven forecast skill at and after +12h (wind: already at analysis)
- T and RH profiles from Raman Lidar are independent and available hourly and thus allow to assess the difference between the two DA systems at short lead times
- Uncertainty of Lidar obs: 10% in q_v , 0.5K in T
- Forecasts are initialized at 00 and 12UTC from KENDA det, NUDGING and NO-OBS analysis cycles
- Verification Period: JJA 2018 and SO 2018

	4	23	5				- 2 -	-C-		65	
÷	53	÷				÷			÷	° &	승
-	- 	÷	÷		4		÷.	÷ ÷	-	÷	-
5	45		0	₩		상 상 상	55 B + 0 - 1	. ÷			4 5
	n-	52	55	52 52	상 상 상 상		57 55 5	~ ~ ~	· · · · · · · · · · · · · · · · · · ·	47 47 	л. л.
	55	n n			<u>л</u> , <u>л</u> ,		<i>г</i> ц	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ւ դ դ դ</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57 57 57 A
22	ک ک		Motor	Swice			እንዲ ዲዲ	ч м м м	r v v v v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 A
。 分	÷	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Metet	511122	4 4 44	- ~ ~ ~ + + + + +		›			5 ° ¢
÷	수 수 수	승수 수수수	승승 승	수 수	4 4 4 e	· ~ ~ ~	수	ф ф	÷ ÷ ÷	· · · · ·	· · ·
상	÷÷÷	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ት ት ት ት	ት ትትት	승수 수수수 수수	የ የት	ት ት ት	· ~ ~ ~ ~ ~ ~ ~ ~	ንۍ ት ት ት	<u>ን</u>	ф ф

C Temperature

- KENDA and Nudging similar in STD at and after Analysis. Differences in BIAS longer lasting.
- Impact of assimilation on STD vanishes after ca +8h in summer, (after ca +24h in autumn)
- Impact of assimilation on BIAS longer lasting (still visible after +24h)

MeteoSwiss

v Relative Humidity

- KENDA and Nudging similar in STD after +1h.
 Differences in BIAS longer lasting.
- Impact of assimilation on STD vanishes after ca +10h in summer, (after ca +18h in autumn)
- Impact of assimilation on BIAS longer lasting (still visible after +24h)

÷	\$ \$	ې بې دې	5	÷	- -	9
÷	。 令	ት ት	Ф Ф	ጭ የት የት		
5	ۍ ب	\$ \$ \$	Mete	oSwiss		રુ જૂર
少 令 令	ት ት ትት ትትት	상상 상 상상 상상상 상상상 (ۍ ۍۍ ኑ ۍۍۍ	ት ት ንት ትትት ት	* *	ት ት ትትትረ

Summary of Comparison

- Hourly temperature and humidity profiles from Raman Lidar suitable as independent obs to validate NWP analyses and forecasts
- KENDA and Nudging driven analyses and forecasts are more similar as previously thought.
- Differences are larger and longer lasting in BIAS than in STD
- Differences are larger in humidity than in temperature
- Impact of assimilation lasts ca 8-10h in summer and 18-20h in autumn

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t

Meteodrones

- Operated by Meteomatics AG, St. Gallen, Switzerland
- Observations of T, RH, Wind and Pressure
- Profiles up to 1800m amsl
- Up to several profiles per hour

Field Campaign

- 7 nights during Winter 2017/2018
- Observation Locations

Assimilation Experiments

- Use of the operational MeteoSwiss COSMO-KENDA system
 - 2.2km grid size
 - LETKF (Local Ensemble Transform Kalman Filter)
 - 40 ensemble members
- Reference Experiment without Meteodrone Obs
- Experiment with Meteodrone Obs

	 Meteodrone observations are fed into COSMO as 															
÷	additional AMDAR observations															
2 S	·		·			÷					- 		-	÷		5
رې ۲	5	52			÷	n n	<u></u> ~~?	상 상	رک		n.		÷	_nn_	1	~
v v	<u>م</u> ر.	~~	57 ₂₇	s s s	<u>л</u> , д	57 57	57 V2	. en	۰. ۲	~T_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n n	M	57 57	5	27
\$	۲ <u>۲</u> ۲	7.7	·22	5 5 5	55 V	令 谷	。 谷	・ ひ ・ ひ む		5	5	55	55° 52'	수 수	수 수	\$
45	5 5			÷	4	公 公	- 2 -	ት ት	- 	6 6 4	2 3	45	ት ት ት	а Ср		
今	· 슈 슈	Mete	eoSwis	公	÷ ÷	\$ \$	승승	수수 수	· 수 수	令 令	÷ ÷		÷ ÷	수 수	11 /	÷
ф ф	· · · ·			수 수	÷÷	ን ት ት ረ	· + +	÷ ÷	ት ት ት ት	6 f	수 국	B 4 4	ን የ	令		÷ ÷
6 4 44	ት ት ት ት ት	· 44 4	6 6 0	· · · ·	令 令 夺	수	수 수	÷ ÷	42	4	-C-	÷	ф ф 4	ф ф		÷
승승승승		÷÷÷÷	승승 승승승	수수 수수	수 수수 숙	ን ትት ት	수 수수수	÷÷÷	ት ት ት ት	· · · · ·	45	슈 슈	÷ ÷	수 수 수	45	42

