

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICCARUS 2021 Pinboard

CALMO MAX Final results from the Mediterranean domain

Yoav Levi and Itsik Carmona

19/4/2021

outlet

- The Mediterranean domain
- Description of the 5 Meta Model tuning parameters
- Surface fields
- The 60 days in the Meta Model (MM)
- Temperature height correction
- COSI-ETS SCORE: The Rain' thresholds
- Results for the "whole" year (60 representative days in 2019)
- The results for the every season in 2019
- Summary and conclusions

The Mediterranean Domain (zoom)

Description of the 5 Meta Model tuning parameters

parameter	tkhmin	rlam	Tur_len	Rat_sea	C_soil
Optimal values	Minimal value of diffusion coefficient for heat	Scaling factor of the laminar boundary layer for heat .	Asymptotic maximal turbulent length scale [m]	Ratio of laminar scaling factor for heat over the sea	Surface area density of the (evaporative) soil surface
Default	*0.4	1	150*	10	1
range	*0.1-2	0.1-2	*100-1000	1-50	0-2.0

* Notice that the calculations step of the MM and the iteration step contain values of "tkhmin" and "Tur_Len" in Log scale. This issue will be discussed before the results chapter (slides).

Surface fields

- Period: 60 days between JAN 2019 to DEC 2019.
- In Israel we relied on 62 stations and in Greece on 22 stations.
- Daily maximum and minimum T2m for 22 stations in Greece and 26 stations in Israel.
- Daily maximum and minimum Tdew (at 2m) for 22 stations in Greece and 62 stations in Israel.
- We used the same precipitation stations as in the Tdry case (same stations).
- No Radiosonde observations.

The 60 days in the MM

1.1.1	. 1	1.												
20190119	20190212	20190312	20190405	20190420	20190523	20190610	20190710	20190804	20190824	20190920	20191017	20191109	20191201	20191224
20190114	20190207	20190302	20190327	20190417	20190513	20190605	20190705	20190722	20190817	20190914	20191007	20191103	20191124	20191213
20190109	20190205	20190222	20190316	20190414	20190507	20190601	20190617	20190718	20190816	20190912	20191002	20191030	20191115	20191210
20190102	20190123	20190214	20190314	20190411	20190504	20190527	20190614	20190716	20190815	20190901	20190923	20191024	20191112	20191203

COSI-ETS SCORE: Daily rain thresholds

 Equitable Threat Score (ETS) average with 5 thresholds : 0.1 [mm/day], 1 [mm/day], 3 [mm/day], 7.5 [mm/day] and 10 [mm/day], all the same weight. Results for the 60 representative days in 2019

COSI SCORE (Performance Score (PS))

For all 5 Surface fields

Daily Tdry max, Tdry minimum, Tdew max, Tdew min and Rain. (temperature at 2m)

Tkhmin Meta Model, Parabolic, An example of Surface Daily Tmin

Surface Daily Tmin on 24/8/2019 in GRID 8 (In Southern Israel, Sede-Boger 30.882°N,34.781°E)

Log Scale

logarithmic scale in the MM in

tkhmin parameter.

Non Log Scale

2

Daily Min Temperature [c] 81 61 02 17

Parameters in Log Scale

- "Tkhmin" and "Tur_Len" parameters were transferred to log Scale because the default was not close to the middle of the range between Maximum to minimum.
- In "Tkhmin" the values of minimum, default and maximum are 0.1, 0.4 & 2, respectively.
- In "Tur_Len" the values of minimum, default and maximum are 100, 150 & 1000, respectively.
- Hence, We dissuaded to calculate the meta model after doing transformation to log scale for the values of "Tkhmin" and "Tur_Len".
- In "Tkhmin" the new values of minimum, default and maximum in Log scale is: 2.890371757896165, 4.564348191467836 & 6.238324625039508, respectively.
- In "Tur_Len" the new values of minimum, default and maximum in Log scale is: -1.386294361119891, 1.446918982936325 & 4.280132326992542, respectively.
- Notice that now the default in Log scale is exactly in the middle between minimum to maximum for "Tkhmin" and "Tur_Len".
- The formula (equation) to transfer from normal space to log space (scale) is

equation a.) xlog=ln(a*(x-minimum)/(maximum-minimum)+b)

1.) where x is not in log scale and xlog is in log scale.

