Background model error localization through an ensemble Kalman filter

(M.Elementi, C.Marsigli, T.Paccagnella)

ervizio IdroMeteoClima -Bologna.IT

COSMO-GM 2009

F. Di Giuseppe, C Marsigli and T. Paccagnella: Background model error localization through an ensemble Kalman filter: QJRM (Submitted 2009)

Statement of the Problem	Methodology	Scheme validation	Comparison to observations	Summary
Outline				

Statement of the Problem

Methodology

Scheme validation

Comparison to observations

Summary

Statement of the Problem ●○○	Methodology	Scheme validation	Comparison to observations	Summary
Problem				

Assimilation systems based on optimal interpolation techniques require the specification of model errors (covariance matrix B):

- B depends on weather regimes
- B is scale dependent

In regional models there are mainly two sources of errors:

Large scale errors (at driving model resolution) due to uncertainties in initial and boundary conditions; Small scale errors (at model resolution) due to the low predictability of events at the meso-gamma scale.

Statement of the Problem ●○○	Methodology	Scheme validation	Comparison to observations	Summary
Problem				

Assimilation systems based on optimal interpolation techniques require the specification of model errors (covariance matrix B):

- B depends on weather regimes
- B is scale dependent

In regional models there are mainly two sources of errors:

Large scale errors (at driving model resolution) due to uncertainties in initial and boundary conditions; Small scale errors (at model resolution) due to the low predictability of events at the meso-gamma scale.

Statement of the Problem ●○○	Methodology	Scheme validation	Comparison to observations	Summary
Problem				

Assimilation systems based on optimal interpolation techniques require the specification of model errors (covariance matrix B):

- B depends on weather regimes
- B is scale dependent

In regional models there are mainly two sources of errors:

Large scale errors (at driving model resolution) due to uncertainties in initial and boundary conditions; Small scale errors (at model resolution) due to the low predictability of events at the meso-gamma scale.

Statement of the Problem ○●○	Methodology	Scheme validation	Comparison to observations	Summary
B matrix calculat	tions			

Traditional approaches for estimating the background error covariance are built on background climatology (flow-independent)

- The Hollingsworth and Lönnberg (1986) method. Long time-series of comparison model observations
- The NMC method (Parrish and Derber, 1992). Long time-series of differences between 48h and 24h forecasts verifying at the same time.
- The analysis-ensemble method.

Calculates statistics from pairs of backgrounds generated from perturbed analysis after few days from the initialisation.

Statement of the Problem ○○●	Methodology	Scheme validation	Comparison to observations	Summary
Road-map				

- The **time-dependency** is accounted for by calculating **B** at the beginning of each assimilation cycle
- The **space-dependency** is accounted for by a localization procedure
- HOW:
 - Use a multi-analysis model-perturbed ensemble system to identify areas of homogeneous spread ("island") where model errors are likely to be homogeneous.
 - Calculate flow-dependent **B** matrices inside the selected islands.

WHERE:

Statement of the Problem ○○●	Methodology 00000	Scheme validation	Comparison to observations	Summary
Road-map				

- The **time-dependency** is accounted for by calculating **B** at the beginning of each assimilation cycle
- The **space-dependency** is accounted for by a localization procedure HOW:
 - Use a multi-analysis model-perturbed ensemble system to identify areas of homogeneous spread ("island") where model errors are likely to be homogeneous.
 - Calculate flow-dependent **B** matrices inside the selected islands.

WHERE:

Statement of the Problem ○○●	Methodology 00000	Scheme validation	Comparison to observations	Summary
Road-map				

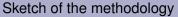
- The **time-dependency** is accounted for by calculating **B** at the beginning of each assimilation cycle
- The space-dependency is accounted for by a localization procedure

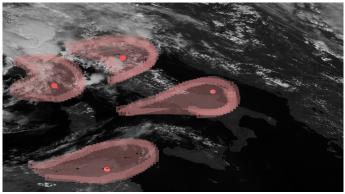
HOW:

- Use a multi-analysis model-perturbed ensemble system to identify areas of homogeneous spread ("island") where model errors are likely to be homogeneous.
- Calculate flow-dependent **B** matrices inside the selected islands.

WHERE:

Statement of the Problem ○○●	Methodology 00000	Scheme validation	Comparison to observations	Summary
Road-map				

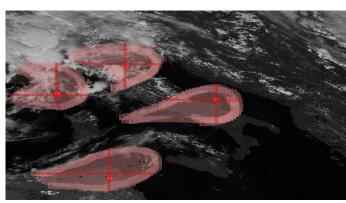

- The **time-dependency** is accounted for by calculating **B** at the beginning of each assimilation cycle
- The space-dependency is accounted for by a localization procedure


HOW:

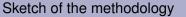
- Use a multi-analysis model-perturbed ensemble system to identify areas of homogeneous spread ("island") where model errors are likely to be homogeneous.
- Calculate flow-dependent **B** matrices inside the selected islands.

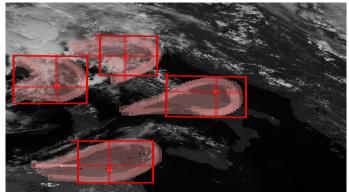
WHERE:

Statement of the Problem Methodology Scheme validation Comparison to observations Summary



A two dimensional input spread field is computed: points with *spread* > *percmax* are identified as central points for possible islands.


