

Max-Planck-Institut für Meteorologie

The Icosahedral Nonhydrostatic model on its way towards operational NWP

Günther Zängl, on behalf of the ICON development team **COSMO General Meeting**, Eretria, 09.09.2014

- Introduction: Main goals of the ICON project
- Overview of the preoperational NWP system based on ICON
- Model scores in various forecasting configurations
- Scalability
- Conclusions

Joint development project between DWD and MPI-M (Hamburg); recently, KIT (Karlsruhe) joined for contributing the ART module

Primary development goals

- Unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties
- Flexible grid nesting in order to replace both GME (global, 20 km) and COSMO-EU (regional, 7 km) in the operational suite of DWD
- Nonhydrostatic dynamical core for capability of seamless prediction
- Scalability and efficiency on O(10⁴+) cores
- Limited-area mode to achieve a unified modelling system for operational forecasting in the mid-term future

Model equations, dry dynamical core

(see Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2014, QJRMS, in press / online version available)

$$\frac{\partial v_n}{\partial t} + (\zeta + f)v_t + \frac{\partial K}{\partial n} + w\frac{\partial v_n}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial n}$$
$$\frac{\partial w}{\partial t} + \vec{v}_h \cdot \nabla w + w\frac{\partial w}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial z} - g$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{v}\rho) = 0$$

$$\frac{\partial \rho \theta_{v}}{\partial t} + \nabla \cdot (\vec{v} \rho \theta_{v}) = 0$$

v_n,w: normal/vertical velocity component ρ: density

 θ_v : Virtual potential temperature

K: horizontal kinetic energy

 ζ : vertical vorticity component

 π : Exner function

blue: independent prognostic variables

Numerical implementation

- **Discretization on icosahedral-triangular C-grid**
- Two-time-level predictor-corrector time stepping scheme
- For thermodynamic variables: Miura 2nd-order upwind scheme for horizontal and vertical flux reconstruction; 5-point averaged velocity to achieve (nearly) second-order accuracy for divergence
- Horizontally explicit-vertically implicit scheme; larger time steps ٠ (default 5x) for tracer advection / physics parameterizations
- Tracer advection with 2nd-order and 3rd-order accurate finitevolume schemes with optional positive definite or monotonous flux limiters; index-list based extensions for large CFL numbers
- Speedup w.r.t. GME: between ~ 2.3 (Cray XC30) and ~ 4 (NEC SX9)

Process	Authors	Scheme	Origin
Radiation	Mlawer et al. (1997) Barker et al. (2002)	RRTM (later with McICA & McSI)	ECHAM6/IFS
	Ritter and Geleyn (1992)	δ two-stream	GME/COSMO
Non-orographic gravity wave drag	Scinocca (2003) Orr, Bechtold et al. (2010)	wave dissipation at critical level	IFS
Sub-grid scale orographic drag	Lott and Miller (1997)	blocking, GWD	IFS
Cloud cover	Doms and Schättler (2004)	sub-grid diagnostic	GME/COSMO
	Köhler et al. (new development)	diagnostic (later prognostic) PDF	ICON
Microphysics	Doms and Schättler (2004) Seifert (2010)	prognostic: water vapor, cloud water,cloud ice, rain and snow	GME/COSMO
Convection	Tiedtke (1989) Bechthold et al. (2008)	mass-flux shallow and deep	IFS
Turbulent transfer	Raschendorfer (2001)	prognostic TKE	COSMO
	Brinkop and Roeckner (1995)	prognostic TKE	ECHAM6/IFS
	Neggers, Köhler, Beljaars (2010)	EDMF-DUALM	IFS
Land	Heise and Schrodin (2002), Helmert, Mironov (2008, lake)	tiled TERRA + FLAKE + multi-layer snow	GME/COSMO
	Raddatz, Knorr	JSBACH	ECHAM6

The coupled ICON – 3D-Var forecasting system Deu

Deutscher Wetterdienst Wetter und Klima aus einer Hand

thanks to Roland Potthast!

Verification results

- Comparison 1: ICON 40 km / 90 levels with GME 40 km / 60 levels initialized with interpolated IFS analyses; WMO standard verification (1.5° lat-lon grid) against IFS analyses; January and June 2012
- Comparison 2: ICON 40 km / 90 levels with 3D-Var data assimilation against operational GME 20 km / 60 levels; verification against own analyses; July 2013
- Comparison 3: ICON parallel routine (since 12.08.2014) 13 km / 90 levels against operational GME 20 km / 60 levels; verification against radiosondes
- Thanks to Harald Anlauf, Uli Pflüger, Uli Damrath, ...!

Verification against radiosondes 18.08.2014 – 31.08.2014, 00 UTC runs solid - GME, dotted – ICON; colours: analysis, 24h-forecast, 48h-forecast; NH extratropics

Verification against radiosondes 18.08.2014 – 31.08.2014, 00 UTC runs solid - GME, dotted – ICON; colours: analysis, 24h-forecast, 48h-forecast; NH extratropics

Thanks to Florian Prill!

- Mesh size 13 km (R3B07), 90 levels, 1-day forecast (3600 time steps)
- Full NWP physics, asynchronous output (if active) on 42 tasks
- Range: 20–360 nodes Cray XC 30, 20 cores/node, flat MPI run total runtime sub-timers

Result of first try – before fixing some hardware issues ...

total runtime sub-timers 2014-03-03 2014-03-03 runtime runtime DyCore (nh solve) output disabled DyCore comm. (nh exch) with output 1000 Physics 800 Communication (exch data) NH-solver excl. communication 500 400 300 Communication 100 Communication within NH-solver e (s) time (s) 400 600 960 1280 1920 2560 5200 7200 3920 400 600 960 1920 2560 3920 5200 7200 1280 MPI tasks, flat-MPI run MPI tasks, flat-MPI run

Hybrid parallelization: 4/10 threads with hyperthreading

total runtime

Summary

- ICON will constitute a unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties than GME, ECHAM and COSMO-Model
- Better NWP scores than GME
- Substantially better scalability and efficiency than GME
- Target date for start of operational production: 09.12.2014

