

Verification and Case studies

Overview of activities Flora Gofa

Status of PPCARMA: Amalia Iriza-Burca Alexander Kirshanov COSMO Common verification: Alexander Kirshanov Model Equivalent Calculator (MEC) overview: Roland Potthast

Versus new patches (September 2017 - present)

5.1.4/5.1.5 (Sept17/May18): implementation of verification for <u>new BUFR format buoy</u> <u>data</u>, correct visualization for cross verification graphics and for EPS verification pdf.

5.1.6 (Oct 2018): management of the <u>new synop messages BUFR template</u> (SYNN), concerning cumulated/averaged fields defined by "time period" descriptor (windgust, precipitation...)

5.1.7 (Jan 2019): bug fixing on software installation process, availability of txt output file for every EPS verification score.

5.1.8 (May 2019): bug fixing on the EPS verification system (rank histogram graphics production), implementation of the code for the management of the new buoy/sounding wind speed descriptor (bufr mapping setting).

5.1.9 (May 2019): implementation of the code for the management of the <u>new bufr</u> <u>template for sounding observations (</u> obs type = 2, obs subtype = 109/111).

Advances in Rfdbk and Feedback File Verification at DWD

Felix Fundel

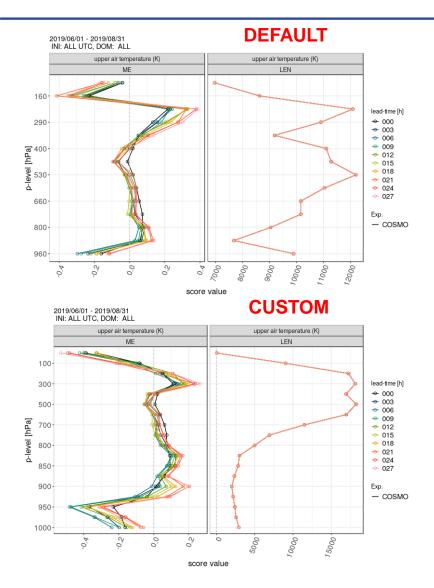
Deutscher Wetterdienst

FE 15 – Predictability & Verification

Tel.:+49 (69) 8062 2422

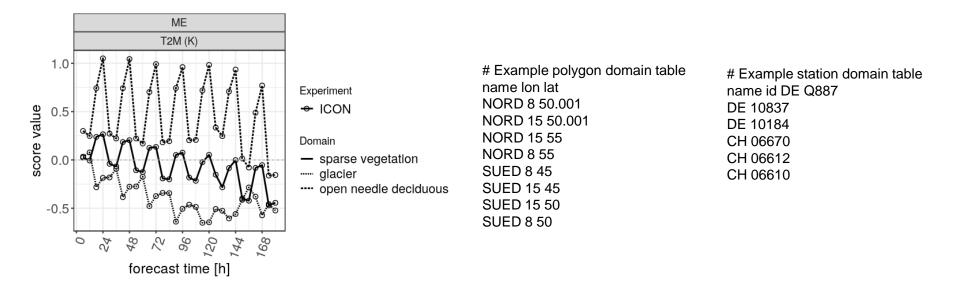
Email: Felix.Fundel@dwd.de

New namelist options


NAME	VALUE (example)	DESCRIPTION
customLevels	ʻ1000,900,850,500'	user defined bin centers [hPa] for COSMO TEMP verification
conditionX	' list(T2M='obs<273)'	conditions now also for SYNOP EPS
shinyServer	'remote.machine.de'	copies results to this server
shinyAppPath	'/data/user/shiny/'	copies results to this folder

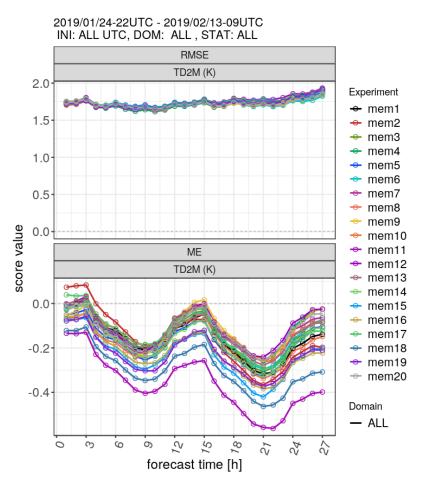
II Feedback File Verification

Deutscher Wetterdienst Wetter und Klima aus einer Hand



- Selection of vertical binning by namelist entry 'customLevels'
- User can define the bin centers
- Bins extend to the middle between bin centers
- Observations outside are attributed to the lowest/highest bin
- Only implemented for COSMO verification

- User defined stratification of the verification domain
- Station or polygon based
- Initiated via namelist
- ASCII File with domain specification has to be provided by the user
- Only condition: Domains must not overlap!



II Feedback File Verification

Deutscher Wetterdienst Wetter und Klima aus einer Hand

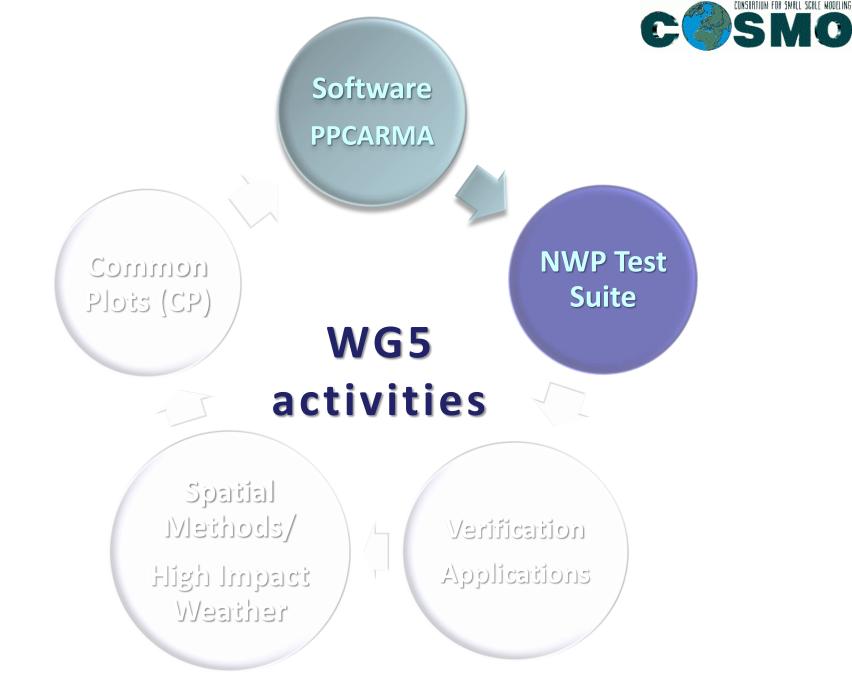
- Deterministic verification can be used to perform a single member verification
- Set 'veri_ens_member' and according repetition of 'explds' and 'fdbkDirs' in namelist
- Comparatively time consuming as it does not use *fbk_wide* functionality

