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model description

/ (General description)

e Dynamical core based on [Bonaventura, JCP. 2000]
e Implemented within Lokal Modell code structure

e Vertical geometrical (Z) coordinate

e Semi-implicit 2 time level discretization

e Semi-Lagrangian advection




model description

/  Discretization approach \

e Divergence computed by finite volume discretization

e 3-d solver for weakly nonlinear system Ax+ f(X) = b: fixed point iter-
ations with Conjugate Gradient as linear kernel

e Block tridiagonal preconditioning with linear operator of vertical dis-
cretization

e Coriolis term computed with operator-splitting approach

e Semi-Lagrangian advection with cut cell/RBF approach




model description

~

[Discretization approach: new feature§ \

Bug fixes = improvement in solver speed
Introduction of RBF interpolator for semi-Lagrangian advection
Full 3-dimensional semi-Lagrangian advection

Partial implementation of a domain decomposition preconditioner to
speedup solver in parallel runs




RBF interpolator

/ [Radial Basis Function interpolator] \

Joint work with Giorgio Rosatti (University of Trento).

RBF technique provides an interpolator which can smoothly and accu-
rately reconstruct a field (and optionally its derivatives) sampled on an
irregularly distributed set of points.

e The radial basis function used here is ¢(xX) = v/1+ (X/AX)2 where AX
IS a proper spatial scale

e The algorithm requires to solve a (n+ng) X (N+ Ny linear system
where nis the number of points used for interpolation and ny =0+4

e |tis straightforward to adjust the stencil used for interpolation to achieve
the desired accuracy

e The algorithm is computationally expensive but can be optimized at
\ the expense of more memory occupation /




model description-advection

/(Semi Lagrangian advection: computation of trajectorie?

e Trajectories are computed with Runge-Kutta substepping method

e Number of substeps depends on the local Courant number (com-
puted taking into account that cut cells are smaller)

e \elocity interpolation in trajectory substeps: bilinear within the do-
main, RBF (2x 2 x 2 stencil) close to the boundary

e Auxiliary velocity components, computed according to cut-cell free-
slip lower boundary condition, are added in RBF interpolation in order
to help keeping the trajectories within computational domain

N /




model description-advection

/ [Computational grid for advection: auxiliary pointsj \
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model description-advection

~

e Interpolation at trajectory departure point: bicubic away from the bound-
aries, RBF (4 x4 x4 stencil) close to the boundary

/ [Semi Lagrangian advection: interpolationj

e No lower boundary condition required with RBF interpolator

e |f the departure point falls slightly outside the computational domain,
the accuracy of the interpolation is not compromised

Results obtained applying RBF interpolator show a further improvement
In the representation of flow over orography. The results will be part of a
paper to appear in Journal of Computational Physics.

N /




2d results

/ [Zd flow over an obstacle: Gallus-Klemp test ca@e \

Ax=2000m
Az =150m
At =10s

H = 400m
a=10Km
U=10m/s
Hydrostatic
regime

\ Horizontal velocity perturbation, contour interval 0.5m/s /




2d results

/ [Zd flow over an obstacle: Gallus-Klemp test ca@e \
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\ Horizontal velocity perturbation, contour interval 0.5m/s /

10



2d results

/ [Zd flow over an obstacle: Gallus-Klemp test ca@e \

Ax =2000m
Az =150m
At =10s

H =400m
a=10Km
U=10m/s
Hydrostatic
regime

\ Vertical velocity, contour interval 0.0/m/s /
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2d results

/ [Zd flow over an obstacle: Gallus-Klemp test ca@e \

z (Km)
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Vertical velocity, contour interval 0.0/m/s /



2d results

/ [Zd flow over an obstacle: Gallus-Klemp test ca@e \

Ax=200m
Az =150m
At=5s

H =400m
a=1Km
U=10m/s
Non-hydro
regime
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Vertical velocity, contour interval 0.25m/s /
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conclusions

/ (Conclusiong \

Z coordinate+SI|+finite volume

e The efficiency of the solver does not depend on the orography steep-
ness

Z coordinate+SL advection+cut cell+RBF:

e The flow can be correctly represented regardless of the orography
steepness

e The trajectories are (almost 100%) guaranteed not to cross the do-
main boundaries - no need to take artificial measures

e Computationally expensive but applied only to a small subset of grid
cells

N /
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conclusions

~

(Future plans]

Implement into LM z-library

~

Partly done during the visit of H-W Bitzer in Bologna

Further test of SL advection in 3d, at CFL > 1 and with small cell
elements

Add treatment of vertical diffusion terms and interaction with physical
parameterisations

Optimize the code (e.g. simplify advection over the top of the orogra-
phy)

Improve parallelization for semi-Lagrangian advection (allowing high
Courant numbers without exchanging many boundary lines when un-
needed)

/
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conclusions
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~

(Future plans]

Further development and testing will be part of the “VHREM” 2 project,
currently under submission as a NESTP-Adventure EU project, if funded.

Involved partners: University of Leeds School of Environment, ARPA-
SIM Bologna, DWD, ETH Zirich Institute of Atmospheric sciences, Me-
teoSwiss, Politecnico di Milano MOX-dept. of Mathematics, WSL-SLF

Davos.

...more about this on Friday (L. Bonaventura)
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