

Status of the multi-layers snow model

Ekaterina Machulskaya

German Weather Service, Offenbach am Main, Germany

(ekaterina.machulskaya@dwd.de)

WG3b-Soilveg Meeting 10 March 2016

Differences between "single-layer" and "multi-layer" models

"Single layer"

"Multi-layer"

Implemented processes

- Heat conduction
- Melting when snow surface temperature > 0°C or when soil surface temperature > 0°C

- Heat conduction
- Liquid water transport
- Gravitational compaction + metamorphosis
- Solar radiation penetration

Numerical schemes

1 layer

- arbitrary number of layers
- heat conduction: implicit
- latent heat and solar radiation: source terms

Differences between "single-layer" and "multi-layer" models

W_SNOW, monthly mean of 10 days forecasts, January 2012

mean: 0.73 std: 73.51 min:-9238.50 max: 1693.50

Differences between "single-layer" and "multi-layer" models

T_G, monthly mean of 10 days forecasts, January 2012

mean: -0.12 std: 1.07 min: -10.24 max: 15.20

A Numerical Problem: Before

A Numerical Problem: Before

A Numerical Problem: After

A Numerical Problem: After

After

Evolution of the temperature profile in soil and snow (before)

Evolution of the temperature profile in soil and snow (after)

Time series of the incoming solar radiation

Evolution of the temperature profile in soil and snow (after)

Evolution of the temperature of the lowermost snow layer

Temperature profile in soil and snow