Revised EPS Verification

- Before: keeping intermediate Score files with station based scores
- Now: keeping only domain averages scores as in deterministic verification
- Additional efficiency plus from fdbk_wide function in Rfdbk
- Time series and significance test for ensemble scores are now possible
- Low memory usage allows for high degree of parallelization
- Verification results in a single score file, and one app was written to show ensemble (e.g. CRPS) and probabilistic (e.g. ROC) scores

All verification scripts can now be run on multiple cores

II Feedback File Verification



http://www.cosmo-model.org/shiny/users/fdbk/RfdbkVeriDoku.html

-)→ C û	www.cosmo-model.org/shiny/users/fdbk/Rfdbk/VeriDoku.html	E ··· ♡ ☆	III\ 🗓 笔
F	Feedback File Verification Suite at DV		
F	elix Fundel		
1	3 Juni, 2019		
	Introduction		
	System Requirements		
	 Software 		
	 Hardware 		
	Input Data		
	Workflow Demain everyone verification		
	 Domain average verification Station based verification 		
	Namelists		
	Example Namelist		
	 Experiment Definition 		
	 Verification Period Definition 		
	 Variable and Threshold Selection 		
	Forecast/Analysis Selection		
	 Score Selection Data alignment 		
	Data algument Omain Stratification		
	Using Whitelists		
	Conditional Verification		
	 Stratification by Date 		
	 Significance Testing 		
	 Hindcast & Standard Verification 		
	Verification Output		
	Running the Verification Quality Control Within the Verification		
	Minicing VERSUS Quality Check		
	Visualization		
	 Shiny-server applications 		
	• Other		
	Further Tips		
	Additional Tools		
	Appendix Scores		
	Subdomains		
	Observations		
I	ntroduction		
	his document is meant to serve as a guideline to perform a feedback file (ff) based verification on a		
	ecessary software and scripts are available on the system, the user has to provide a set of namelis ventually have a look at the results through an interactive browser application. Here, the system re-		
	w to run the verification efficiently are provided		

Also the CARMA Training presentations and exercises on http://www.cosmo-model.org/shiny/users/fdbk/

NWP Test Suite (COSMOv5.06)

MODEL OUTPUT VERIFICATION

Verification modules:

- → V5.05 against v5.06 (7 km, DP, hindcast)
- → V5.05 against v5.06 (2.8 km, DP, hindcast)
- → V5.06 DP against SP (7km, hindcast)
- → V5.05 against v5.06 (7km, SP, hindcast)

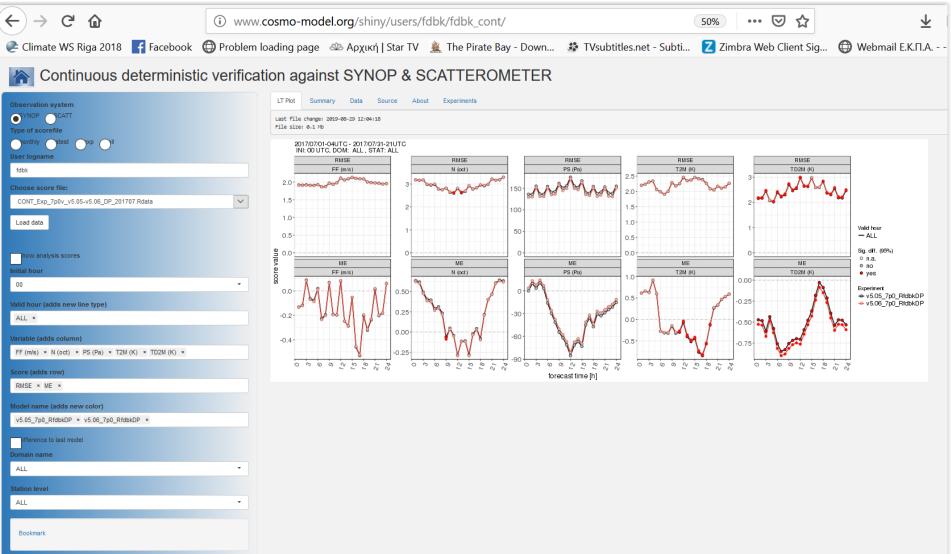
MEC+Rfdbk verification procedure

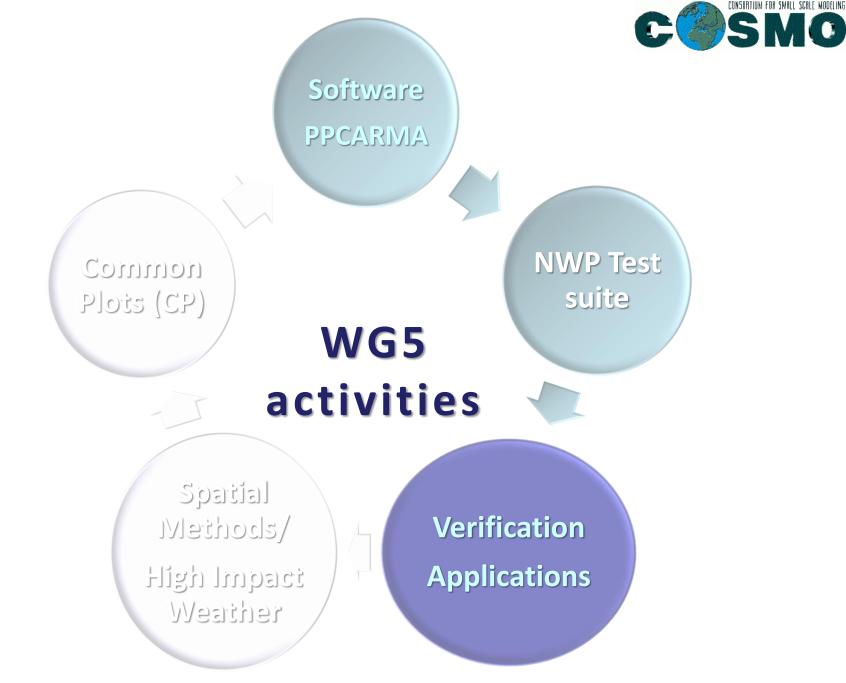
- → conversion of observations (bufr2netcdf)
- → pre-processing of model output in grib format for ingestion in MEC
- processing model output and corresponding observations to obtain feedback files
 ✓ MEC-1.57
- → execution of verification procedures (Rfdbk)
 - ✓ R 3.5.2 version
- → New R scripts by Felix
- → Mimic VERSUS capability Station list from VERSUS (adapted for Rfdbk)

RESULTS available on the COSMO shiny server

(complete overview of statistical analysis/graphs/numbers)

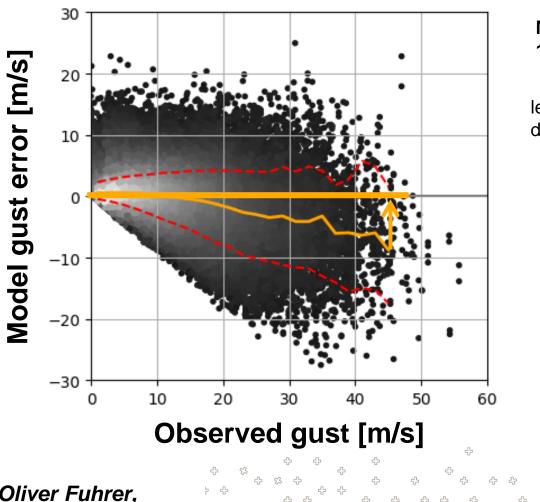
REPORT IS DRAFTED, will be available soon if it is not already!