Summary of Results

 Up to now, only cloudiness has been investigated and subjectively compared with a cloud product from MSG Satellites

Date	Weather Situation	Impact on COSMO cloud analysis	Duration of cloud forecast impact
2017-12-05	High pressure system, low Large-Scale Forcing	Positive	< 3h
2017-12-06	High pressure system, low LSF	Strongly Positive	12h
2018-02-13	Border of high pressure system, medium LSF	Neutral	-
2018-02-14	Border of high pressure system, medium LSF	Neutral	-
2018-02-15	Frontal passage, strong LSF	Neutral	-
2018-02-26	Border of high pressure system, medium LSF	Neutral	-
2018-02-27	Border of high pressure system, low LSF	Strongly Positive	< 3h
· * * * * * * * * * * * * * * * * * * *	+ +	, , , , , , , , , , , , , ,	+ +

Impact on Analysis Mean Cloudiness

Impact on Analysis Mean Cloudiness

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

숭

÷

3

公 夺 夺

÷

슈 53

라

÷ 4

슈 ÷ 슈

Impact of Meteodrones on T and QV

2017-12-06 23UTC, after 1 hourly assimilation update

Impact of Meteodrones on T and QV

2017-12-07 03UTC, after 5 hourly assimilation updates

The COSMO Fog Dissipation Problem

- Usually, COSMO dissolves the fog too quickly during the forecast
- This model problem can obviously not been solved with additional observations, but is currently been investigated in the course of the PhD of Stephanie Westerhuis

Forecasts of Cloudiness

Without Meteodrones

With Meteodrones

Satellite Observation

2017-12-07 00UTC +00h

\$ ት ት ት ት

42

\$

Forecasts of Cloudiness

Without Meteodrones

With Meteodrones

Satellite Observation

2017-12-07 00UTC +06h

÷

Forecasts of Cloudiness

Without Meteodrones

With Meteodrones

Satellite Observation

2017-12-07 00UTC +09h

ۍ چ ج ب

cp.

Future MeteoSwiss NWP System

C KENDA-1

- 40 Ensemble member
- 1.1km grid size
- Difference in settings to operational KENDA
 - grib2
 - SST and T_SO perturbations
 - flake
 - SPPT with reduced amplitude (stability reasons)
- Running continuously since 1.7.2019

	4			53	53										4		-{	2							3				
5		53	52				42				42										52				· 42				52
9		5	5		5						1				3	3		3			2								0
5	5	U	Ц		Ц	5				57	5	5	5	53	u	U	5	U		5					52			3 5	3
u	U			5	5	U	53	5 5	53	S 5	u	u -	U	~~ <u>~</u>	53 0	5	U.	5	5		53	5	ng.		C> C2	u u			~
	\$			4	4		U.	u -u	-0	-0 0	÷	53	↔ ↔	L L	04	۰ ۰	4	U	<i>u</i> -		<u>u</u> -	0	0			수 수	3	÷	-C-
	42		53	5		-			÷	4	公公	-	÷		42	42		÷	수 수		5		÷	42	수 수	þ			42
53		÷	수 수		Met	eos	WISS			누 - 슈	5	3 43		승승	승승		4 4	\$	ф с	÷	\$	4°	÷		4	수 수	2	3 夺	
슈	4	-		승					ን ቆ		<u>ት</u>	수 수	÷	42	C	· ·	4 d	2 4	수 수	4	þ	42	4 d	B	4 2	는 수		4	· 4
÷	÷ ÷	4		÷÷÷	·	4 4	-0	· 4	~ ~ <	5 - C - 4	4	4	4	÷	42	4		4		÷	÷	4		4	4 4	42	5	5 45	
÷	4	2	÷÷÷	- 4	ትትትት	승승	승승승	승승	승승승		<u>ት</u> ት ት		÷ ÷	수순수	승승	4 44	ት ተ	는 슈	승승승	÷	4	} c	6	슈	수	ኑ የ የ	·		4°

First Validation with Radiosondes Period of 10. – 21.8.2019

Summary I

- KENDA and Nudging driven forecasts behave similarly when compared to independent Lidar obs (T and RH) in terms of STD
- KENDA driven forecasts have larger RH BIAS than Nudging driven forecasts. Difference lasts up to 10h
- Impact of assimilation lasts ca 8-10h in summer and 18-20h in autumn
- Meteodrone observations can have a very positive impact on COSMO analyses and forecasts
- In one investigated case the cloud forecast impact lasts up to +12h

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

Summary II

- KENDA-1 works as expected/hoped
- Will need to find ways to speed up the KENDA-1 cycle, currently takes ca 30min per cycle...
 - optimizations of nudging and LHN running on GPU have already been identified
 - revisit single precision version of COSMO (nudging, terra, flake)
 - Optimize number of CPU cores / compiler flags, etc. for LETKF

Outlook

- KENDA-1 speed up and other improvements
- Assimilation of new obs types:
 - MW Radiometer BT (work of Claire)
 - wind profiles from wind lidar (1y position starting Oct 2019)
 - T and q profiles from Raman Lidar and meteodrones (work towards opr use)
 - Radar volume data or Satellite MTG T/q profiles (TBD) (2y position starting Jan 2020)
 - T2m and RH2m

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t