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Motivation

An ensemble data assimilation system is under development for
COSMO.

As a first candidate the LETKF variant following Hunt et al. (2007)
has been chosen.

Ensemble Kalman filter in general and the LETKF in particular has
been criticised to have a number of shortcomings.
(cf. subsequent talk of Mikhail Tsyrulnikov)

The goal of this talk is to revisit the rational for this choice and
for possible alternatives.
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Why LETKF (for COSMO)

An Ensemble Forecasting system is currently build up in order to
quantify the uncertainties of the forecast.

A more theoretically founded assimilation system than the current
(nudging-) scheme is desired.

The prerequisites to build up a 4D-Var are not given.
(adjoint model, ‘smooth’ physics)

An Ensemble Assimilation Systems is a natural choice for a
data assimilation system that at the same time provides initial
values for a forecast ensemble.

Ensemble data assimilation systems came up (relative) recently.
There is a chance to participate in the early development phase and
not to lag behind the developments of others.

The LETKF is a particularly fast EnKF implementation.

Alternatives to the EnKF (currently SIR-Filter) are pursued.
(with lower priority)
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Foundations of Ensemble Data Assimilation Systems

Ensemble Data Assimilation Systems use an ensemble of forecasts
(with members xb

k) to infer (flow dependent) information on the
background error covariance matrix B for the data assimilation
system.

B ≈ XXT with Xk =
√

1
nk−1

(
xb
k − xb

k

)
In the analysis step an ensemble of analyses is provided.
The xa

k represent the uncertainty of the analysis, based on :
I the forecast error derived from the xf

k ,
I and the prescribed observational error.
I Model error has to be introduced explicitly into the xf

k .

The xa
k are the initial values for cycling the ensemble to the next

analysis time.

The xa
k can be used as the initial values for forecast ensembles in

general.
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Limitations of Ensemble Data Assimilation Systems

B = XXT is of low rank.
(compare ensemble size to number of degrees of freedom of the
atmosphere).

Small off-diagonal elements (correlations) of XXT are noisy.

nonlinearities are accounted for in the ensemble forecast, but :
assumptions on linearity and normal distributions are made in the
analysis step.

Precautions to deal with the low rank/noise problem are required.

This is accomplished by localisation.
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Localisation: Schur product
Multiply B = XXT element by element with a matrix C:
B→ C◦B.

Requirements on C:

Cij≈1 for large correlations in B

Cij≈0 for small correlations in B

C ◦ B must be positive definite.
(C positive definite is a sufficient condition).

Common choice: piecewise rational function (Gaspari & Cohn)

Cij is defined as a smooth function of 4x = xi − xj .

C(4x): Gaussian like function characterised by a localisation length
scale λl .

C=0 for 4x large. (facilitates computations)

λl >> correlation length scale λc .
I Do not impair covariances provided by the ensemble
I Maintain balances
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Remarks on localisation in physical space

Remarks:

Definition of C just as a function of 4x may be sub-optimal.
(correlation length scales may vary for different model variables)

Statistical considerations could be used to chose Cij .

More remarks:

To apply the Schur product on B in physical space is an arbitrary
choice.

Application in spectral or in wavelet representation has totally
different effects. (Buehner and Charron 2007)
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Ensemble Transform Kalman Filter (ETKF)

Perform the analysis using the gain matrix K:

xa − xb = K (o− H(xb))

K = BHT (HBHT + R)−1

set

B = XXT with Xk =
√

1
nk−1

(
xb
k − xb

k

)
and

H=YX with Yk =
√

1
nk−1

(
H(xb

k)− H(xb
k)
)

Then the gain matrix becomes :

K = XYT (YYT + R)−1

Finally derive the analysis ensemble deviations Z :

Z = YT (YYT + R)−1 (o− H(xb)) with Z =
√

1
nk−1

(
xa
k − xb

k

)
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Variants of localisation
For computational efficiency :
apply C◦ on BHT , HBHT or R−1 instead of B

Kalman Gain matrix
K = BHT (HBHT + R)−1

or
K = (B−1 + HTR−1H)−1 R−1

pure EnKF (small set of linear equations)
K = XYT (YYT + R)−1

or
K = X(1 + YTR−1Y)−1 YTR−1

localisation on B (requires H)
K = C◦XXTHT (HC◦XXTHT + R)−1

localisation on BHT , HBHT

K = C◦XYT (C◦YYT + R)−1

localisation on R−1 (LETKF, Hunt et al. 2007)
K = X (1 + YTC◦R−1 Y)−1 YTC◦R−1
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Localisation of non-local observations

For in-situ observations localisation on B and on HBHT is fully
equivalent.

For non-local (remote sensing) observations the two approaches are
different.
For non-local observations and localisation on B and on HBHT the
following parameters must be prescribed:

I The spatial location of the observation.
I The λl used for in-situ observations may be not suitable as the scale of

the footprint λo may be much larger than the correlation length scale
λc .

It has been proposed to (Fertig et al. 2007)
I Increase λl to be at least as large as λo for non-local observations.