NWP Test Suite (COSMOv5.06)


METEO

ROMANIA

http://www.cosmo-model.org/shiny/users/fdbk/

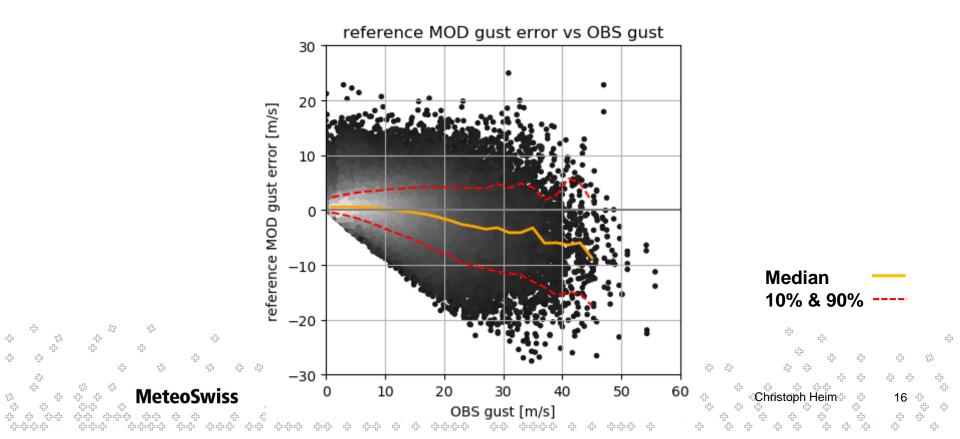

V5.05 against v5.06 (7 km, DP, hindcast)

The Problem

COSMO-1 underestimates strong wind gusts.

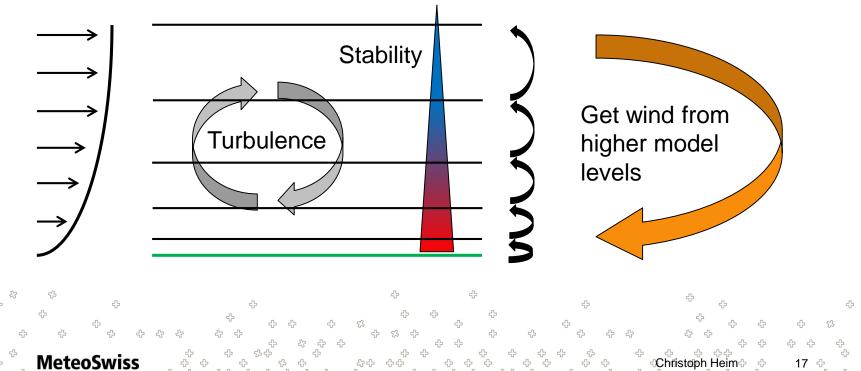
Median -----10% & 90% -----

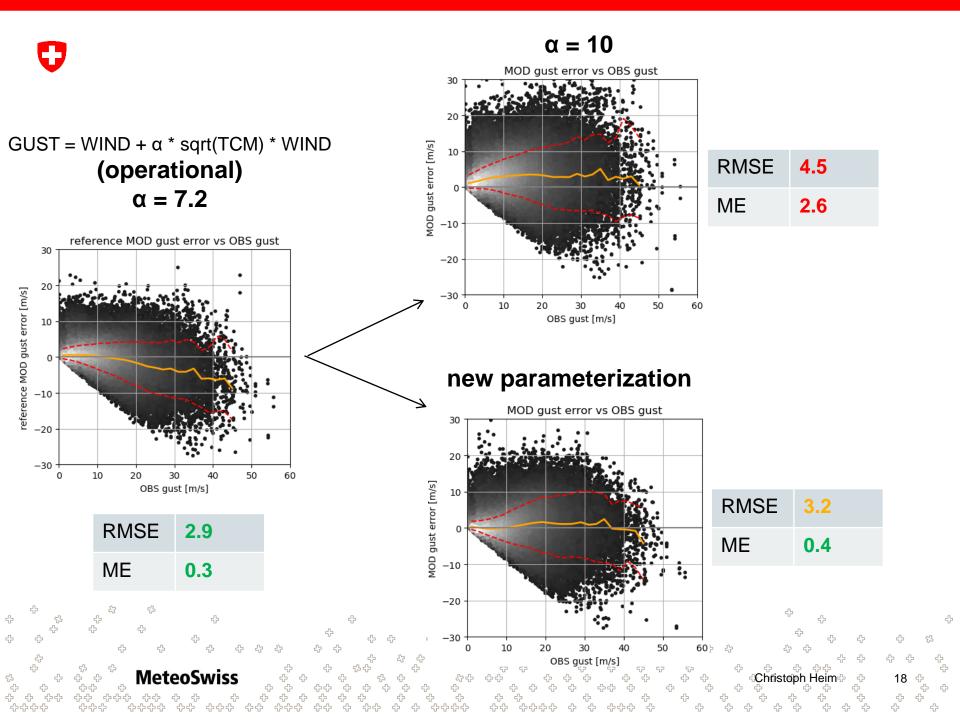
lead time: 0-24 data: training data set


- Christoph Heim
- Guy de Morsier, Oliver Fuhrer, André Walser, <u>Pirmin Kaufmann</u>, Marco Arpagaus

Statistical Model (operational in COSMO-1)

