



CORSO ensembles: main PP results and their further application



Elena Astakhova, Andrea Montani, Dmitry Alferov, Anastasia Bundel, Chiara Marsigli, Anatoly Muravev, Tiziana Paccagnella, Gdaly Rivin, Inna Rozinkina *and RHMC FROST team* 





# sochi.ru CORSO PP: Task 3 COSMO

## Development and adaptation of COSMO EPSs for the Sochi region

Task Leaders: E. Astakhova, A. Montani **FDP:** Adaptation of COSMO LEPS 7 km to the Sochi region and to specific requirements of winter Olympics. Operational ensemble forecasts during the Trials and Olympics

## **Result: COSMO-S14-EPS 7 km (S14 for Sochi 2014) Operational ensemble forecasts**

**RDP:** Development and verification of high-resolution EPS for the Sochi region









# **Ensemble organization**



**ECMWF-EPS** 

- Globe T779L61 (∆x~30 km) M51, fc+14d ECMWF computer

Clustering Nesting



COSMO-S14-EPS SOCHI DOMain  $\Delta x \sim 7$ km, L40 M10, fc+72h ECMWF computer

> COSMO-Ru2-EPS Sochi region ∆x~2.2 km, L51 M10, fc+48h RHMC computer









# Meteorological support for Sochi Olympics (products operationally delivered to Sochi forecasters in February-March 2014)

### COSMO-S14-EPS (7km):

- Probability fields (T2m max&min,wind gusts 10m,precip,etc)
- Epsgrams (box-and-whiskers + plumes)
- Ensemble mean&spread (on Google maps)

### COSMO-Ru2-EPS (2.2 km):

•Epsgrams (box-and-whiskers + plumes)

with T corrected using prognostic lapse rate included

Web-site: frost2014.meteoinfo.ru +

e-mail directly to forecasters





## **Sochi-CU** EPSs operational products





Subjective Evaluation of FROST EPS technologies

### 0 – not useful 1 – partly useful 2 – useful 3 - excellent

| Model<br>Grid mesh<br>size | Overall                                                                                                                                | Forecast accuracy |         |             |           |           | Visualization  | Timelines               |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-------------|-----------|-----------|----------------|-------------------------|
|                            | use-<br>fulness                                                                                                                        | Т                 | Prec    | Wind        | Gusts     | Vis       | (appearance)   | s<br>and<br>reliability |
| COSMO-S14-<br>EPS<br>7 km  | 2.1                                                                                                                                    | 2.0               | 2.0     | 2.0         | 2.0       |           | 2.7            | 2.7                     |
|                            | Precip reasonable. Good tendencies. Wind poor. Was available well before the Olympics that was helpful to get used to this information |                   |         |             |           |           |                |                         |
| ALADIN<br>LAEF<br>11 km    | 2.0                                                                                                                                    | 1.8               | 1.8     | 2.0         | 2.0       |           | 2.5            | 2.7                     |
|                            | Good Wind, including Vmax. Nice plots                                                                                                  |                   |         |             |           |           |                |                         |
| GLAMEPS                    | 1.5                                                                                                                                    | 1.8               | 1.8     | 1.8         | 2.0       |           | 2.3            | 2.7                     |
| 11 KM                      | Informat                                                                                                                               | ive ten           | dencies | s. Issues v | vith abso | lute valu | 2.5 2.7<br>2.5 |                         |
| GLAMEPS<br>calibr<br>11 km | 2.0                                                                                                                                    | 2.0               | 2.0     | 2.0         | 2.0       |           | 2.2            | 2.7                     |
|                            | Interesting and helpful                                                                                                                |                   |         |             |           |           |                |                         |
| NMMB-EPS<br>7 km           | 2.1                                                                                                                                    | 2.0               | 2.0     | 1.3         | 2.0       | 1.7       | 2.2            | 2.7                     |
|                            | Nice. Informative visibility. Precip reasonable. Tmin, Tmax poor                                                                       |                   |         |             |           |           |                |                         |

Subjective Evaluation of FROST EPS technologies (continued)