Note:
I There is the mathematical constrained that C ◦HBHT is positive

definite.
I There is no such constraint on C ◦ R−1 for the LETKF.
I Using different localisation scales for different observation types will

lead to inconsistencies.
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Practical Implementations considered

Variants of localised ETKF :

process observations in patches

EnSRF Ensemble Square Root Filter

LETKF following Hunt et al. 2007

VarETKF following Buehner 2005

Variants of 3D-Var :

VarETKF following Buehner 2005 (again)

3D-Var: use parameterised B

A.Rhodin (DWD) pros & cons EnKF COSMO GM, Sept 7, 2009 12 / 25



Process observations in patches

For linear H the analysis step may be split into multiple steps without
changing the final result:

1 Derive the Ensemble deviations Y in observation space from the
background ensemble deviations X.

2 Use only a subset of the observations to derive the analysis ensemble
deviations Z from Y and X.

3 replace the background ensemble X by the Z, repeat step 1,2,3 with
another subset.

Processing patches with a limited number of observations at a time
turns the large problem into a number of smaller problems
this may be utilised for parallelisation.

The 4D-EnKF (to be used for COSMO) makes use of the opposite
relationship: Observations made at different times max be processed
together at a later time.
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EnSRF: Ensemble Square Root Filter

The EnSRF (Anderson 2003, Anderson and Collins 2007) also
processes the observations in patches.
In the extreme case: only one observation at a time.

In contrast to the previous algorithm the EnSRF does not recalculate
the Y from the X in each iteration, but directly updates the Y:

1 Derive the Ensemble deviations Y in observation space from the
background ensemble deviations X.

2 Use only a subset of the observations to derive the analysis ensemble
deviations Z from Y and X.
At the same time update the Y by a similar procedure.

3 replace the background ensemble X by the Z, repeat steps 2,3 with
another subset.

Consequences:
I H(x) is applied only once.
I Localisation is performed on HBHT .
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LETKF (Hunt et al. 2007)

The LETKF makes independent analyses for every grid-point using
only observations within a certain localisation radius.

Consequences:
I Localisation is performed on R−1.
I Technically different localisation length scales may be used for different

observation types.
However, this may lead to inconsistencies.

The algorithm can be accelerated considerably by calculating the
weight matrices (1 + YTC◦R−1 Y)−1 YTC◦R−1 on a coarser grid
and then interpolate to the model grid.
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VarETKF: Variational ETKF following Buehner 2005

The algorithm utilises that
B = C ◦ XXT

may be reformulated as
B =

∑
k X′kC

1/2C1/2 TX′k
T .

Here X′k is a diagonal matrix consisting of the forecast ensemble
deviations.

If an operator representation of C1/2 (square root of the localisation
matrix) is available, this B can be used in the usual 3D-Var
framework.

Consequences:
I Localisation is performed on B = C ◦ XXT

I The Y are not derived by a linear regression.
Instead the full nonlinear H(x) are used.

I Technically localisation may be performed in any representation
(spectral, wavelet) if the X′k are represented respectively.
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3D-Var: parameterise B

Ensemble Assimilation Systems based on 3D/4D-Var
I Run ensemble of assimilation cycle with disturbed observations and

model.
I Use parameterisation or model: B = B(p).

Fit the parameters p (variances, length-scales,. . . ) to XXT .
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Pros and Cons – Criteria

Computational demands
Computational complexity (H required, H(x) iterated)
Consistent application of localisation
Localisation in 4x only
Usage of nonlinear H in analysis
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Computational demands

CPU-time requirements:

The analysis step must be fast (few number of minutes)
as is has to be cycled in real time.
(cycle period down to 15 min ?)

The requirements of the LETKF and the EnSRF have been compared
by Whitaker (2008) :
The CPU-time requirements are comparable, but depend on number
of grid-points, number of observations, etc.
The enhancement of the LETKF by performing analyses on a coarser
grid has not been taken into account.

CPU-time requirements of other algorithms are not considered in
detail, but are probably larger.
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Computational complexity

Computational complexity:

The current 4D-EnKF design for COSMO separates :
I Application of the observation operators H(x) at the appropriate time

in the model.
I Performing the analysis at a later time in the LETKF.

Consequently algorithms which repeatedly apply H(x) cannot be used
without changing the design.
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Application of localisation

Consistent application of localisation
If localisation is not applied on B but on HBHT or on R−1 there is
the risk of inconsistencies in the algorithm, especially if different
localisation length scales are applied for different observation types.

Optimal application of localisation
If the localisation function is applied merely in physical space it may
be sub-optimal, especially for observations which measure integrated
quantities. Algorithms which do not rely on localisation in space may
have advantages.
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Pros and Cons

algorithm patches EnSRF LETKF Var-EnKF 3D-Var
to be used for COSMO GME/ICON
localisation B HBHT R−1 B B(p)
requirements
requires H no no no yes yes
iterates H(x) yes no no yes yes
requires B(p) no no no no yes
is fast no? ? yes no? no?
functionality
consistent C◦HBHT yes ? no yes yes
localisation in 4x yes yes yes no no
nonlinear H no no no yes yes
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Conclusions ?

We cannot get everything at the same time :
A fast algorithm without drawbacks
that does not conflict with the 4D-EnKF-Design.

LETKF may be replaced by the EnSRF without changing the design.
Not clear if EnSRF cures the localisation problems.

Wait for first experiences with the COSMO-LETKF.
We currently do not know relevant parameters of the setup.
Localisation strength has to compromise noise and balance.

Wait for first experiences with the GME-VarETKF.
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EnKF for COSMO: 4D-EnKF

LETKF
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COSMO
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EnKF for GME/ICON: hybrid 3D-Var/EnKF (VarETKF)

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME det

obs

GME det
3D−Var

EnKF
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