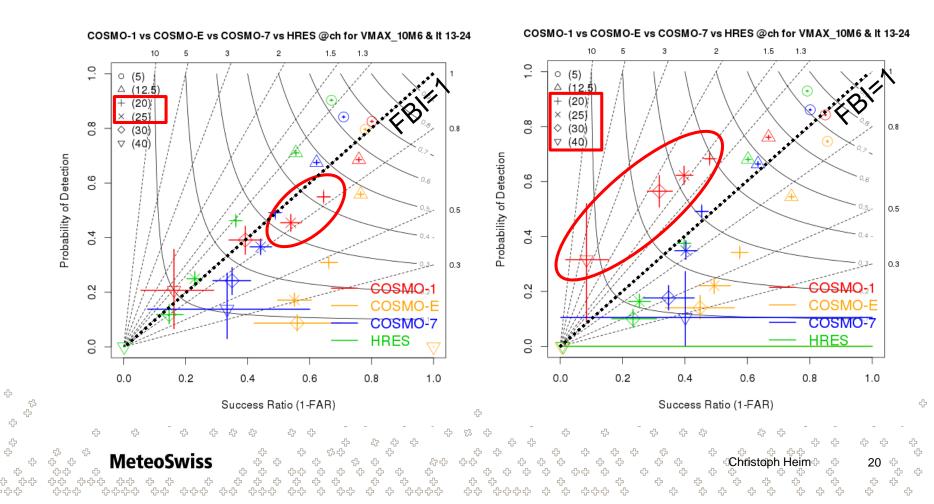
itype_diag_gusts=1

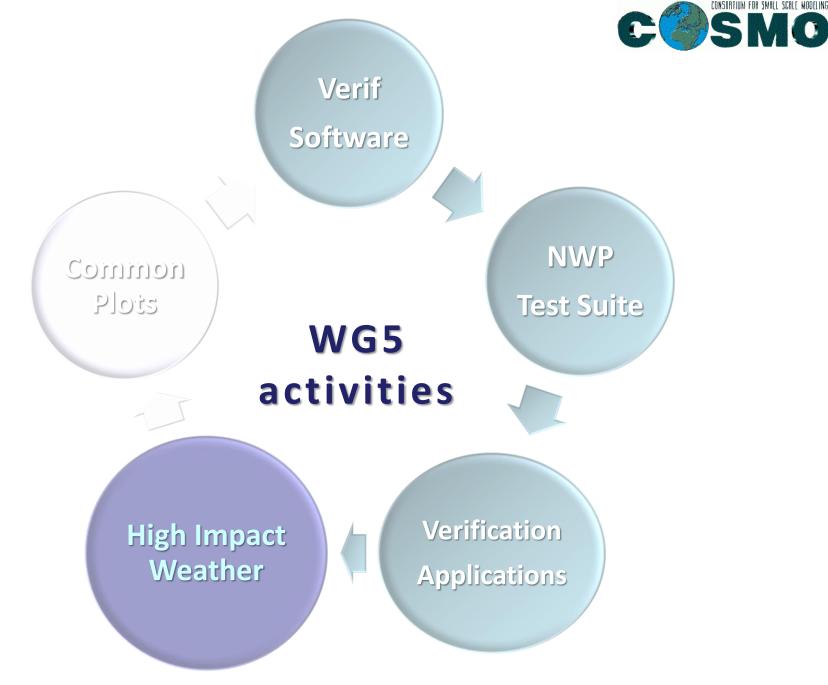

- Simple linear model based on 2 predictors:
 - model mean wind at 10m (WIND)
 - transfer coefficient of momentum (TCM)


 $GUST = WIND + \alpha * sqrt(TCM) * WIND$

New Gust Parameterization

- Linear model based on a physical parameterization (Brasseur)
- Brasseur compares vertical profiles of stability and turbulence
- Linear model thus implicitly contains information from higher model levels!


Limitations of New Parameterization


- New gust parameterization is a statistical model. Can be expected to work only within the domain of data used for training of coefficients. Everything else is extrapolation.
- Known cases of extrapolation
 - Lakes and Sea in winter
 - Very strong wind speeds
 - Different model resolutions
 - Different areas?
- Other problems:
 - Overestimated gusts in convective situations (?)
 - Frequency bias for strong gusts in summer (likely from convective situations) is already very high in itype_diag_gusts=1 but even higher in itype_diag_gusts=5. Probably due to a small amount of observation data for convective cells used in tuning.

First operational verification results

Comparison with previous season

Old parametrization (DJF18/19) New parametrization (MAM19)

PP-AWARE proposal: Appraisal of "Challenging WeAther" FoREcasts

Joint Project Proposal: WG5 &WG4 (collaboration with WG7)

The goal of the PP is to provide COSMO Community with an overview of forecast methods and forecast evaluation approaches that are linked to high impact weather (not necessarily considered extreme to all users).

Key forecast quality and verification aspects to consider in this project include:

- How well high-impact weather is represented in the observations, including biases and random errors, and their sensitivity to observation density.
- How well high-impact weather is represented in models, including systematic and stochastic errors, and their sensitivity to model resolution.
- How well high-impact weather is represented in postprocessing.
- The predictability, current predictive skill, and the user's interpretation of forecast value in high-impact weather situations (observed and/or forecast).

Approval decision is expected by the STC this afternoon

Proposed Tasks

Task 1. Challenges in observing CW/HIW (WG5 and WG4 related)

Question: How well high-impact weather is represented in the observations, including biases and random errors, and their sensitivity to observation density?

HIW phenomena studied: visibility range (fog), thunderstorms (w. lightning), intense precipitation, extreme temperatures and winds.

Task 2: Overview of appropriate verification measures for HIW (WG5 related)

Question: How well high-impact weather forecast quality is represented with commonly used verification measures? What is the most appropriate verification approach? **HIW phenomena studied:** intense precipitation, thunderstorm (lightning activity, visibility range (fog).

Task 3: Verification applications (with a focus on spatial methods) to HIW (WG5 and WG7

related). This task will make use of the findings of Task 2 and is connected with and continued from PP-INSPECT and MesoVICT projectsFeature-based analysis of intense precipitation patterns. Spatial methods on a probabilistic approach

Question: Can spatial verification methods contribute to the proper evaluation of HIW phenomena and in what way?

HIW phenomena studied: intense precipitation, thunderstorm (lightning activity LPI, visibility range (fog).

Task 4. Overview of forecast methods, representation and user-oriented products linked to HIW (WG4 related)

Question: How well is HIW is represented in postprocessing? What are the pros/cons of DMO vs. PostPro with respect to HIW phenomena predictions? What is the current predictive skill, and the user's interpretation of forecast value in high-impact weather situations (observed and/or forecast)?

HIW phenomena studied: fog/visibility, convection related CW (thunderstorms, lightning, hail, squalls, showers, flash floods)

QPF operational verification over catchment area Maria Stefania Tesini

Presentation during High Impact Weather Session this afternoon The estimation of QPF on river basins for purposes related to the issue of Civil Prove alerts for hydro-geological or h is one of the main operati

- Development of tools to help forecasters and hydrologists to evaluate mean, max, or percentiles of the precipitation field on the warning areas used by the National Civil Protection Department using data from different NWP models (e.g. IFS-ECMWF, COSMO-5M or COSMO-2I)
- Exceeding predefined thresholds can give useful indications for situations of intense precipitation possibly leading to floods

AWARE TASK 4: Overview of forecast methods, representation and user-oriented products linked to HIW Sub Task 4.6: QPF evaluation approaches

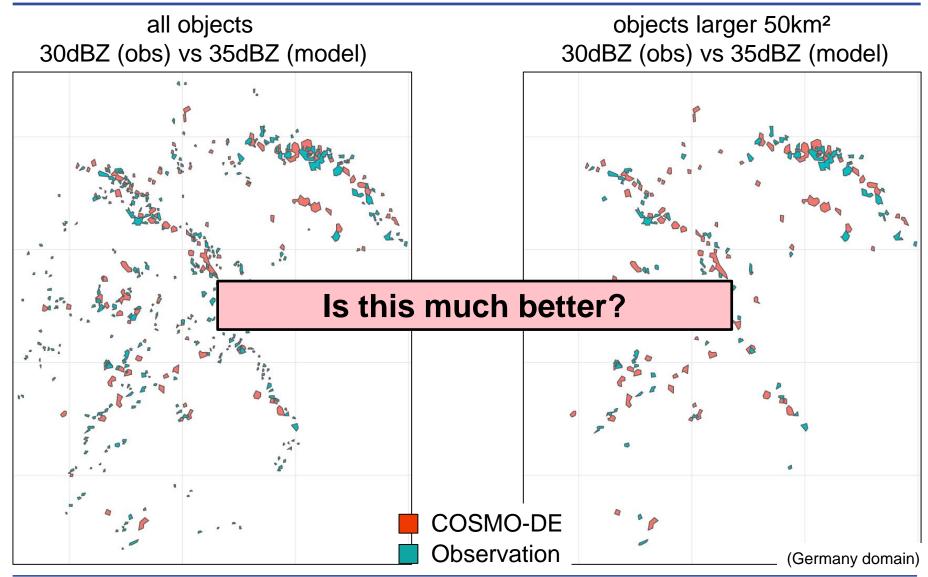
- Development of a system to verify the products used to estimate the QPF over catchment areas:
 - It should allow to carried out verification operationally on a seasonal basis using the available observational data
 - Verification results should be used directly to interpret how to use the forecast system and to decide in which situations one system is better than another