### 0 – not useful 1 – partly useful 2 – useful 3 - excellent

| Model<br>Grid mesh<br>size  | Overall<br>use-<br>fulness                                                                | Forecast accuracy |      |      |       |     | Visualization | Timeliness         |
|-----------------------------|-------------------------------------------------------------------------------------------|-------------------|------|------|-------|-----|---------------|--------------------|
|                             |                                                                                           | Т                 | Prec | Wind | Gusts | Vis | (appearance)  | and<br>reliability |
| COSMO-<br>Ru2-EPS<br>2.2 km | 1.7                                                                                       | 1.3               | 1.7  | 1.7  | 2.0   |     | 2.3           | 2.3                |
|                             | Experimental                                                                              |                   |      |      |       |     |               |                    |
| HarmonEPS<br>2.5 km         | 1.3                                                                                       | 1.5               | 1.3  | 1.3  | 1.3   |     | 2.2           | 1.8                |
|                             | In general good in T and Precip, but there were problems with T in anticyclones and Foehn |                   |      |      |       |     |               |                    |



**During the Sochi Olympics COSMO model was the most popular** (both deterministic and ensemble forecasts) !!







3-h prec,T2m: 15-km +nearest point, all stations in Sochi region (AMS+SYNOPs, 69 for T), 13 mountain stations

2) Verification using HMC verification package based on R (A. Muravev)
3-h prec,T2m,wind speed
13 mountain stations (the lowest Kraspava Belvana, H=564 m)

13 mountain stations (the lowest - Krasnaya Polyana, H=564 m)

### All FROST EPSs:

COSMO-S14-EPS: Italy, 7 km, M10, fc+72; LAEF: Austria, 7 km, M17, fc+72; NMMB-EPS: USA, 7 km, M7,fc+72; GLAMEPS: Norway,11 km, M54, fc+54; COSMO-RU2-EPS: Russia, 2.2 km,M10, fc+48; HARMON-EPS: Norway, 2.5 km, M13, fc+36 Come to Anastasia's presentation tomorrow! *A. Montani et al.* 



## **Verification problems**





Legend:

Light-blue squares: COSMO-S14-EPS grid-points Dark-blue stars: COSMO-RU2-EPS grid-points Nearest point approach:

- One model grid-point may be the nearest to several stations
- The nearest grid-point can be in different valley, at different slope, or at different height with respect to the station
- Differentiation by height decreases the sample considerably

#### Several-km domain:

 Stations in the domain can be at different heights, slopes, etc. and can be characterized by various meteorological regimes

#### All approaches:

- Need for better observation data control
- Need for forecast data control (especially for hi-res!)
- The more observations the better





#### Distribution analysis: histograms and quantile-quantile plots Parameter: T2m, Location: Biathlon Stadium (1455 m), Verification Period: 15.1.2014-15.3.2014, Verification approach: Nearest point Forecast Histogram of 1170 points Lead = 0 Observation histogram, 13 breaks



#### **Distribution analysis: histograms and quantile-quantile plots**

#### Parameter: T2m, Location: Biathlon Stadium (1455 m), Verification Period: 15.1.2014-15.3.2014, Verification approach: Nearest point



Forecast

If the two datasets come from the same distribution, the points should lie roughly on a line through the origin with slope 1

nbiente dell'emilio romagna





Hi-res ensemble forecasts: better pdfs, higher variability but poorer ensemble mean scores





Role of spatial resolution for ensemble forecasts – continued

COSMO-S14-EPS (7km grid spacing) vs COSMO-RU2-EPS (2.2 km grid spacing)

T2m ensemble mean

Verification Period: 15.1.2014-15.3.2014

| Station                               | BIAS (for 6/12/18  | 3hr lead time)    | Mean Absolute Error<br>(for 6/12/18hr lead time) |                 |  |
|---------------------------------------|--------------------|-------------------|--------------------------------------------------|-----------------|--|
|                                       | COSMO-S14-EPS      | COSMO-RU2-EPS     | COSMO-S14-EPS                                    | COSMO-RU2-EPS   |  |
| Sledge<br>(~700m)                     | -1.3 / -2.0/ -1.4  | 0.2 / -1.9 / -0.1 | 1.6 / 2.2 / 1.6                                  | 1.4 / 3.5 / 1.7 |  |
| Freestyle<br>(~1000m)                 | -2.0 / -1.8 / -1.9 | 0.3 / -0.7 / 0.0  | 2.1 / 2.0 / 2.1                                  | 1.6 / 2.4 / 1.7 |  |
| Biathlon<br>Stadium<br>(~1500m)       | -1.4 / -1.3 / -1.4 | 0.9 / 0.0 / 0.5   | 2.0 / 1.8 / 2.1                                  | 2.1 / 2.6 / 2.3 |  |
| Mountain<br>Skiing(start)<br>(~2000m) | 1.6 / 2.2 / 1.6    | 0.6 / 0.2 / 0.1   | 2.8 / 3.1 / 2.8                                  | 2.1 / 2.2 / 2.6 |  |
|                                       |                    |                   |                                                  | 1               |  |

