

TERRA and EXTPAR

Recent developments at DWD

J. Helmert, G. Zängl, E. Machulskaya, M. Pondkule, D. Reinert, G. Vogel, B. Ritter

Key task for parametrization

 Parametrization schemes express the effect of subgrid/subscale processes on resolved variables – solving the closure problem

TERRA – Water budget

....

TERRA – Energy budget

Recent improvements

 \succ

- > Bug fix for ISBA bare soil evaporation scheme in TERRA
- > Fix for evaporation limiter at wilting point in order to avoid oscillations
- Reduction of soil heat capacity in the presence of roots
- Fixes for numerical stability problems in TERRA: improved limitation of transfer coefficient, and limitation of qv_s to qsat(t_g)
- Fix for potential numerical instability in TERRA: reset snow temperature to soil top temperature at the time step when a grid point starts to become snow-covered
- Revision of snow cover fraction diagnosis for snow tiles
- > Minor modification of snow aging parameterization

Current developments

CSMO Deutscher Wetterdienst Wetter und Klima aus einer Hand

CONSORTIUM FOR SMALL SCALE MODELING

- Canopy scheme in TERRA
- Heat conductivity for dry soil
- Bare soil evaporation
- Plant interception
- Fix sub-surface runoff

Author

Michael Fiegle, Hainich, 2007

Thermal processes

$$\frac{\partial T_{so}}{\partial t} = \frac{1}{(\rho c)} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T_{so}}{\partial z} \right)$$

Evolution of the soil temperature

$$\left(\frac{\partial T_{so}}{\partial t}\right)_{k=1} = \frac{1}{\rho c \Delta z_1} \left[\lambda \frac{(T_{so})_{k=2} - (T_{so})_{k=1}}{z_{m,2} - z_{m,1}} + G_{sfc} \right]$$

Evolution of the soil temperature layer 1

$$G_{sfc} = c_p \hat{H}_{sfc}^3 + L(F_{q^v}^3)_{sfc} + Q_{rad,net} + G_P + G_{snow,melt}$$
 Surface forcing

Solar radiation Thermal radiation

By 4028mdk09 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

sible heat / Latent heat

Solar radiation . Thermal radiation

nsible heat Latent heat

By Richard Schröder (Own work) [OFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3-0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Canopy model

Canopy model

Canopy model

T _{atm} q _{atm}	Table I. Parame	ters associa	ated with land	d cover categ	ories used	in CLASS	
	Code ^a	$\bar{\alpha}_{c, VIS}$	$\bar{\alpha}_{c, NIR}$	^z o, max (m)	Λ_{max}	Λ_{min}	W _{c, max} (kg m ⁻²
T_{c} Evergreen need	leleaf tree 1	0.03	0.19	1.5	5.0	4 ·0	25.0
JOTC Evergreen broa	dleaf tree 2	0.03	0.23	3.5	10.0	10.0	50-0
Deciduous need	ileleaf tree 1	0.03	0.19	1.0	4.0	0.5	15-0
Deciduous broa	adleaf tree 2	0.05	0.29	2.0	6.0	0.5	20-0
Tropical broad	leaf tree 2	0.03	0.23	3.0	10-0	10.0	40.0
Drought decide	ious tree 2	0.05	0.29	0.8	4.0	4.0	15-0
Evergreen broa	dleaf shrub 2	0-04	0.28	0.15	4·0	4.0	8.0
Deciduous shru	ıb 2	0.05	0.29	0.15	4.0	0.2	8.0
Thorn shrub	2	0.06	0.35	0.15	3.0	3.0	8.0
Short grass and	i forbs 4	0.06	0.34	0.02	3.0	3.0	1.5
Long grass	4	0.05	0.31	0.08	4.0	4-0	3.0
<u>JOTS</u> Arable	3	0.06	0.34	0.08	4.0	0.0	2.0
Rice	3	0.06	0-36	0.08	6.5	0.0	2.0
Sugar	3	0.02	0-31	0.35	5.0	0.0	5.0
Maize	3	0.05	0.31	0.22	4.0	0.0	5.0
Cotton	3	0.07	0.43	0.10	5.0	0.0	2.0
Irrigated crop	3	0.06	0.36	0.08	4∙0	0.0	2.0
Urban	-	0.09	0.12	1.35			-
Tundra	4	0.02	0.29	0.01	1.5	1.5	0.2
Swamp	4	0.03	0.25	0.02	1.5	1.2	1.0
Bare soil		See	e text	0.0005		-	-
Glacier ice	-	See	text	0.002	-	—	-

7.29-21.87

.

.