AWARE TASK 3: Verification applications to HIW (with focus on spatial methods) Sub Task 3.4: DIST methodology tuned on high thresholds events

Object-based verification of radar reflectivities on the convective scale

COSMO General Meeting 09.09.2019 - 12.09.2019

Michael Hoff E-Mail: michael.hoff@dwd.de

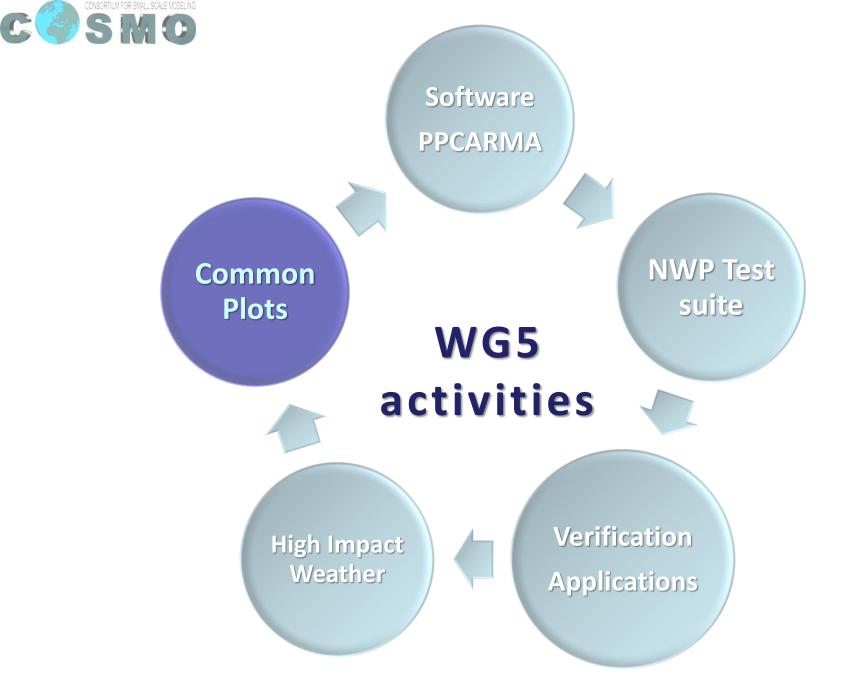

A qualitative comparison

Deutscher Wetterdienst Wetter und Klima aus einer Hand

26

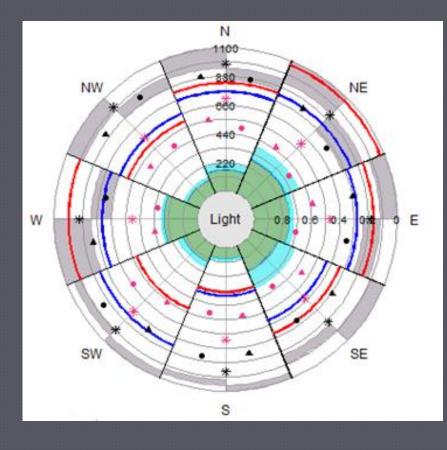
SIN

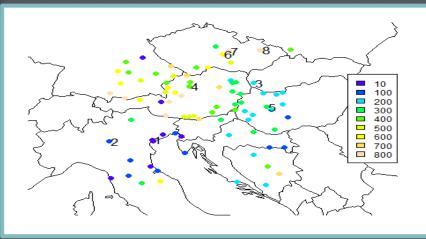
Total Interest & Median of Maximum Interest


Presentation during High Impact Weather Session this afternoon

a total interest describes how similar both objects are

- the **median of maximum** interest as a metric for overall forecast quality \rightarrow
- However: stratification on distinct attributes possible \rightarrow
- Idea: should better **mimic** the decision process of a forecaster





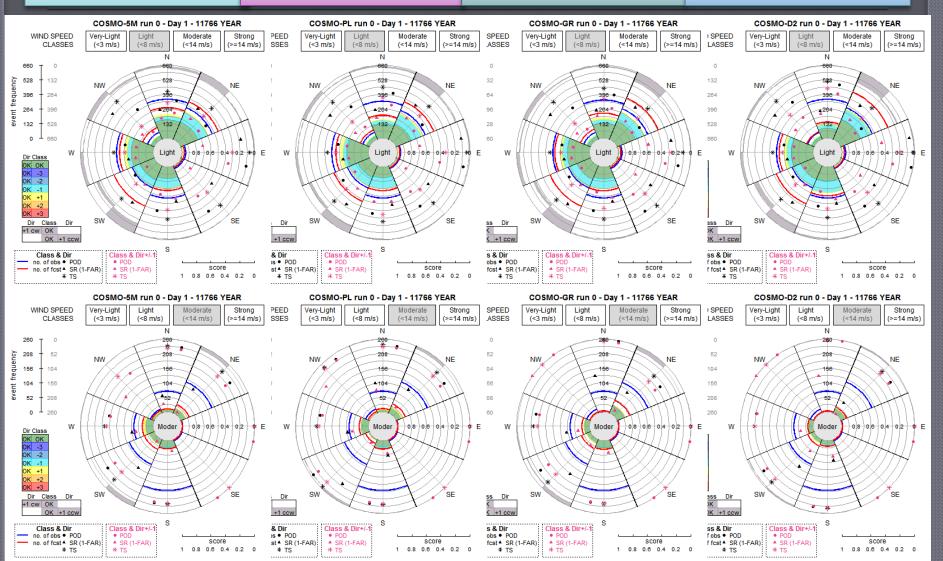
The "performance-rose"

- It is a diagram in which are summarized according to directions:
 - scores derived from contingency table (plotted as symbols)
 - type of errors of wind forecast, e.g. over/under estimation of wind speed (plotted as colored sectors)

	code	name	height
1	16105	VENEZIA TESSERA	6
2	16088	BRESCIA/GHEDI	97
3	11816	BRATISLAVA-LETISKO	134
4	11012	KREMSMUENSTER	390
5	12830	VESZPREM/SZENTKIRALYSZABADJA	281
6	11659	PRIBYSLAV	536
7	11683	SVRATOUCH	740
8	11766	CERVENA U LIBAVE	753

station code	COSMO- 5M	COSMO- PL	COSMO- GR	COSMO- RU	COSMO- D2	EU	ICON
	DAY 1	DAY 1	DAY 1				
16105	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
16088	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
11816	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
11012	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
12830	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
11659	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2
	DAY 1	DAY 1	DAY 1				
11766	DAY 2	DAY 2	DAY 2	DAY 2		DAY 2	DAY 2