 Statement of the Problem
 Methodology
 Scheme validation
 Comparison to observations
 Summary

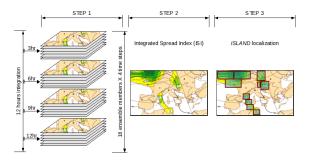
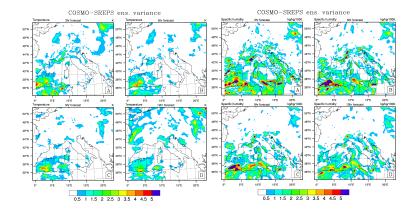
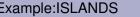

 000
 0
 0
 0
 0
 0
 0

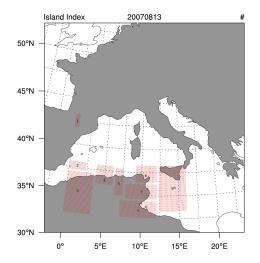
Then, the search for the island borders proceeds from this point in each of the four cardinal directions until the spread field reaches a value lower than *percmin*

Statement of the Problem Methodology Scheme validation Comparison to observations Summary

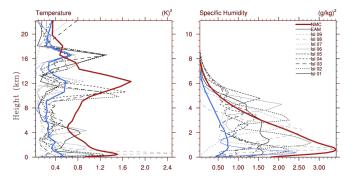
... the island is completed by filling a rectangular shape

Statement of the Problem	Methodology ○●○○○	Scheme validation	Comparison to observations	Summary
Implementation I				


Figure: STEP 1 : generation of ensemble spread fields from the COSMO-SREPS system. STEP 2 : construction of a two-dimensional spread index field. STEP 3 : localization procedure based on a percentiles-based method using the spread index field calculated in STEP 2.

Statement of the Problem	Methodology ○○●○○	Scheme validation	Comparison to observations	Summary
Example				



Statement of the Problem	Methodology ○○○●○	Scheme validation	Comparison to observations	Summary
Example ISLAN	IDS			

Statement of the Problem	Methodology ○○○○●	Scheme validation	Comparison to observations	Summary
Error Profiles				

Background Error Variance

Figure: Temperature and specific humidity variances for the three background error models considered. One day of example is considered, the 13th of August 2007.

Statement of the Problem	Methodology	Scheme validation ●	Comparison to observations	Summary
Validation Exper	iments			

This new characterization of model error is actually producing better retrieved profiles?

The new approach is compared to state of the art methods

Table: Summary of the configurations and main characteristics of the background error models used in the comparison.

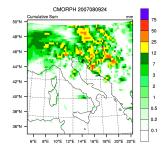
Statement of the Problem	Methodology	Scheme validation ●	Comparison to observations	Summary
Validation Expe	riments			

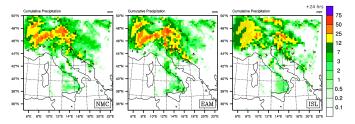
This new characterization of model error is actually producing better retrieved profiles?

The new approach is compared to state of the art methods

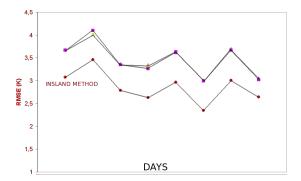
Table: Summary of the configurations and main characteristics of the background error models used in the comparison.

Exp	Method	Time	Space	Comments
ISL	Ensemble	Daily upgrade at the beginning of each assimilation cycle	Spatial localization	Variable number of <i>1</i> 3 matrices are ap- plied depending on the observation lo- cation in the domain
EAM	Ensemble	Daily upgrade at the beginning of each assimilation cycle	Domain spatial av- erage	One <i>B</i> matrix available for all observa- tions at the beginning of the assimila- tion cycle
NMC	Statistics based on model depar- tures calculated at +36hrs and +12 hrs forecast times	Seasonal mean (June, July, Au- gust)	Domain spatial av- erage	One climatological <i>13</i> matrix available for all observations and during the whole period.


 Statement of the Problem
 Methodology
 Scheme validation
 Comparison to observations
 Summary


 Comparison to observations

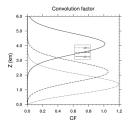
Two comparisons are performed:


- Forecasted precipitation fields are compared to an independent satellite product,
- 2m surface temperatures are verified against the synop network.

Statement of the Problem	Methodology	Scheme validation	Comparison to observations	Summary
Precipitation				

Statement of the Problem	Methodology	Scheme validation	Comparison to observations	Summary
T_{2m} scores				

+24 hrs forecast. RMSE relative to the 2m temperature analyses obtained for the eight days considered, at 00 UTC.


Statement of the Problem	Methodology	Scheme validation	Comparison to observations	Summary
Summary				

- A simple technique is presented to calculate "flow dependent" error covariance matrices using the outputs of an multi-model perturbed ensemble system
- It has been applied to the retrieval of temperature and humidity profiles from the SEVIRI sensor
- Preliminary tests show that the use of more appropriate model error functions can be beneficial in improving retrieval performance
- A positive impact is also shown in forecast errors (RMS)
- Further impact studies are ongoing and to maximise the effect of the methodology we plan to increase to 3hrs the time step for the **B** calculation

The ensemble spread index (ESI) is computed in terms of temperature and specific humidity on model levels (80 fields) by

- calculating the departure of each ensemble member from the ensemble mean
- ormalising the departures of the different variables
- Convolving the departures with a vertical weighting function to obtain a unique integrated spread field.

