

KENDA: latest results

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin

DWD, Offenbach

COSMO General meeting 2014, Eretria, Greece

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

Outline

- General overview on BACY experiments
- summary of old setup (GME BC)
- new setup (ICON BC)
- results from new setup
- discussion of results
- next steps, outlook

KENDA experiments: general overview

- stand-alone script environment used for basic cycling (BACY)
- BACY for ICON-LETKF and KENDA
- avoids data base use, fast cycling (speed 1.5 for KENDA, 3 for ICON), but needs large hard disk storage (now available)
- ICON-BACY: LETKF + 3dVar analysis, incl. SMA, verify against analysis and obs, comparison of ens mean (up to now no det run) with 3dVar analysis, also forecasts (ens + ens mean, up to 7 days)
- ICON-BACY produces BC for KENDA (3h cycle)
- KENDA-BACY: LETKF incl. det analysis, nudg cycle with same obs set; forecasts: nudgecast (nudg analysis), free fc, det LETKF, verify against obs (surface/upper air)
- nudg forecast and det forecast use same BC

KENDA experiments: general overview

- old setup: BC from GME-LETKF (NUMEX), period: 20110601-20110607
- new setup: BC from ICON-BACY, period: 20120719-20120725
- first goal: replace nudging with deterministic LETKF analysis
- \blacktriangleright \rightarrow focus on quality of deterministic analysis/forecast

KENDA old setup

	GME	COSMO
ensemble member	40 + 1 (3 dVar)	40 + 1 (det run)
horizontal resolution (ens)	ni128 ($pprox$ 60 km)	2.8 km
horizontal resolution (det)	ni256 ($pprox$ 30 km)	2.8 km
horiz. local. length scale	300 km	100 km
vert. local. length scale (In p)	0.3 (0.075-0.5)	0.3 (0.075-0.5)
adapt. horiz. local.	not tested	+/-
additive model error RTPP	+ (3 dVar B) +	- +/-
(adapt.) inflation R	+ -	+ +/-
conventional obs	+	+
Radiances	+ (AMSU-A)	-
GPS-RO	+	-
Radar data	-	oper. impl.
cloud height	-	first tests done
update frequency	3h	1h

P.

KENDA new setup

	ICON	COSMO
ensemble member	40 + 1 (3dVar)	40 + 1 (det run)
horizontal resolution (ens)	R02B06 (\approx 80 km)	2.8 km
horizontal resolution (det)	R02B05 (\approx 40 km)	2.8 km
horiz. local. length scale	300 km	100 km
vert. local. length scale (In p)	0.3 (0.075-0.5)	(0.075-0.5)
adapt. horiz. local.	not tested	+
additive model error RTPP	- +	- +
(adapt.) inflation R	- -	+ -
conventional obs	+	+
Radiances GPS-RO	+ (AMSU-A) +	- -
Radar data	-	oper. impl.
LHN	-	+/-
surface pert (SST/SOIL)	-	+/-
update frequency	3h	1h

P.

KENDA experiments (old setup)

- 5 experiments for 2011060100 to 2011060700 period
- BC from GME-LETKF

EXP	adap R	adap loc	RTPP
0000.01	-	+	-
0000.02	+	+	-
0000.03	+	-	-
0000.04	-	-	-
0000.07	-	+	+

- Compute deterministic forecast (24 h forecast time, every 6 h), starting from deterministic LETKF analysis
- standard DWD scripts for upperair verification
- test several methods to increase spread

EXP04/nudg/free old, 06h, gp/rh

geopotential (upper row), relative humidity (lower row) for exp0000.04/nudg/free fc; bias (left), rmse (right), 6h forecast; det run, nudging, free fc

EXP04/nudg/free old, 06h, t/wv

temperature (upper row), wind velocity (lower row) for exp0000.04/nudg/free fc; bias (left), rmse (right), 6h forecast; det run, nudging, free fc

model error: inflation/relaxation methods

▶ (1): compare "observed" with "expected" quantities:

$$\left\langle (y - H(x_b))(y - H(x_b))^T \right\rangle = \mathbf{R} + \rho \mathbf{H} \mathbf{P}_{\mathbf{b}} \mathbf{H}^{\mathsf{T}}$$
$$\left\langle (H(x_a) - H(x_b))(y - H(x_b))^T \right\rangle = \rho \mathbf{H} \mathbf{P}_{\mathbf{b}} \mathbf{H}^{\mathsf{T}}$$

- idea (2): "relaxation" methods:
 - e.g. relaxation to prior spread (RTPS):

$$\rho = \sqrt{\alpha \frac{\sigma_b - \sigma_a}{\sigma_a} + 1}, X_a^{i,infl} = \rho X_a^i$$