- 3 hourly data from 8 selected stations
- 7 model data (00 UTC run step 3h)
 Period:
 - June 2018 May 2019


All Year – station 11766

COSMO-5M

COSMO-PL

COSMO-GR4

COSMO-D2

All Year – station 11766

COSMO-RU7 ICON **ICON-EU** COSMO-D2 COSMO-RU run 0 - Day 1 - 11766 YEAR ICON run 0 - Day 1 - 11766 YEAR ICON-EU run 0 - Day 1 - 11766 YEAR COSMO-D2 run 0 - Day 1 - 11766 YEAR WIND SPEED Very-Light Moderate Strong PEED Very-Light Light Moderate Strong SPEED Very-Light Moderate Strong SPEED Very-Light Moderate Strong CLASSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) SSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) ASSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) LASSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) Ν Ν 880 880 529 598 599 NW NW NF NW NF freque 396 264 390 396 64 4 396 264 396 4 264 396 264 264 96 264 39(**4264** event 132 528 132 28 132 660 60 W Light 08 06 04 02 w Light 08 08 04 02 W Light 08 08 04 02 * F W Light 08 06 04 02 * Е Е Dir Class ок ок OK -2 ОК -1 OK +1 DK +3 SE SE Dir Class Dir Dir Dir Dir 55 +1 cw OK OK +1 ccw +1 ccw < +1 ccw K +1 ccw Class & Dir+/-1 POD POD **Slightly better** greater underestimation of events in all classes score SR (1-FAR) SR (1-FAR) 4 0.2 * TS 0.8 0.6 0.4 0.2 0 COSMO-RU rul 0 - Day 1 - 11766 YEAR ICON run 0 - Day 1 - 11766 YEAR ICON-EU run 0 - Day 1 - 11766 YEAR COSMO-D2 run 0 - Day 1 - 11766 YEAR Strong Strong Strong Strong WIND SPEED Verv-Light Light Moderate PEED Very-Light Light Moderate SPEED Very-Light Light Moderate SPEED Verv-Light Light Moderate CLASSES. (<3 m/s) (<8 m/s (<14 m/s) (>=14 m/s) SES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) ASSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) ASSES (<3 m/s) (<8 m/s) (<14 m/s) (>=14 m/s) Ν N N 260 200 208 52 208 52 208 NW NF NW NE NW NF NW NF frequer 156 104 150 04 160 04 150 104 156 104 104 56 104 56 104 event 52 208 52 62 52 52 08 208 260 W Moder 08 06 04 02 W Moder 08 08 04 02 W Moder 08 08 04 02 Е W Moder 08 08 04 02 0 E Dir Class ок ок OK _2 +1 SE SW SE SW SE SW Class Dir Dir 355 1 cw OK S _____ S Class & DIF+/-T class & pir+ Class & Dir Class & Dir+/-1 & Dir ss & Dir Class & Dir+/-1 s & Di no. of obs • POD s • POD obs • POD f obs . POD POD POD POD POD no. of fcst A SR (1-FAR) score SR (1-FAR) score fcst - SR (1-FAR) SR (1-FAR) score score SR (1-FAR) st SR (1-FAR) f fcst A SR (1-FAR) SR (1-FAR) 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0

***** TS

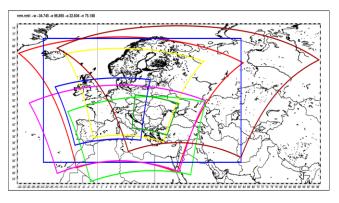
***** TS

*** TS**

***** TS

* TS

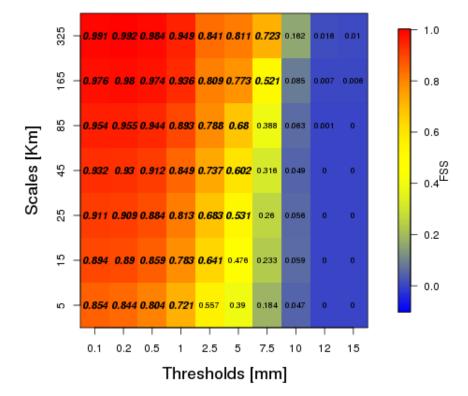
***** TS


***** TS

***** TS

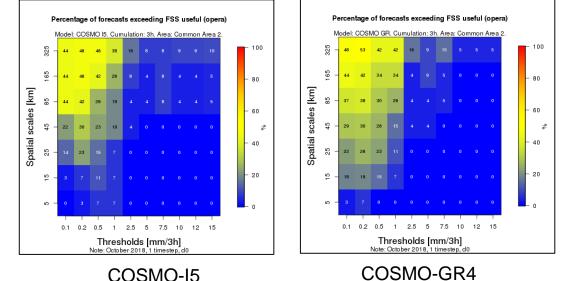
Fuzzy verification on Common Area 2 October and November 2018

MODEL	LON MIN	LON MAX	LAT MIN	LAT MAX	RESOLUTION	N° of POINTS
COSMO 15	10.925	17.30	46.525	49.60	0.045°	9447
COSMO GR	10.925	17.30	46.525	49.60	0.045°	9447
COSMO 2I	10.925	17.275	46.525	48.275	0.025°	18105
COSMO IT	10.925	17.275	46.525	48.275	0.025°	18105
COSMO D2	10.925	17.275	46.525	48.275	0.025°	18105
COSMO PL	10.95	17.30	47.622	48.30	0.025°	6858
COSMO 1	10.925	16.937	46.586	48.30	0.025°	16320

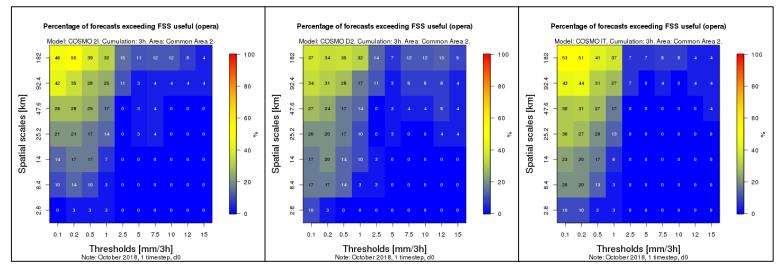

10 PRECIPITATION THRESHOLDS: 0.1, 0.2, 0.5, 1.0, 2.5, 5.0, 7.5, 12, 15

7 SPATIAL SCALES (except COSMO PL, which has 5) Scale=(minimum resolution)*($2^{n}+1$) n=0,...,(scales-1)

Observations: OPERA radar database composite (HDF-5) 3h accumulated precipitation 33


* What is FSS_{useful}? (quick remind)

- FSS is called "useful" when the verification certifies an actual added value of the forecast superior to the random data
- FSS_{useful} threshold depends on the precipitation pattern:
 - Precipitation everywhere -> easier forecast -> higher threshold
 - Many precipitation blobs -> more difficult forecast -> lower threshold
- FSS can never be considered useful if it does not reach the value of 0.5

