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# The Main Scheme

Stratiform Cloud Fraction (Sommeria Deardorff, 1976):
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Where ¢,, and ¢ are liquid water and vapor specific humidities, 6,
Is liquid water potential temperature and the average values q and
w
g, are the grid point values calculated by the model.



# Afirst order approximation for 4 is assumed in reference to qs and by
using Clausius-Clapeyron equation cloud fraction R is given by
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#® Sommeria kal Deardorff (1977) further approximated R empirically :
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# In analogy, a SubGgrid Statistical (SGS) cloud scheme is implemented to
COSMO model (Doms, Raschendorfer) where the stratiform cloud cover is
approximated by a two-parameter relation:

RzA(l+%j,OSR£1

#® Parameter A refers to cloud cover at saturation and B refers to critical
value of saturation deficit. The default values of these parameters are
set 0.5 and 4.0 respectively.



# Test Cases Tabulation and Model set-up

Five cases were investigated, with 48 hour runs as follows:

# | Starting Date

2400

2 | Dec. 24 2007 12UTC (d071224_12)

4 | May 92008 12 UTC (d080509_12)
5 | May 12009 12 UTC (d090501_12)

2000

1600

1200

1000

800

600

400

» COSMO_4.11 (4.6)
> Horizontal grid 0.0625° (~7 Km)
273%x273 points

200
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» 40 vertical levels

» time step: 30 sec

> GME (0.5% 3 hs 48 hs

> IBM HPC Cluster 1600 (P4+)




# SGS Cloud Scheme Implementations

RH : Reference run of COSMO_4.11. SGS not activated. Cloud Cover is
calculated on the default Relative Humidity (RH) scheme.

SGS def: SGS is activated in COSMO 4.11 through its default implementation
where cloud cover is set equal to 1.0 if any cloud ice is present.

SGS E-7: SGS is activated in COSMO _4.11 and cloud cover is set equal to
1.0 if cloud ice is greater than 10 -7 Kg/Kg.

SGS_ mix: A generalization of SGS with the inclusion of cloud ice into total
water specific humidity is implemented in COSMO_ 4.6 (Deardorff 1976, test
version provided by Matthias Raschendorfer).

SGS_low: SGS is activated in lower troposphere (klv > 500). The default RH
scheme remains in the upper troposphere.

SGS RH: SGS is activated for grid points without any cloud ice and RH
scheme is used for cloud cover for the rest grid points.

The goal is to obtain an understanding on how SGS implementation perturbs
cloud cover in reference to cloud-ice which is an issue (Smith S. A. and Del
Genio A. D., 2002).



# Results

The results are presented in reference to the default RH scheme, satellite
pictures (MSG Infrared), station observations.

Considered Variables

ASOB _T: Solar radiation budget at the top of the atmosphere
ATHB_S: Thermal radiation budget at the surface

ASOB _S: Solar radiation budget at the surface

ATHB _T. Solar radiation budget at the top of the atmosphere
CLCT: Total Cloud Cover

CLCH: High Cloud Cover

CLCM: Medium Cloud Cover

CLCL: Low Cloud Cover

CLC: Cloud Cover over station

T 2M: 2 meter Temperature

TL3: Temperature at the third model level (=100m)

RH: Relative Humidity over station

Cloud T: Artificial Satellite Images (MSG IR 10.8 nm)
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I A larger set is available for further consideration.
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I Guide to figures

Results upon individual cases
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CONCLUSIONS

& @

@

The forecasted cloud cover is sensitive to the statistical cloud scheme and
looks consistent with the default RH cloud scheme to the extent of a
perturbation, especially the SGS_RH cloud scheme.

In general cloud cover patterns were similar for all implementations.
Less High clouds are produced when the RH scheme is invoked.

In general more medium and low clouds are produced by the RH default
scheme. However SGS scheme is parameterized and this can change.

A small improvement to T_2m min was observed for some cases.

Significant differences were found over thermal radiation budgets. Especially
those at the top of the atmosphere can be further tested with satellite data.

Within the framework provided by these experiments the subgrid cloud cover
scheme (especially the SGS_RH scheme) looks like a flexible alternative to the
default scheme of COSMO model.
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