Christoph Schraff Deutscher Wetterdienst, Offenbach, Germany

Contributions / input by:

Hendrik Reich, Andreas Rhodin, Annika Schomburg, Ulrich Blahak, Yuefei Zeng, Roland Potthast, Klaus Stephan, Africa Perianez, Michael Bender (DWD), Chiara Marsigli, Tiziana Paccagnella, Virginia Poli (ARPA-SIM) Lucio Torrisi, Francesca Marcucci (CNMCA); Matteo Giorcelli (ARPA-Piemonte) Daniel Leuenberger, Andre Walser, Daliah Maurer, Alexander Haefele (MeteoSwiss) Mikhail Tsyrulnikov, Dmitriy Gayfullin, Anastasia Revokatova, Denis Blinov (RHM) Amalia Iriza (NMA)

- WG1 overview
- KENDA (Km-scale ENsemble-based Data Assimilation) overview, results from LETKF experiments
- WG1 science plan issues

- CNMCA: LETKF for COSMO-ME (7 km)
- RHM:- new hierarchical Bayes approach to ensemble-variational DA
 - assimilation of T2m obs: correction of T in low atm + soil
- ARPA-Piemonte (Giorcelli): FASDAS (Flux Adjusting Surface DA System)
 - assimilation of T2m obs: corrects T in atm + soil (long memory)
 - Exp. Jan May: shown to improve T2m bias + precip in forecasts
- DWD: Latent Heat Nudging in (7-km) COSMO-EU (OPERA precip rate data used outside COSMO-DE domain)

Latent Heat Nudging for COSMO-EU (7km): influence of lateral BC on COSMO-DE (2.8km)Deutscher Wetterdienst

- \checkmark small, but long-lasting positive impact on precip
- \rightarrow introduced operationally last week

8-h forecast of COSMO-DE with LHN (for 09.06.2014, 23 UTC)

- **ARPA-SIM**: OSSE, with humidity $q_v \rightarrow q_v/2$ in some of ens. members
- MeteoSwiss: 1-hrly LETKF cycle over 1 month, lateral BC: ECMWF EPS
 → reasonable results (slightly worse than nudging)

new test (IFS EPS 24 h – 36 h forecast perturbations centred at IFS det.) :

- $\rightarrow\,$ better, but still too little spread
- $\rightarrow\,$ problems with RH: (too) many RH obs rejected
- **DWD**: BACY (BAsic CYcling) experimentation environment

 \rightarrow 1.5 days of 1-hrly LETKF cycle (N_{ens}=40) computed in 1 day \rightarrow Yippee !!)

first goal: replace nudging with deterministic LETKF analysis

 $\rightarrow\,$ focus on quality of deterministic analysis/forecast

KENDA, new series of experiments: influence of **lateral BC (spread)**

- new period: 19 25 July 2012, det. 24-h forecasts every 6 hrs
- lateral BC from ICON-LETKF (better spread than GME-LETKF over Europe !)

- compare deterministic LETKF forecast with free fc & nudging : same obs (except QC), lateral BC, initial state at 19 July (atm. + soil)
- ightarrow better spread in lat. BC ightarrow LETKF compares more favourably to nudging

- ✓ simple superposition of Gaspari-Cohn (~ Gaussian) functions at each analysis g.p., with random amplitude and pre-specified horiz. / temporal correlation scale(s)
- ✓ scales : 100 km + 10 km ; 1 day ; std dev of amplitude: 0.1 soil moisture index

spread of soil moisture (WSO), layer 3 (3 - 9 cm), after 5 days

upper-air verification (spread / RMSE) of first guess (1-h forecast)

upper-air verification (spread / RMSE) of first guess (1-h forecast)

→ RH, T, wind, near surface: smaller errors, larger spread, despite soil moisture perturbations of same size !

Why?

LETKF with **COSMO-DE soil** vs. **ICON soil**: upper-air verification / summary

Deutscher Wetterdienst

- $\rightarrow\,$ plant evapotranspiration more sensitive to SM changes/perturb., if SM low
- \rightarrow C-DE soil: higher spread in soil temperature & in f.g. T, RH at low levels
- $\rightarrow\,$ reduced bias & RMSE of T, RH at low levels
- $\rightarrow\,$ reduced bias of T2m, Td2m, $\,$ improved T2m, low cloud

LETKF vs. **Nudging** (using COSMO-DE soil):

surface verification

terdienst

Deutscher Wetterdienst

<u>LETKF</u> vs. <u>Nudging</u> (using COSMO-DE soil):