**Green – better for all lead times** 

T2m: Some positive effect of downscaling from 7 to 2 km resolution

• Wind Speed: No positive effect of dynamical downscaling was found







## Comparison with other FROST2014 ensembles Precip > 0.01 mm/3h

Verification Period: 15.1.2014-15.3.2014

COSMO-S14-EPS – red COSMO-RU2-EPS – orange LAEF – brown NMMB-EPS – black HARMON-EPS – blue

Verification approach: 13 mountain stations in the area of Krasnaya Polyana were clustered for matching to forecasts



COSMO-S14-EPS, NMMB-EPS and COSMO-RU2-EPS look most informative





# Comparison with other FROST2014 ensembles Precip > 5 mm/3h

### Verification Period: 15.1.2014-15.3.2014

COSMO-S14-EPS – red COSMO-RU2-EPS – orange LAEF-EPS – brown NMMB-EPS – black HARMON-EPS – blue GLAMEPS – green



For higher Precip threshold (w.r.t. the lower threshold): = COSMO-S14-EPS, COSMO-Ru2-EPS, NMMB-EPS, and HARMON-EPS become worse.

= In contrast, LAEF and GLAMEPS become better.







l'emilio romogno





- •Both systems demonstrate good skill for T2m, prec and wind
- •Hi-res system is slightly more skilful for T2m, but worse for wind
- •Observations at high temporal and spatial resolution are needed
- •Further research to develop and apply new and specific methods for verification of hi-res EPS in mountain regions are necessary:
- --- Non-automatic matching of stations and grid-points ---Application of additional observation data (radars, satellites, etc.)
- ---Extreme dependence index (EDI) should be considered
- Case studies should be widely used









•A definite conclusion on EPSs skill in the mountains •Precise and unambiguous methods for hi-res EPS verification

# There is still a lot of work to do ....









### •The EPS systems developed for Sochi Olympics (COSMO-S14-EPS and COSMO-Ru2-EPS) demonstrated high skill

- •They provided a good support to Sochi forecasters and were highly appreciated
- •The hi-res system added value
- •Verification activity should be continued, including application of new approaches and observations, comparison with other FROST2014 ensembles
- •The archived information on forecasts, IC&BCs, and observations are valuable and new experiments can be performed within the Sochi testbed









- Sochi region is a very specific area, where mountains with very steep slopes are in close vicinity to the sea and where highresolution forecasting of high-impact events is a real challenge
- > As a result of CORSO and FROST-2014 projects we have
- COSMO-S14-EPS forecasts (Dec19, 2011 to April 2014)
- COSMO-Ru2-EPS forecasts (..... to April 2014)
- IC&BCs for COSMO-based EPS for Sochi region (2013 .... April 2014)
- FROST-2014 observation data (SYNOPS+AMS) for 2011-2014
- GLAMEPS, ALADIN-LAEF, HARMON-EPS, NMMB-EPS forecasts at least for Febr-March 2014
- A preliminary list of interesting cases during the Olympics





Socie CORSO-A (CORSO After) Task 3. What is not done yet

- There are some gaps in the data
- COSMO-Ru2-EPS forecasts are stored on different computers to which there is no external access
- The entire model outputs are stored for COSMO-Ru2-EPS (problems with processing!)
- There is no manual
- The data should be completed by a list of severe events and periods that are worth to examine
- The entire archive should be re-organized according to TIGGE-LAM rules and be a part of FROST-2014 archive







To prepare an archive of COSMO ensemble forecasts (with 7 and 2.2 km resolutions) for the Sochi area for December 2013-April 2014 accompanied by initial and boundary conditions for high-resolution ensembles and by a list of important weather events during the period considered.

The archive must be easily accessible and have a clear manual to provide COSMO-community a possibility of experiments over a mountainous area



## 1-year project, 0.25 FTE for Task 3





## Questions

Should we include probability fields into the archive? Should it be password protected? Should the data for winter 2012-2013 be added to the archive? Any additional recommendations?

# Possible and current applications

Russia is using Sochi data for experiments with COSMO-Ru2-EPS version with SPPT for COTEKINO (IC&BCs + reference forecast)









ogenzi