 C_{veg} is the vegetative heat capacity $2.7 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

according to Verseghy et al., 1993

Canopy model - Radiation

Canopy model – turb. fluxes

Sensible Heat

$$H_{forc} = \rho c_p (T_{atm} - T_{forc}) \frac{1}{r_{ap} + r_a}$$

$$H_{fors} = \rho c_p (T_{atm} - T_{fors}) \frac{1}{r_{as} + r_{ac} + r_a}$$

Latent Heat

- Evapotranspiration at canopy level
- Using canopy temperature for potential evaporation
- Bare-soil evaporation at surface

Atmospheric resistances

r_a	r_{ac}	Braden, Harald, 1995: The model				
		AMBETI - A detailed description of a				
r_{ap}	r_{as}	soil-plant-atmosphere model				

Canopy model – turb. fluxes

Atmospheric resistances

$$r_{ac} = 0.98 \frac{1}{u_* \kappa} ln \frac{z_{atm} - d}{z_{forc} - d}$$

$$r_{ap} = 90 \sqrt{\frac{d_{leaf}}{u_{forc}}}$$

$$r_{as} = 307 \sqrt{\frac{d_{fors}}{u_{fors}}}$$

 $r_a = TURBTRAN$

Braden, Harald, 1995: The model AMBETI - A detailed description of a soil-plant-atmosphere model

Canopy model – Experiment

7.29-21.87

COSMO V5.03 test with Canopy scheme for 2015-08-29 00:00 vv=0-72

Canopy model – Experiment

Current restrictions:

- Canopy height $z_{forc} = gz_0$
- Fixed canopy heat capacity C_{forc} (needle leaf forest)
- Canopy temperature exists also on vegetation-free points
- Canopy temperature not yet used in transfer scheme

Sky view fraction for 2015-08-29 00:00

DWD 20150829 0000 12-12 h surface 0 CLCT %

mean: 44.24 std: 42.94 min: 0.00 max: 100.00

Total cloud coverage for 2015-08-29 12:00

緣

Comparison of canopy temperature and ground temperature (routi) for 2015-08-29 12:00

Comparison of canopy temperature and ground temperature (exp) for 2015-08-29 12:00

Comparison of canopy temperature and ground temperature (exp) for 2015-08-29 12:00

Validation: Forest site of the RAO

situated at the forest clearing about 500 m to the West of the tower.

Station pressure (26 m; Lambrecht RPT410V piezo-resistance)

 Air Temperature (2.55 m; Vaisala HMP-35D/45D capacitive) Dew point (2m derived) Relative humidity (2m; Vaisala HMP-35D/45D capacitive) Specific humidity (2m derived) O Wind speed NOT MEASURED Wind direction NOT MEASURED O U wind component NOT MEASURED O V wind component NOT MEASURED Precipitation (1 m; Ott Hydrometrie Pluvio weighing) O Snow depth NOT MEASURED

SURFACE METEOROLOGY AND RADIATION INSTRUMENTATION AND DESCRIPTION: Radiation measurements are performed above the canopy, sensors are mounted at the tower. The rain gauge for precipitation measurements is

- Incoming shortwave radiation (28.95 m; Kipp & Zonen CM24 thermopile)
- Outgoing shortwave radiation (28.95 m; Kipp & Zonen CM24 thermopile)
- Incoming longwave radiation (28.95 m; Eppley DDPIR thermopile)
- Outgoing longwave radiation (28.95 m; Eppley DDPIR thermopile)
- Net radiation (28.95 m; derived)
- Skin temperature (26.10 m; <u>Heitronics</u> KT 15.8D pyro-electric)
- Incoming Photosynthetically Active Radiation (PAR) NOT MEASURED
- Outgoing Photosynthetically Active Radiation (PAR) NOT MEASURED

TAI = 3.12SVF= 0.21

CONSORTIUM FOR SMALL SCALE MODELING

Wetter und Klima aus einer Hand

Photo: DWD-MOL2 (J.-P. Leps, 2003)

Validation: Forest site of the RAO

Validation: Forest site of the RAO

Desert site

Desert site

Desert site

豢

- First steps for implementation of a canopy scheme in COSMO
- Energy budget for canopy and vegetation floor
- Prognostic canopy temperature exists
- Atmospheric resistances parameterized
- First results as expected, but still some limitations
- \succ Next steps: connection with the transfer scheme, experiments with snow

- Implementation in the global NWP model ICON: Main focus on boreal forest areas in NH winter
- Application in the project "Data assimilation including" parameter estimation in the coupled land-atmosphere system" funded by Hans-Ertel-Zentrum für Wetterforschung
- Application in the power-grid safety project ORKA2

DWD 10101 0000 0-0 h surface 0 AHF Numeric

-135 90 -90 -45 Û 135 45 150.0 Anthropogenic heat flux 100.0 8 8 70.0 50.0 မ္မ 8 40.0 Impervious surface area 30.0 20.0 0 10.0 5.00 ë မ် 2.00 1.00 õ ģ 0.50 0.20 0.10 -135 -90 135 -45 0 45 90

0.03 std: 0.42 min: 0.00 max: 177.57 mean:

S06-079 H. Wouters et al.: Development Version (DV) release of TERRA_URB in COSMO(-CLM), overview and sensitivity to urban input parameters.

0.000

DWD 10101 0000 0-0 h surface 0 HSURF m GLOBE Orography

MPI Parallelization by M. Pondkule

- High-resolution ICON domains are demanding for computational time and memory usage
- EXTPAR still uses OpenMP: limited on one node
- MPI improves memory usage in large clusters
- MPI is now implemented
- First preleminary results are promising (high resolution fields, e.g. R2B14, scaling, comparability)
- Now integration into EXTPAR preV2.6