- or relaxation to prior perturbation (RTPP): $X_a^{i,infl} = (1 - \alpha)X_a^i + \alpha X_b^i$
- (1) works in observation space; tries to increase/decrease spread to fulfill statistical relations
- (2) works in model space; "corrects" reduction of spread due to assimilation of observations (RTPP: similar to additive pert., "directions" of fg pert partly remain; RTPS: inflates ana pert directions)

model error: inflation/relaxation methods

- \blacktriangleright \rightarrow EXP 0000.07: test RTPP
- combine with adaptive rho
- settings used:

Analysis cycle old: rmse/spread

spread and rmse (against obs) for relative humidity (left), temperature (right), all exp

Analysis cycle old: rmse/spread

<ロト < 同ト < 三ト

-

spread and rmse (against obs) for wind (left), surface pressure (right), all exp

Effect of RTPP

- small impact on spread; slightly larger spread on higher levels for wind, spread reduced close to surface
- no / partially negative impact on rmse
- Florian Harnisch obtained good results (esp. on spread / Talagrand diagrams) (using ECMWF BC)
- RTPP gives weight to first guess perturbations which are strongly influenced by BC
- \rightarrow look at BC used (ECMWF/GME)

$\mathsf{GME} \ / \ \mathsf{ECMWF} \ \mathsf{BC}$

first guess spread of *u*-wind component at model level 25, 2011060612 UTC, from GME-LETKF (left); same for 2012061112 UTC, with ECMWF BC (right)

KENDA experiments (new setup)

- 12 experiments for 2012071900 to 2012072500 period
- BC from ICON-LETKF
- Compute deterministic forecast (24 h forecast time, every 6 h), starting from deterministic LETKF analysis
- standard DWD scripts for upperair + surface verification
- compare with free fc and nudging (similar to operational setup, but different BC)
- free fc, LETKF det and nudging use same BC, obs set the same for det and nudg
- BC from ICON-LETKF: LETKF depends on "2 ways" frm BC: direct and via B-matrix
- ICON-LETKF uses RTPP (latest results: increases spread, slightly decreases RMSE)
- \blacktriangleright \rightarrow look at spread of ICON-BC first

GME / ICON BC

spread of first guess with GME/ICON BC at 2011060600/2012072400 UTC (u-wind component, z=25)

RMSE ICON

rmse and spread of ICON 3dVar and LETKF for Europe, verified against radiosondes, temperature (left) and u-wind component (right)

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

KENDA experiments (new setup)

EXP	settings	EXP	settings
02	no soil cycling	05	free fcst
01	soil cycling	06	nudg
03	strong soil pert	07	LHN ens+det
04	weak soil pert	08	nudg LHN

EXP	settings
09	LHN det
10	nudg soil oper
11	new ps obs err
12	LETKF soil oper
13	nudgecast

Effect of soil perturbations: analysis cycle

spread and rmse (against obs) for relative humidity (left), temperature (right); shown are exp without soil cycling (02), soil cycling (01), strong (03) and weak (04) soil moisture perturbations

Image: A image: A

Effect of soil perturbations: analysis cycle

spread and rmse (against obs) for wind (left), surface pressure (right); shown are exp without soil cycling (02), soil cycling (01), strong (03) and weak (04) soil moisture perturbations

▲ 同 ▶ ▲ 目

Effect of soil perturbations: spatial structure WSO no pert, z=6, 2012072400 Structure

soil moisture at level 6 (6 cm), 2012072400: no perturbations, strong perturbations, weaker perturbations

Effect of soil perturbations: upper air, LETKF strong soil pert, no pert, - EXP03/01

(upper air) verification against observations; relative humidity; bias (left), rmse (right), 6h forecasts; no pert, pert; positive impact close to surface!

Effect of soil perturbations: LETKF strong pert vs. LETKF no pert - EXP 03/01

Variable	RMSE	BIAS
Geopotential	=	=
Temperature	=	=
Relative Humidity	(+)	=
Wind Speed	=	=
Wind Direction	=	=
Total Cloud	+	+
Low Cloud	(+)	=
Mid Level Cloud	+	+
High Cloud	=	=
Surface Pressure	+	=
2m Dew Point	+	=
2m Temperature	=	=
10m Wind	=	=

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin

Effect of ICON/COSMO-DE soil: analysis cycle

spread and rmse (against obs) for relative humidity with ICON (0000.04) and COSMO-DE (0000.12) soil; spread increases!

