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The situation:

Sub grid scale structures of the earth surface

Interaction between surface elements and the surrounding air

 (roughness layer- or canopy terms)

 have to be considered in the lowest part of the atmosphere
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Usually, the lowest model layer

 is much bigger than the roughness layer

canopy terms do only appear in the transfer scheme at the

surface, usually expressed by the help of specific roughness

length values for the transported properties.
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- Over areas with large roughness elements (within cities, forests and mountains)

the canopy is often higher than the depth of the lowest layer but the model

equations do not contain canopy terms so far.

simulation errors especially over mountains

The problem with a resolved roughness layer:
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Questions:

• How do canopy terms in principle enter to the model equations?

• Are there different possibilities to express these canopy terms?

• What is the effect of the choosen coordinate system?

• Is there a practical way to describe a vertically resolved roughness

layer?



The coordinate system:

• The model equations must be solved on a numerical grid.

- We choose a regular grid, belonging to a local Cartesian coordinate system

( )zyx ,, with a physical vertical coordinate σ , such that

( )yxzz ,σ=

and 1=∂ zσ within the boundary layer.

z

x

const=σ

σz

x∆

σ∆=∆z



The filter operator:
• In order to apply a numerical approximation of the derivatives in space on the variable

fields, they have to be filtered in space with respect to a horizontal length scale

comparable to the horizontal grid spacing yxD ∆=∆=
0 .

• The filter is defined as a moving average along the air containing part ( )rQ ~
σ  of a

shallow cubic grid box in the   σ -system:
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• Due to 1=∂ zσ  it is:
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if ( )σQTQ z =:  is the averaging volume in the z-system and

( )rTr ~= .

• For ( )rQs∈  the according fluctuations are defined as follows:

( ) ( ) ( )rss ςςς −=′ :  and ( ) ( ) ( )rss ςςς ˆ: −=′′

With this definition it is: ςρς ′′==′ 0

• If 0>D  is a different grid spacing, we write 
Dς  or 

Dς̂ for the

averages and ( )/

Dς  or ( )//

Dς  for the corresponding fluctuations.



Sub grid scale slope of the
model layers

Mathematical reason for the canopy terms:
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The filtered budget equation:
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A new concept: The ”orographic approximation” OA:

• For any real surface (RS) of the earth, there exists an “equivalent orographic surface” (EO),

which has the following meaning:
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• There exists a mapping from the σ -surfaces  belonging to the EO towards

corresponding σ~ -surfaces  belonging to the RS with the following properties:

- The σ~ -surfaces cover the RS

- The σ~ -surfaces do not intersect

- The σ~ -surfaces have the same magnitude like the corresponding σ -surfaces

- The including air volume between two σ -surfaces is the same like that

between the two corresponding σ~ -surfaces

- The average of all model variables along the air between twoσ -surfaces

is the same as that one belonging to the corresponding σ~ -surfaces

• No intersection terms must be

considered

• But the sub grid transformation

terms have to be parametrized.
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The general boundary layer approximation GBA:

A substitute of the horizontal boundary layer approximation (HBA)
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The surface area function (SAF):
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horizontal scale

Roughness layer architecture:

• decomposition of the orography in spectral interval modes:
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The canopy architecture with spectral decomposition in orographic modes:

bare soil, short grass, ice

scree, crop, glacier

boulders, shrubs

 forest

Band pass filtered variance spectrum of the i-th mode

variance profile of the i-th mode

Variance profile of a    -spectrum

lowest full level

lowest half level

city

terrain modes

 blending height of the biggest
homogenous land use canopy
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Relations to available external parameters

• Define the horizontal surface area function ( ) 22 1: is+=iS  for a single mode i.

