

COSMO ensembles: Overview and lessons learned

Chiara Marsigli **Deutscher Wetterdienst**

Chiara Marsigli COSMO GM 2019 1

The COSMO ensembles

Deutscher Wetterdienst Wetter und Klima aus einer Hand

http://www.cosmo-model.org/content/tasks/workGroups/wg7

The COSMO ensembles

- the COSMO members develop and maintain several ensemble systems at the convection-permitting scale:
 - COSMO-D2-EPS, by DWD, operational, 2.2 km
 - COSMO-E, by MCH, operational, 2.2 km
 - TLE-MVE, by IMGW, operational, 2.8 km
 - COSMO-2I-EPS, by Arpae, pre-operational, 2.2 km
 - COSMO-IT-EPS, by COMET, pre-operational, 2.2 km
 - COSMO-Ru2-EPS, by RHM, for research, 2.8 km
- COMET operates an ensemble at 7 km, COSMO-ME-EPS
- COSMO-LEPS is the Consortium ensemble, running since 2002, 7 km

The problem of the new coffee machine (or: Pros and cons of ensemble forecasting)

- How to use a new (highly technical!) coffee machine?
 - One run only, with a default set-up of the machine parameters, does not give a satisfactory output
 - Make many runs, by varying the machine parameters (% of milk, strength of the coffee, total amount, ...): too much output!
- How to benefit from 20 different coffees?
 - Ensemble mean
 - Clusters
 - Extremes
 - Select the best
 - Rank the frequencies

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Outline

- Initial conditions
- Spread/skill relation
- Model bias
- Ensemble products
- Verification adapted to the model skill

Initial conditions

- Initial conditions for the COSMO ensembles provided by KENDA analyses at:
 - DWD
 - MeteoSwiss
 - Arpae
 - COMFT
- Perturbed Initial Conditions, thanks to LETKF Data Assimilation
- Is this the "optimal" choice for ensemble forecasting?
- Data assimilation requirements are not the same as ensemble forecast requirements
- The ensemble which is suitable for data assimilation may not the same which is suitable for weather forecast (e.g. spread) -> two problems with **almost** the same solution
- Discuss with Data Assimilation group

COSMO-E vs IFS-ENS over Switzerland for summer (JJA) 2018

P. Kaufmann, A. Walser - MCH

The problem of the model bias

How to increase the ensemble spread?

- SPPT?
- Parameter perturbation?
- Stochastic physics?
- Multi-physics?

Deutscher Wetterdienst 6 Wetter und Klima aus einer Hand

DWD

How to increase the ensemble spread?

Effect of reduction of the systematic model error on ensemble spread

J.-P. Schulz: Improved land surface processes

Design of ensemble products

It is better a product which is relevant for the user or a product which the ensemble can provide accurately?

Design of ensemble products

- Use of spatial verification methods for selecting the aggregation scale: how?
 - Select a level of agreement between forecast and observations (based on score) and ask at what neighbourhood size this agreement is obtained

or:

- Select a neighbourhood size based on the forecaster need (catchment, warning area) and assess which forecast is more reliable at that scale
- Products in terms of upscaled quantity
 - Loosing the high-resolution for gaining reliability and realism

COSMO-LEPS – chessboard

COSMO-D2-EPS

DWD, T. Schumann et al.

COSMO-D2-EPS

DWD, T. Schumann et al.

TLE-MVE for an High

Impact Weather event

Deutscher Wetterdienst Wetter und Klima aus einer Hand

radar reflectivity forecast ensemble mean

observed reflectivity Polish radar network

A. Mazur, G. Duniec, IMGW

Derecho Evolving from a Mesocyclone

9

Single case – HIW event from 7 to 0.7km

Supercell Detection Index (SDI), ensemble mean

DWD

Single case – HIW event from 7 to 0.7km

VMAX, ensemble mean

DWD

Ensemble verification

- **Developer perspective:**
 - Reliability
 - Spread/skill assessment
 - Usually for continuous variables (temperature, humidity, wind)
- User perspective
 - Catch the event
 - Spread/skill relation does not manifest itself on a single day
 - Needed for products (thunderstorm precursors, fog conditions, ...)
 - verification for high impact weather
 - PP AWARF

Verification of simulated reflectivities

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Predicted radar reflectivity

- model results in observation space (dBZ)
- comparing apples with apples (?)

SINF

Verification of simulated reflectivities

Wetter und Klima aus einer Hand

- Is the comparison between observation and model forecast really fair?
- too many small objects in observation
- too many large objects in forecast
- experiment: What happens if we:
 - exclude features with area < 50km² (effective model resolution)
 - set 30 dBZ basic threshold to observed objects (instead of 35 dBZ) → results in larger observed objects

Lessons learned?

- The ensemble should provide a **forecast of the forecast error**
- A good model is **necessary** for creating a good ensemble, but not sufficient!
- A good ensemble **perturbation strategy** is needed, i.e. a good description of the model uncertainty and of the initial and boundary condition uncertainty
- The ensemble (should) describe the forecast error and not the systematic model error, but only the random component
- Increase of spread when the model systematic error is removed (easy to see under specific conditions, where the model systematic error is highlighted)
- ENS and DA: two problems with **almost** the same solution?
- Products and verification should be adapted to the **predictable** quantities