KENDA score chart

Deutscher Wetterdienst

	LETKF vs. Nudging						
	Variable	RMSE	bias		RMSE wind speed. + 6 h		
	geopotential	=	=	E	5		
	temperature	=	=	200			
air	(relative humidity)	+	=	400	nudging		
	wind speed	+	=				
	wind direction	(+)	=	600 - - -	No. 1		
surface	2-m temperature	(+)	=	800	\leq		
	2-m dew point temp.	=	=	1000 E			
	10-m wind	=	=	Ŭ	[m/s]		
	surface pressure	-	=				
	total cloud	=	=		LETKF used fewer		
	low cloud	(+)	(+)		RH obs than nudging,		
	mid-level cloud	+	(+)				
	high cloud	(-)	(-)		~3>		

Developments in KENDA, WG1, and Science Plan Issues

COSMO General Meeting, Eretria GR, 8 - 11 Sept. 2014

christoph.schraff@dwd.de

impact of including LHN in LETKF DA cycle (with ICON soil):

score chart

Deutscher Wetterdienst

	LETKF LHN-det vs. no-LHN		LETKF LHN-all vs. LHN-de	
variable	RMSE ETS / FSS	Bias FBI	RMSE ETS / FSS	Bias FBI
upper-air	=	=	=	=
surface	=	=	=	=
precip 0 UTC , 0.1 mm	(+)	(+)	(+)	=
precip 0 UTC, 1 mm	=	=	(+)	=
precip 12 UTC, 0.1 mm	+	+	+	=
precip 12 UTC, 1 mm	+	=	+	=

 \rightarrow benefit from adding LHN small for 0-UTC runs, large for 12-UTC runs

 $\rightarrow\,$ deterministic forecast improves if LHN also added to all ens members in LETKF

daily cycle of domain average precip \rightarrow info on bias

LETKF + LHN-all vs. **Nudging + LHN** : upper-air verification

Deutscher Wetterdienst

Developments in KENDA, WG1, and Science Plan Issues COSMO General Meeting, Eretria GR, 8 – 11 Sept. 2014

LETKF + LHN-all vs. Nudging + LHN :

upper-air verification

	1	DWD				
(ICON	LETKF + LHN-all vs. Nudging + LHN			ြ		
soil)	variable	RMSE	bias	Deutscher Wetterdienst		
upper air	geopotential	Η	Π			
	temperature	=	=	LETKF:		
	(relative humidity)	+	(-)	\rightarrow overall comparable		
	wind speed	+	I	/ better results		
	wind direction	+	II	\rightarrow problem with		
surface	2-m temperature	=	=	surface pressure		
	2-m dew point temp.	Η	=			
	10-m wind	Η	II			
	surface pressure	-	Π			
	total cloud	=	=			
	low cloud	(+)	(+)			
	mid-level cloud	+	II			
	high cloud	(-)	(-)			
radar	precip 0 UTC	(-)	+/(-)			
	precip 12 UTC	+	(+)			

KENDA, new series of experiments: summary

- lateral BC spread (+ quality) important
- soil moisture perturbations beneficial near surface; \checkmark
- large sensitivity of results to level of soil moisture \checkmark
- no very obvious problems with combining LETKF & LHN \checkmark
- deterministic forecasts: LETKF comparable / better than nudging (YIPPEE !) \checkmark **negative:** surface pressure \rightarrow reducing ps obs errors helps a bit (need more spread of ps in lateral BC) needs attention: precip (exp. 0-UTC runs); high cloud
- BUT, results are preliminary !!
- only 6 days \rightarrow need longer periods, different weather situations
- quality control of RH too restrictive in LETKF (assim. + verif.)

- SPPT (stochastic physics) : adapted for use in cycled DA, in COSMO V5_1
- Pattern Generator (3D, 2D) : incorporated into COSMO, almost finished (RHM)
 - \rightarrow soil moisture perturbations (ARPA-Piemonte)
 - \rightarrow additive covariance inflation

- MEC (model equivalent calculator), for production of 'full' NetCDF feedback files (input for verification: NEFFprove, VERSUS)
 - preliminary (still slightly buggy) version developed
 - planned end of Oct.: basic working version
 - ✓ conv. upper-air obs / surface obs used in DA (ps, T2m, RH2m, uv10m)
 - thereafter: add additional variables which are not actively assimilated (cloud, precipitation, gusts, MSLP, Td2m, radiation, etc.)