Effect of ICON/COSMO-DE soil

- Why the spread increases when using operational COSMO-DE soil?
- Perturbations are zero at the beginning (as we use the same soil for all ensemble members) of period with operational COSMO-DE soil
- the perturbations added are the same as in the case of ICON soil.
- Possible explanation: plants (roots) are more sensitive to changes (induced by the the perturbations) if soil moisture is low; this leads to more spread in areas with low soil moisture.

Effect of ICON/COSMO-DE soil

soil moisture index (smi) with ICON soil at 2012071901, level 4 (54cm,left) and tso spread at 2012072101, level 8 (1cm,right)

Effect of ICON/COSMO soil

COSMO-DE soil, smi at 2012071901, level 4 (54cm,left) and tso spread at 2012072101, level 8 (1cm,right)

Effect of ICON/COSMO-DE soil; LETKF COSMO-DE soil vs. LETKF ICON soil (LHN) - EXP 12/07

Variable	RMSE	BIAS
Geopotential	=	=
Temperature	+	+
Relative Humidity	+	+
Wind Speed	=	=
Wind Direction	=	=
Total Cloud	-	=
Low Cloud	+	-
Mid Level Cloud	(+)	=
High Cloud	=	=
Surface Pressure	=	=
2m Dew Point	=	+
2m Temperature	+	+
10m Wind	-	(+)

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA:

Effect of ICON/COSMO-DE soil

surface verification: 2m temperature for LETKF exp07 (ICON soil, lhn) (red curve,left), LETKF det 12 (COSMO-DE soil) (red curve, right). Blue curve is routine.

Effect of ICON/COSMO-DE soil, comparison with nudging

wind velocity; bias (left), rmse (right), 6h forecast; nudg soil COSMO-DE, LETKF soil COSMO-DE

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

Effect of ICON/COSMO-DE soil: LETKF vs. nudg (COSMO-DE soil) - EXP 12/10

Variable	RMSE	BIAS
Geopotential	=	=
Temperature	=	=
Relative Humidity	+	=
Wind Speed	+	=
Wind Direction	(+)	=
Total Cloud	=	=
Low Cloud	+	+
Mid Level Cloud	+	(+)
High Cloud	-	(-)
Surface Pressure	—	=
2m Dew Point	=	=
2m Temperature	(+)	=
10m Wind	=	=

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin

Effect of LHN: LETKF / nudg LHN, free fc - EXP07/08

relative humidity (upper row), temperature (lower row); bias (left), rmse (right), 6h forecast; LETKF det, nudg, free fc

Effect of LHN: LETKF / nudg LHN, free fc - EXP07/08

wind velocity (upper row), wind direction (lower row); rmse, 6h forecast; LETKF det, nudg, free fc

Effect of LHN, comparison with nudging

surface verification: surface pressure for LETKF exp07 (LHN for ens+det) (red curve,left), nudging exp08 (LHN) (red curve,right). Blue line is routine.

Effect of LHN: LETKF LHN vs. NUDG LHN - EXP 07/08

Variable	RMSE	BIAS
Geopotential	=	=
Temperature	+	+
Relative Humidity	+	-
Wind Speed	+	=
Wind Direction	+	=
Total Cloud	=	=
Low Cloud	(+)	+
Mid Level Cloud	+	=
High Cloud	-	(-)
Surface Pressure	-	=
2m Dew Point	=	=
2m Temperature	=	=
10m Wind	=	=

Effect of LHN: LETKF LHN (ens/det) vs. LETKF strong soil pert - EXP 07/03

Variable	RMSE	BIAS
Geopotential	=	=
Temperature	=	=
Relative Humidity	=	=
Wind Speed	=	=
Wind Direction	=	=
Total Cloud	=	=
Low Cloud	=	=
Mid Level Cloud	=	=
High Cloud	=	=
Surface Pressure	=	=
2m Dew Point	=	=
2m Temperature	=	=
10m Wind	=	=

RADAR verification, LETKF LHN ens+det vs. LHN det - EXP 07/09

Variable	FSS at 11gp	FBI
Precip. 00 UTC, 0.1 mm	+	=
Precip. 12 UTC, 0.1 mm	+	=
Precip. 00 UTC, 1.0 mm	+	=
Precip. 12 UTC, 1.0 mm	+	=

RADAR verification, LETKF LHN ens+det vs. no LHN (strong pert) - EXP 09/03

Variable	FSS at 11gp	FBI
Precip. 00 UTC, 0.1 mm	=	=
Precip. 12 UTC, 0.1 mm	+	+
Precip. 00 UTC, 1.0 mm	=	=
Precip. 12 UTC, 1.0 mm	+	(+)