2.) maximum and minimum are the borders of the parameters and there values not in log scale (in normal (ordinary) scale).

3.) For "tur_len" a=72 , b=0.25 , minimum=100 & maximum= 1000

4.) For "Tkhmin" a=494 & b=18 , minimum=0.1 & maximum = 2

- If we substitute in the above formula (equation a.) x="tur_len default" or x=150 then the result (xlog) equal 1.4469 which is exactly in the middle between minimum to maximum in log scale.
- If we substitute in the above formula (equation a.) x="tkhmin default" or x=0.4 then the result (xlog) equal 4.5643 which is exactly in the middle between minimum to maximum in log scale.

Planes (COSI SCORE)

<u>COSI Performance Score (for 5 surface fields, actually all surface fields</u></u>

Iteration number 100: No convergence . (Psmax-Psmin)/Psmax>0.001

Iteration number 100: There is convergence in the parameters values although in Performance Score there is not

convergence.

COSI SCORE

tkhmin 1⁄ rlam tur_len $1000 \\ 800 \\ 600 \\ 400 \\ 200$ ea rat (c_soil

Optimal parameter values (iteration number 100) Performance Score is for ALL 5 surface fields.

For 60 representative days in 2019)

parameter	Tkhmin*	rlam	Tur_len*	Rat_sea	C_soil
Optimal values with height correction	1.3564	1.0489	524.66	5.2889	0.8252
Optimal values without height correction	1.3903	1.0737	568.35	4.7125	0.8408
Default	0.4	1	150	10	1
range	0.1-2	0.1-2	100-1000	1-50	0-2.0

* Please notice that the whole MM model stage (building the MM step) and the iterations step where used the values of "tkhmin" and "tur_len" in log scale. But eventually in the end the logarithmic values were transformed back to normal scale in order to see the optimal values in regular (relvent) scale.

The results for the 4 seasons in 2019

Optimal parameter values (iteration number 100)

Performance Score is for ALL 5 surface fields.

4 season 15 representative days for every season in 2019

parameter	tkhmin	rlam	Tur_len	Rat_sea	C_soil	
Optimal values for <mark>winter</mark> (DJF months, 15 days)	1.0551	1.1796	274.658	1.3873	0.7346	
Optimal values for spring (MAM months, 15 days)	1.8574	1.0677	688.76	5.3174	1.0004	
Optimal values for summer (JJA months, 15 days)	1.8626	0.9510	711.41	8.9973	0.9184	
Optimal values for autumn (SON months, 15 days)	0.8552	0.7681	508.81	10.7768	1.3921	
Optimal values for all 2019 (60 representative days)	1.3564	1.0489	524.66	5.2889	0.8252	
Default	1	1	500	10	1	
range	0.1-2	0.1-2	100-1000	1-50	0-2.0	

Summary and conclusions

- There are quite differences in the optimal values of the 5 parameters, among the 4 different seasons in 2019.
- Tkhmin is 1.36 for the 60 representative days of 2019.
- In winter Rat_sea has the lowest optimal value than the other 3 seasons (Rat_sea=1.39).
- In winter Tur_Len has the lowest optimal value than the other 3 seasons (Tur_Len=274.7).
- In winter Tkhmin has the value of 1.06.
- In spring and summer Tkhmin has higher value compare to winter and autumn (tkhmin=1.86 in summer and spring).
- In summer Tur_Len has the highest value among the 4 seasons (tur_len=711).
- Also, in **autumn** Tkhmin has the lowest value among the 4 seasons, its value in **autumn** is 0.86.

Thanks for your attention