- NEFFprove ensemble-related verification tool, using feedback files (Amalia Iriza):
 - basic version exists, needs to be tested thoroughly
 - further testing / more diagnostic output + docu / revisions dep. on users needs

- Radar : 3-D radial velocity V_r & reflectivity Z (Zeng, Bick)
 - thinning, superobbing strategies implemented, monitoring set up
 - first DA cycles run
- **GPS slant path delay**: pure obs operator implemented (Bender) to do: testing, writing feedback files ...
- SEVIRI cloud top height : tuning experiments on thinning, localisation...
 - (Schomburg) \rightarrow positive impact on cloud cover, negative on upper-air T, RH
- SEVIRI cloudy radiances: first cycled DA experiments, (Perianez) different (cloud-type dep.) bias correction
 - \rightarrow positive impact on simulated radiances in first guess
- novel ground-based remote sensing (Haefele, MCH)
 Raman lidar (T + qv profile), microwave radiometer (T + qv prof., IWV, ql, BT):
 - report written on new profiler obs with potential use in COSMO
 - working on O-B statistics for radiometer and LIDAR obs at Payerne

SMC meeting Feb 2014: extend PP KENDA (by ~ 1 y, Sep. 2015)

reason: clear project aim: operationability

Background: KENDA pre-operational at MeteoSwiss in mid 2015
 KENDA pre-operational at DWD in Oct. 2015 (for det. forecasts)

Aim: operationability of KENDA by ~ Aug. 2015

- **quality**: match quality of current operational nudging + LHN
 - recommended setup: update frequency, (ensemble size), specified obs errors, adaptive methods (inflation, localisation,..), multi-scale analysis with variable localisation, (possibly noise control by incremental analysis update)...
 - LBC with realistic spread, e.g. add ECMWF EPS forecasts with larger forecast lead time to IFS det. (MCH); optimize ICON-LETKF (DWD)
 - additive covariance inflation: SPPT, (perturbed physics ? Self-evolved pert.? Incremental perturbations with prescribed spatio-temporal correlations ?)
- complete DA cycle: soil: add SST and snow depth analysis
- technical issues

main strategy: develop EnDA (EnKF) for IC for det.+ EPS forecast at convective scale

- 4D-LETKF, or (3D-) EnVar (for deterministic ana/fcst) ?

reviews

- Onviee: main point is quality / ability to extract meaningful info from the obs
 - need flow-dep B
 - get large scale info correct, avoid (evolving unpredictable) small scale noise
 - big effort to handle obs
 - surface DA important

main strategy: develop EnDA (EnKF) for IC for det.+ EPS forecast at convective scale

- ✓ further optimize / refine LETKF
- ✓ use of dense obs: radar, satellite, related to humidty / weather parameters, also surface
- \checkmark towards nowcasting
- \rightarrow need for high quality and efficiency

Deutscher Wetterdienst

- 3D radar - radial velocity - reflectivity → Poli (ARPA-SIM); (Bick ??) → DWD 2016+ ?; (Würsch, H. Lange, LMU)

- **GPS Slant Path Delay** (/ Zenith PD) \rightarrow IAFE 2015 2018 (+ HErZ)
- Cloud Top Height (CTH) derived from SEVIRI \rightarrow Schomburg: ~ 0.4 FTE / y (?)
- direct use of **SEVIRI WV/ IR window** channels for assimilating **cloud** info \rightarrow IAFE 2015 - 2018; (+ HErZ: WV; VIS+NIR)
- direct use of **SEVIRI WV** channels, **clear-sky** for T, qv \rightarrow HErZ 2016
- **Mode-S** (high-resolution) wind and temperature data (from aircraft) \rightarrow H. Lange (HErZ)
- screen-level observations (T2m, q2m, uv10m) \rightarrow Schraff (0.3 FTE/y), MCH?)
- ground-based remote-sensing data, e.g. microwave radiometer & Raman lidar
 T, qv profiles, Doppler lidar wind profiles; ceilometer cloud base height

- Integrated Forecasting System (IFS) towards Nowcasting
 - analysis + forecast RUC, dx ≤ 1 km (technical + tuning)
 - tuning and extension of LETKF ($\rightarrow 1^{st}$ action item)
 - \rightarrow IAFE projects
 - assimilation of LLWAS (wind lidar + X band radar) for airport model COSMO-MUC
 - LES test bed: characterization of model error and of obs representation error
- adaptation to ICON-regional
 - technical implementation of e.g. obs operators in ICON, also re-tuning
 - review decision on DA method: 4D-LETKF, or (3D-) EnVar