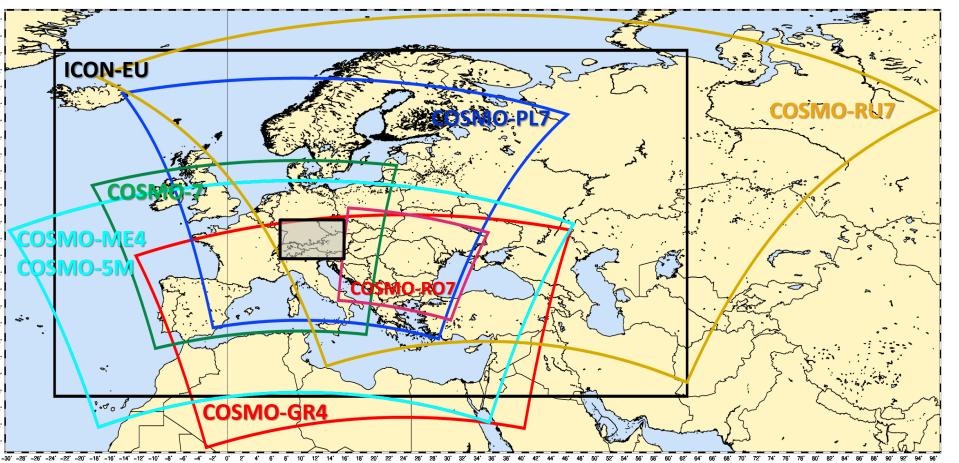


Fractions skill score COSMOI5 - FSS - 20181219 - 1 Tsteps

Results FSSuseful - October – D0

COSMO-I5

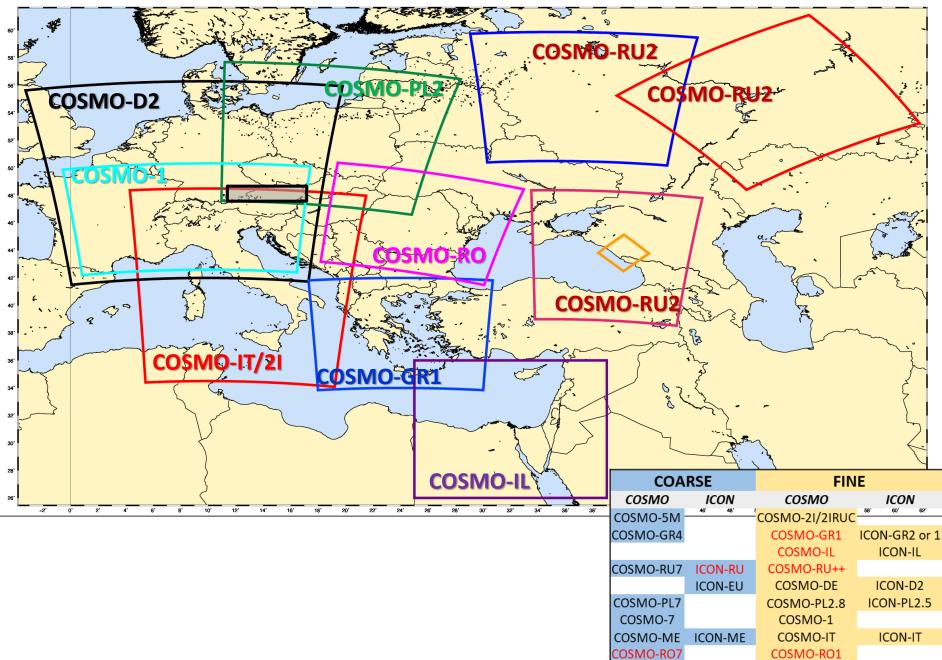
COSMO-2I

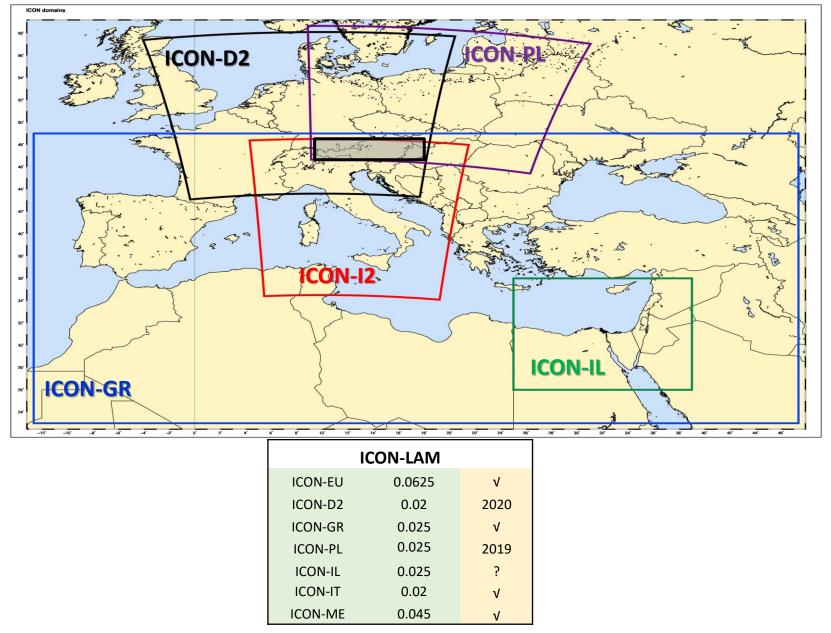

COSMO-D2

COSMO-IT

Verif Feedback: Models implementation for 2019-2020

model	there are	فداله مماله	Alexandra	R (start)	C (and las)	D (and and	in the	in ter	ka tet	in that V all	in the Valley	nalaka	aalalaa	IC/BC	DA	aug	fet er er	Mbr	Plans for 2019-2020
model ICON-EU	type	dion,diat			_	17.5			_	86	je_tot X dlat 41	-		VAE-EnKF/ICON			fct range	WIDS	
ICON-EO	det	0.0625	29.5	-23.5	70.5	17.5	15//	657	60	00	41	-90	0 (geo/cal)	VAE-ENKF/ICON	ICON-EDA	00UTC /3h	120/30h		confirmed
ICON-D2	det	0.025										40	-170			OOUTC /3h			operational in 2020
COSMO-DE	det	0.02	-6.3	352.5	8	366.8	651	716	65	13	14.3	40	-170	ICON-EU	KENDA,LHN	OOUTC/3h	27h		cease in 2020
COSMO-D2-EPS	eps	0.02	-6.3	352.5	8	366.8	651	716	65	13	14.3	40	-170	ICON-EU	KENDA,LHN	OOUTC /3h	27h	20	
COSMO-1	det	0.01	-4.4	-6.8	3.33	0.93	1158	774	80	11.57	7.73	43	-170	COSMO-1 Analysis Cycle/IFS- HRES	Nudging + LHN	00UTC /3h	33		Switch to KENDA data assimilation and 11 member
COSMO-E	eps	0.02	-4.42	-6.82	3.36	0.96	582	390	60	11.62	7.78	43	-170	KENDA Analysis Cycle /IFS-ENS	KENDA + LHN	00-12UTC	120	21	ensemble in 2020 (COSMO-1E)
COSMO-7 ICON	det	0.06	-9.78	-16.32	10.44	3.9	393	338	60	23.52	20.22	43	-170	DSMO-7 Analysis Cycle /IFS-HR	Nudging + LHN	00,06,12UTC	72		Phase-out, shutdown autumn no plans for current year
COSMO-ME	det	0.045	-13.05	-25.29	12.06	-0.18	1083	559	40	48.69	25.11	47	-170	LETKF/IFS	LETKF	00.06.12.18UTC	72		confirmed
COSMO-IT	det	0.02	-8.5	-3.8	5.5	10.2	576	701	65	11.5	14	47	-170	KENDA/LETKF		00.06.12.18UTC			confirmed
OSMO-ME-EPS		0.0625	-13	-25.25	12	-0.25	779	401	40	48.625	25	47	-170	LETKF/IFSENS	LETKF	00,12UTC		40+1	confirmed
		0.02	-8.5	-3.8	3	7.7	701	576	45	14	11.5	47	-170	IFS	KENDA	00.12UTC	48	20	confirmed
ICON-IT	det	0.02	-8.5	-3.8	5.5	10.2	576	701	65	11.5	14	47	-170	KENDA/LETKF	KENDA/LETKE	00.06.12.18UTC			confirmed
ICON-ME	det	0.045	-13.05	-25.29	12.06	-0.18	1083	559	40	48.69	25.11	47	-170	IFS	KENDA	00.12UTC	48	20	confirmed
COSMO-PL7	det	0.0625	-19	-10	9.6875	18.6875	415	460	40	25.875	28.6875	32.5	-170	DAC/ICON		00,06,12,18UTC			confirmed
COSMO-PL2.8		0.025	-2.4	0.65	7.7	10.75	380	405	50	9.475	10.1	40	-170	COSMO-PL7		00,06,12,18UTC			confirmed
DSMO-PL2.8-TL		0.025	-2.4	0.65	7.7	10.75	380	405	50	9.475	10.1	40	-170	COSMO-PL7		00.06.12.18UTC		20	confirmed
ICON-PL		2.5km / R2B10												ICON	No	OOUTC	48		Opyraue to ici zola
COSMO-RU7	det	0.0625	-19	-19	19.6875	19.6875	700	620	40	43.6875	38.6875	35	-145	ICON	Nudging	00,06,12,18UTC	78		confirmed
COSMO-RU13		0.12	-30	-60	29.88	-0.12	1000	500	40	119.88	59.88	25	-90	ICON		00,06,12,18UTC			confirmed
COSMO-RU2cfo		0.02	-4.5	-3	4.88	6.38	420	470	50	8.38	9.38	35	-145	COSMO-Ru7		00.06.12.18UTC			confirmed
COSMO-RU2sfo		0.02	-16	-1	-6.62	8.38	420	470	50	8.38	9.38	35	-145	COSMO		00,06,12,18UTC			confirmed
COSMO-RU2vfo		0.02	-8	-26	0.98	-17.02	470	450	50	9.38	8.98	25	-90	COSMO		00.06.12.18UTC			confirmed