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

RADAR verification, LETKF LHN ens+det vs. nudg LHN - EXP 07/08

Variable	FSS at 11gp	FBI
Precip. 00 UTC, 0.1 mm	-	=
Precip. 12 UTC, 0.1 mm	+	(+)
Precip. 00 UTC, 1.0 mm	-	+
Precip. 12 UTC, 1.0 mm	+	=

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

RADAR verification: FSS LETKF, effect of LHN

FSS at 11 gp, 0.1 mm, 00 UTC (left), 12 UTC (right) for LETKF without LHN (03), LHN ens+det (07) and LHN ens (09)

RADAR verification: FSS LETKF/nudg with LHN

FSS at 11 gp, 0.1 mm, 00 UTC (left), 12 UTC (right) for LETKF LHN ens+det(07) and nudh with LHN (08)

RADAR verification: FBI LETKF, effect of LHN

FBI for 1mm at 00 UTC (left), 12 UTC (right)

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

RADAR verification: FBI LETKF/nudg with LHN

FBI for 1mm at 00 UTC (left), 12 UTC (right)

H. Reich, C. Schraff, R. Potthast, K. Stephan, A. Rhodin KENDA: latest results

Summary, discussion, remarks

- The results shown are preliminary because of
 - Quality control in LETKF was very restrictive (observations must be accepted in all ensemble members); large effect for relative humidity observations (Daniel Leuenberger): implement option for less restrictive setiing
 - no alignment of observations (unfair for nudg, esp. relative humidity?)
 - (technical) problems with experiment with weak soil perturbations, repeat
 - ▶ run experiment with "no RTPP" to test effect in ICON-setup
 - nudgecast was switched off (test for one nudging experiment: no effect), but we will repeat all nudging forecasts
 - we have different periods for GME/ICON setup
 - Ionger forecasts needed

Conclusions, next steps

- new setup with ICON-BC: larger spread (except surface pressure)
- 24 h forecast of det run, nudging, free fc: deterministic LETKF forecast of similar /slightly better quality as nudging forecast (except surface pressure)
- plots shown are for 6h forecasts, but results also hold for 12h, 18h forecasts (differences get smaller)
- LHN: no influence on upper air verification; slightly better for Radar (precipitation, 12 UTC)
- soil moisture perturbations: positive impact on spread/rmse close to surface
- use of COSMO-DE-soil: positive impact on 2m temperature forecast
- compute 10-14 days period in May/June 2014
- use neffprove; ensemble forecasts; additional observations

LETKF Theory

do analysis in the k-dimensional ensemble space

$$\mathbf{\bar{w}}^{a} = \mathbf{\tilde{P}}^{a} (\mathbf{Y}^{b})^{T} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{\bar{y}}^{b})$$
$$\mathbf{\tilde{P}}^{a} = [(k-1)\mathbf{I} + (\mathbf{Y}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}^{b}]^{-1}$$

in model space we have

$$ar{\mathbf{x}}^a = ar{\mathbf{x}}^b + \mathbf{X}^b ar{\mathbf{w}}^a$$
 $\mathbf{P}^a = \mathbf{X}^b \widetilde{\mathbf{P}}^a (\mathbf{X}^b)^T$

Now the analysis ensemble perturbations - with P^a given above - are obtained via

$$\mathbf{X}^{a}=\mathbf{X}^{b}\mathbf{W}^{a},$$

where
$$\mathbf{W}^{a} = [(k-1)\tilde{\mathbf{P}}^{a}]^{1/2}$$

LETKF Theory

it's possible to obtain a deterministic run via

$$\mathbf{x}_{a}^{det} = \mathbf{x}_{b}^{det} + \mathbf{K} \left[\mathbf{y} - \mathcal{H}(\mathbf{x}_{b}^{det})
ight]$$

with the Kalman gain K:

$$\mathbf{K} = \mathbf{X}_{b} \left[(k-1)\mathbf{I} + \mathbf{Y}_{b}^{T}\mathbf{R}^{-1}\mathbf{Y}_{b} \right]^{-1} \mathbf{Y}_{b}^{T}\mathbf{R}^{-1}$$

the deterministic analysis is obtained on the same grid as the ensemble is running on; the *analysis increments* can be interpolated to a higher resolution

Soil moisture perturbations

- perturb soil moisture (and SST) with defined spatial and temporal length scales and amplitude
- soil moisture: 2 length scales, 100 km (synoptic), 10 km (convection)
- cut-off if moisture is below zero or above capacity (\rightarrow bias)
- next step: for soil moisture, limit perturbation amplitude to "available capacity" (avoid bias)