• Combination of the GBA-results with the logarithmic wind profile above a roughness layer leads to the
following relations between the blending height iσ , the roughness length iz0 , the

displacement height id 0  and the mean dynamic surface area index iS~ :
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Extension for the turbulence scheme in GBA:

• Substitution of the vertical turbulent fluxes in the shear terms of the 2-nd order equations by those

multiplied with the appropriate surface area function (effective vertical fluxes)

• Mellor/Yamada-Scheme with HBA replaced by the GBA, where the gravity vector assumed to be

normal to the mean orography.

Ø Same kind of flux gradient representation, but :

- coefficients in the linear equation for 
HS  and  

MS are modified

by the surface  area functions

- shear term in the TKE-equation contains the specific surface area

function for momentum expressing wake turbulence production

• The resistance law in the constant flux layer can also be generalised by the help of the surface
area functions



Conclusions:

•   As averaging and differentiation in space can not be commuted near the surface, additional
roughness layer terms arise and have to be considered in a shallow lowest model layer.

•   In the orographic approximation, model layers are not intersected by roughness elements.
Then roughness layer terms can be explained purely by coordinate transformation and have
the form of correlations between sub grid scale model layer slopes and the model variables.

•   In the general boundary layer approximation, roughness layer effects can be expressed by
consideration of simple surface area functions.

•   The subgrid scale orography can be decomposed in  spectral modes, each with an own
blending height and an own surface area index.

•   The surface area index and the blending height can be related to the roughness length and the
displacement height of the surface structure.

•   The second order turbulence closure can be generalised for the roughness layer.

•   First implementation, testing (and parameter tuning) will be done using the single column
framework.

poster



Thank you

for your

attention!!



LM User Seminar DWD 08.03.2004



LM User Seminar DWD 08.03.2004

The model equations:

♦ 5 prognostic variables:

=φ 3,2,1, =ivi Velocity components (momentum
concentration)

wq Mass fraction of the total water content

lθ liquid water potential temperature

♦ Prognostic budget equations:

( ) φφρφ QFt =⋅∇+∂ general budget

φφ ρφ jjj cvF −= j-component of the total flux density for the

property φ
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• with the non advective  molecular flux density components:
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• The transformation T from the σ -system into the   z -system with
respect to a scalar field  ς can be described by the following relation:

( ) ( )( ) ℜ∈→ℜ∈→ℜ∈ ςσ ςσ
z

yxzyxyx T
33 ,,,,,

• Derivatives in space transform as follows:
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The problem of the filtered horizontal gradients

• If roughness elements are intersecting a grid box, derivation in space and

averaging can not be commuted:

σσσ ςςς ′∂+∂=∂ jjj

consists of a tem due to the volume reduction
and a integral along the surfaces of
intersected bodies
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• The averaged derivative along a horizontal coordinate of the Cartesian

z -system:
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Former solutions in LM

• They all refer to coordinates following the mean orography.

No sub grid scale transformation correction needed

• The old scheme and even the operational configuration of the

new scheme do not contain any sub grid scale intersection

correction as well

No canopy term is included at all
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• The old scheme:

• The operational scheme:
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• The up to now incomplete extension version of the operational scheme contains
intersection terms at least in the momentum budget:
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A lowest model
layer

• The canopy is resolved
by model layers

• The intersection terms
have to be parameterized

• For each inner canopy
layer:
- external parameters
- a soil model
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The general boundary layer approximation GBA:

A substitute of the horizontal boundary layer approximation

• For any level 0>σ  there exists a strictly in  σ monotonic growing horizontal scale ( ) 0>σD , which

is the largest scale that has for any model variable ς  the following properties:

- For any smaller scale ( )σDx ≤  it is: 0=′∇
x

h
z

σ
ς

- For any larger scale ( )σDX ≥  it is : 0=∇ σς X

h .

• Is n
v  the velocity component normal to the idealised iso-surface ( )σS  given by 

( )σ
σ
Dzz = , it is:
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nn

D

n
vv ˆ0ˆ ∂== .

• It holds a flux gradient relation for all sub grid scale fluxes with respect to the scale   ( )σD .