	det	0.01	-8.4	-34.7	-6.51	-32.81	190	190	50	1.89	1.89	25	-90	COSMO		00,06,12,18UTC			confirmed
ICON-RU																			
ICON-IL	det	0.025	26	25	36	39	561	401	65	14	10	90	-180	ICON	none	00h	78		testing phase
COSMO-IL	det	0.025	26	25	36	35	561	401	60	14	10	90	-180	IFS	LBC: IFS, IC: IFS at atmosphere, ICON at soil	00,06,12,18UTC	90		confirmed
COSMO-RO7	det	0.0625	-16.5	4	-5.5	15	201	177	40	12.5	11	32.5	-170	ICON	Nudging		78		
ICON-R07	det																-		test phase
COSMO-RO3	det	0.025	-6.5	6	0.75	13.25	361	291	50	9	7.25	40	-170	COSMO-RO7	Nudging		30		
COSMO-GR4	det	0.04	-11	-25	13	15	1001	601	80	40	24	52	-156	IFS I	NO	00-12UTC	72		yes
COSMO-GR1	det	0.01	-4	-5	4	5	1001	801	80	10	8	52	-156	COSMO-GR7	NO	00-12UTC	48		yes
ICON-GR2	det	0.025		Ť		-					-			IFS	NO	00UTC	48		
COSMO-5M	det	0.045	-13.05	-25.29	12.06	-0.18	1083	559	40	48.69	25.11	47	-170	LETKF -COMET /IFS-ECMWF	NO	00UTC/12h	72	_	les
COSMO-2I	det	0.02	-8.5	-5	3.56	7.06	542	604	65	10.82	12.06	47	-170	COSMO-5M	KENDA	00UTC/12h	48		les
COSMO-2I-RUC		0.02	-8.5	-5	3.56	7.06	542	604	65	10.82	12.06	47	-170	COSMO-5M	KENDA,LHN		18		yes
COSMO-2I-EPS		0.02	-8.5	-5	3.56	7.06	542	604	65	10.82	12.06	47	-170	COSMO-5M	KENDA	21UTC/24h	51	20	les
			COAR	DCE				FIN	F										


Common Plots 2019-2020 - COARSE


More stations can be added

COA	RSE	FINE				
соѕмо	ICON	соѕмо	ICON			
COSMO-5M		COSMO-2I/2IRUC				
COSMO-GR4		COSMO-GR1	ICON-GR2 or 1			
		COSMO-IL	ICON-IL			
COSMO-RU7	ICON-RU	COSMO-RU++				
	ICON-EU	COSMO-DE	ICON-D2			
COSMO-PL7		COSMO-PL2.8	ICON-PL2.5			
COSMO-7		COSMO-1				
COSMO-ME	ICON-ME	COSMO-IT	ICON-IT			
COSMO-RO7		COSMO-RO1				

Common Plots 2019-2020 - FINE

Operational (?) ICON-LAM

Common Plot Activity 2019-2020

- A. Participating models COSMO/ICON
- COSMO models
- Comparison of ICON-LAM/COSMO desirable
- B. Choice of comparable resolution(s)
- > As in plots
- C. Choice of common domain(s)
- Common area 1 / Common area 2
- D. Choice of (Common) Verification Software
- VERSUS or else (provide only txt numerical results)
- With end of PPCARMA (03/2020) desirable to provide statistical analysis with MEC/Rfdbk
- E. Decision on guidelines
- Basic surface parameters, 00UTC run
- No Extreme Dependency scores
- Wind Performance Rose? (Maria Stefania)
- FSS on common Area2 (Naima)
- Upper air when MEC/Rfdbk is adopted

Visit: http://www.cosmo-model.org/content/tasks/verification.priv/common/plots/default.htm

PP- C2I: Task 6.5 - Verification

Flora Gofa

Introduction

The purpose of the document is to provide verification guidelines that can be followed by the partners for priority project C2I purposes. The overall goal of the PP-C2I is to ensure a smooth transition from the COSMO model to ICON-LAM. At the end of the PP C2I, each participating institution is free to choose when ICON-LAM replaces the COSMO model in their operational forecasting system and a major role in this will play the relative performance between the two systems.

Proposed Verification Software

Proposed Evaluation Approach

http://www.cosmo-model.org/content/tasks/priorityProjects/c2i/PP-C2I-verification.pdf

WG5 Contributions

