
Introduction
Error Analysis on Ensemble Methods

Numerical results

Localization: Theory and application
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Our problem

I Understand the basic properties of localization in the
ensemble Kalman filter scheme.

I Find an adaptive localization scheme depending on the density
of data, observation error, ...

I Decomposition of the error sources to determine its effect on
the optimal localization length scale.

I We start with a brief description of ensemble Kalman filtering
from a mathematical point of view, followed by

I numerical experimental results
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Cost function and update formula

The cost function to be minimized is

J(ϕ) := ‖ϕ− ϕ(b)‖2

B−1 + ‖f − Hϕ(b)‖2

R−1 , (1)

where ϕ(b) is the background state, f are the data, H is the
observation operator and the relation between variables at different
points is incorporated by the covariance matrices B and R.
Minimizing the cost function gives the update formula

ϕ(a) = ϕ(b) + BH∗(R + HBH∗)−1(f − Hϕ(b)) (2)
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Ensemble Kalman Filter

In the EnKF methods the background convariance matrix is
represented by B(ens) := 1

L−1 Qk Q∗k . The ensemble matrix Qk is
defined as

Qk :=
(
ϕ

(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k

)
, (3)

where ϕ(b) denotes the mean 1
L

∑L
l=1 ϕ

(l).
Thus, we solve the update in a low-dimensional subspace

U(L) := span{ϕ(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k }. (4)
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The update formula now is

ϕ
(a)
k = ϕ

(b)
k + Qk Q∗k H∗(R + HQk Q∗k H∗)−1(fk − Hϕ

(b)
k ) (5)

The updates of the EnKF are a linear combination of the columns
of Qk . We can therefore write

ϕk − ϕ
(b)
k =

L∑
l=1

γl

(
ϕ

(l)
k − ϕ

(b)
k

)
= Qkγ (6)

With
Q̂k := HQk , (7)

the resulting the expresion to minimize is

J(γ) := ‖Qkγ‖2
B−1

k

+ ‖fk − Hϕ
(b)
k − Q̂kγ‖2

R−1 , (8)
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Error analysis without background contribution

Lemma
Assume that H is injective, that we study true measurement data
f = Hϕ(true) and consider the EnKF with data term only

J(data)(γ) = ‖(f − Hϕ(b))− Q̂kγ‖2
R−1 (9)

Then, for the analysis ϕ(a) calculated by the EnKF the difference
ϕ(a) − ϕ(b) is the orthogonal projection of ϕ(true) − ϕ(b) onto the

ensemble space U
(L)
k and the analysis error is given by

Ek = dH∗R−1H

(
U

(L)
k , ϕ

(true)
k − ϕ(b)

)
, (10)

where the right-hand side denotes the distance between a point

ψ = ϕ
(true)
k − ϕ(b) and the subspace U(L) with respect to the norm

induced by the scalar product < ., . >H∗R−1H .
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Illustration of Lemma

φ

φ
a

b

true

0

φ φ−
true b

b

φ
a

φ

.

−

U
K

(L)

φ
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Error analysis with background term

Theorem
Assume that H is injective, that we study true measurement data
f = Hϕ(true) and consider an assimilation step using the EnKF.
Then, for the analysis error in the step k we have the analysis error
estimate

‖ϕ(true)
k − ϕ(b)‖H∗R−1H ≥ Ek ≥ dH∗R−1H

(
U

(L)
k , ϕ

(true)
k − ϕ(b)

k

)
.

(11)
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Localization

LETKF basic idea: Localization to D, leading to

Qk,loc :=
(
χD(ϕ

(1)
k − ϕ

(b)
k ), ..., χD(ϕ

(L)
k − ϕ

(b)
k )
)
. (12)

We now have

B =
1

L− 1
Qk,loc QT

k,loc (13)

and
fk,loc = χD fk (14)

We now solve the equations in the locally low-dimensional subspace

U
(L,D)
k := span{χD(ϕ

(1)
k − ϕ

(b)
k ), ..., χD(ϕ

(L)
k − ϕ

(b)
k )}. (15)
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Localization

Thus, in the above error estimates we just have to replace

Ek → Ek,loc

(ϕ
(true)
k − ϕ(b))→ χD(ϕ

(true)
k − ϕ(b))

U
(L)
k → U

(L)
k,loc .

(16)

to get the local error estimates.
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Localization

Theorem
Assume that there is c, C > 0 such that for all x ∈ D there is
l ∈ 1, ..., L such that

| ϕ(l)(x) |≥ c , (17)

and that ∣∣∣∣∣∣∇ϕ(l)(x)
∣∣∣∣∣∣
∞
≤ c , x ∈ D. (18)

Then with sufficiently rich data and the true solution in H(D) we
have

sup
x∈D

Ek,loc (x , ρ)→ 0, ρ→ 0. (19)
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1d toy model
I 1d model without cycling, uses least-square estimate to obtain

an analysis (LSA). The truth is given by a (higher order)
function.

I Either “pure” least square estimate without background (free
LSA), or correction of a background state (bg LSA)

I Observations are generated from the truth with a specified
observation error σobs .

I here, the analysis is given by straight lines a + bx where a, b
are estimated from the observations.

I do this globally using all available observations or step by step
in several intervals using a local subset of observations.

I The use of straight lines in some sense mimics the behaviour
of an ensemble method, which also tries to approximate a
high order state within a (lower order) subspace spanned by
the background ensemble members (detailed later).
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Fig.1: truth (blue line), observations (blue circles), background (green), free LSA

(red) and bg LSA (black) for the set of localization radii, σobs = 0.0005

Hendrik Reich, África Periáñez, Roland Potthast Localization: Theory and application



Introduction
Error Analysis on Ensemble Methods

Numerical results

Introduction
Results
Localization

Fig.2: same as Fig.1, but for σobs = 0.05
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Fig.3: same as Fig. 1, but for σobs = 0.5
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Results

I for all values of σobs the bg LSA is better than the first guess.

I For large σobs the free LSA is worse than the bg analysis.

I for small σobs the results of the free and the bg LSA become
very similar.

I the optimal value of ρloc moves to smaller values with
decreasing σobs .
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Optimal localization radius
I estimate the optimal localization radius ρloc as a function of
σobs and observation density d for the free analysis.

I two error sources: approximation error and sampling error.
I approximation error should decrease with smaller localization

radii as a higher order function can be better approximated by
a large number of straight lines. ∼ ρ2

loc (theorems on
numerical interpolation)

I sampling error should decrease with larger localization radii as
a larger number of observations gives a statistical better
estimate. ∼ 1/

√
Nobs , where Nobs is the number of

observations.
I Nobs can be expressed as Nobs =

∫
V

d(x)dV = 2dρloc .

ê ∼ ρ2
loc +

σobs√
2dρloc

, (20)
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Optimal localization radius

The minimum of this error (as a function of the localization radius
ρloc ) can be obtained, leading to

ρopt
loc ∼

(α
4

)2/5
, (21)

where α = (σobs/
√

2d).
Thus, ρopt

loc as a function of σobs can be described by

ρopt
loc ∼ σ

2/5
obs , (22)
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Fig.4: theoretical and numerical results for error as a function of ρloc ,

σobs = [0.0005 0.05 0.5].

the optimal value of ρloc moves to smaller values with decreasing σobs .
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I when is LETKF similar to (bg) LSA?
I “polynomial order” of fg-ens members and LSA background

base functions (:= NP ) should be the same; additionally we
need (Nens − 1) ≥ NP

I LETKF cannot “fit” more than Nens observations, but we
have to distinguish two cases:

I if NP and Nens are comparable to “order” of the truth
(ensemble subspace is good approximation to truth →
approximation error small), the error will decrease ∼ 1√

Nobs

even if Nobs > (Nens − 1) (sampling error)
I if LETKF subspace is too small/not appropiate (model error?);

approximation error dominates, additional obs don’t have
positive impact for Nobs > (Nens − 1)
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o o o observations —– truth —– LSA/LETKF/3dVar background
—– LSA analysis —– LETKF —– 3dVar —– spline

Fig.5 σobs = 0.1, Nens = 10, NP = 3 in LETKF bg ens

LETKF similar to bg LSA; 3dVar ana is best
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o o o observations —– truth —– LSA/3dVar background
- - - LETKF background —– LSA analysis —– LETKF —– 3dVar —– spline

Fig.6: σobs = 0.1, Nens = 10, sin/cos base functions as LETKF bg ens

LETKF similar to 3dVar
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adaptive horizontal localization

I localization length scales depend on weather situation,
observation density ...

I simple adaptive method: keep number of effective
observations fixed, vary localization radius
(effective observations: sum of observation weights)

I up to now only implemented in horizontal direction

I one has to define minimum / maximum radius, number of
effective observations Neff

obs = α(Nens − 1), α ≥ 1

I ideal number of effective observations depends on ensemble
size, ...

I Christoph already showed first results
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Outlook / Conclusion

I 1d model: optimal localization length ρloc depends on σobs ;
this (first results) also seems to be the case for the
L95-LETKF.

I 1d model: 2-step ana gives better results if two obs types and
σ1

obs >> σ2
obs .

I 1d model: for fixed ρloc in LETKF: Nobs > (Nens − 1) gives
better results only if ensemble-subspace is appropiate

I 2d model LETKF: similar results found

I “classical” view on localization in EnKF: up to which distance
can we trust the correlations in the ensenmble?

I (How) are both approaches connected? Do they lead to
similar optimal localization radii? Should be tested
(L95-LETKF).
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Outlook / Conclusion

I COSMO: conventional data with large ρloc to get large scale
analysis increments, radar data in second analysis step with
small ρloc to get small scale variations. Maybe 3rd step to get
nonlocal radiance observations (without vertical localization).

I with one analysis step only, different kinds of obs with
different observation density dobs :

I dobs “high” → ρloc “small”, dobs low → ρloc large.

I in order to save time: reduced grid (weights) can be different
in the analysis steps. Problem: 4d-aspect, observation
operators in COSMO-model. Linear approximation (as in obs
impact studies): Ya = YbW .

I next steps: investigate influence of observation density,
nonlocal observations within 2d-model / L95-LETKF
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