WG3b activities at Roshydromet

Inna Rozinkina, Ekaterina Kazakova, Mikhail Chumakov, Michail Nikitin

Outlook

- Implementation of FLAKE parameterization into COSMO-Ru2: Summer and winter
- Aspects of description of snow effects:
- preprocessing (initialization of SWE)
- model (positive T2m over snow-covered surface)
-postprocessing (Fresh snow calculations)
- Proposal for new PT

1. Implementation of FLAKE in COSMO-Ru

Motivation

T2m forecasts for Kazan, Kuybyshev reservoir, winter 20122013

FLAKE parameterization was used in the COSMO-Ru7 (European part of Russia) in testing mode (Cold start from the 1 july 2013) and in COSMO-Ru2 (central Volga region) in operational mode with cold start the 15 Apr 2013 ..

New structure of COSMO-Ru preprocessing:
Initialisation of all lake data by cyclic mode on the base of 6 -h COSMORU forecasts (with included FLAKE).

Products from global modeling surface temperature T_S, ice height H_ICE, ice fraction A_ICE,
ice temperature T_ICE are replaced

FLAKE products mean water temperature, temperature of water mixed layer

During the tests for large possibility of atmospheric conditions of COSMO-Ru area some COSMO codes were adapted with feed- back from authors

Summer

More sensitive:

fields of air wetness of bottom levels

Td2m flake - Td2m ref 00.01.07.2013

Difference of Tg between Flake and reference experiments, from 00 UTC 2013.06.24, for 06 h.

GME data are much warmer than COSMO ruñwith Flake parametrization

Heat fluxes at the surface, reference experiment, 2014.01.25 from 00 UTC on 06 h

Sensible heat flux

Latent heat flux

Without flake parameterization high surface causes anomaly large heat fluxes. Warm surface of lakes heats atmosphere. 00 UTC on 06 h

Reference experiment

Flake experiment

High heat fluxes lead to the convection in the lower atmosphere. Fraction of low clouds is a good test field for the Flake parameterization.

2. Snow aspects

- preprocessing:

initialisation of SWE

- TERRA :
the parameterization addition for
simplified calocalations of T2m in snow conditions
- postprocessing:

Fresh snow depth
2.1. Snow water equivalent (SWE) initialization

Preparation of SWE fields: results for the current moment

- Part of snow season October, 12013 -March,1 2014) was studied for several stations situated at the European part of Russia
- Comparison between observational data of snow water equivalent (SWE) and results of SMFE (Snow Model Finite Element, Kazakova E., Chumakov M., Rozinkina I., COSMO Newsletter No.13, 2013) was done.
- Maps of SWE were produced with the use of interpolated model results and satellite data (4 km NOAA composite images).

The proposed algorithm for calculat snow values

- Snow column is represented as the set of some elementary layers, which are in mechanical and thermal interaction with each other. The number of finite elements depends on the height of the snow column. One layer has height equal to 1 cm

Number of layers depend from the accumulation, pressing and melting od snow
The density can be obtained as function of temrperature and weight of uppers layers + increasing in case of melting

$$
E=(0,0167 \rho-1,86) \cdot 10^{6},-3<T_{a}<-1 \quad E=(0,059 \rho-10,8) \cdot 10^{6},-13<T_{a}<-5
$$

- We suppose that finite elements of the snow column undergo only elastic deformation, so it can be written (example for $\mathrm{T}_{\mathrm{a}}>-5^{\circ} \mathrm{C}$):

$$
\rho=\frac{\left(\frac{m g}{10^{6}\left(1-\sigma_{02}\right)}+1,86\right)}{0,0167}, m=\left(\rho_{1}+\rho_{2}+\ldots\right) H, H=0,01 m \quad \frac{l_{n}}{l_{0}}=\left(1-\sigma_{02}\right)=1-0,002
$$

SWE(north, forest). 1 October 2013 - 1 March 2014

SWE(center, field). 1 October 2013 - 1 March 2014

SWE(south, field). 1 October 2013 - 1 March 2014

The SWE calculations, example for 5 March 2013

Operational COSMO-RU (ctrl)

Proposed technique

The SWE calculations, example © S for 5 March 2013

Exp/ctrl

Fields differs in 1,5-2,0 times

The biggest differences in SWE between Ctrl and Exp fields are observed for territory with maximum SWE and on lakes - in COSMO lakes are not covered with

T2m, ex-ctrl, 12h (left) and 24h(right) forecast, 00.05.03 2013

Changes in T2m are regulated by cloudiness and snow density.

Low cloudiness, 12h forecast, 5 March 2013

experiment-ctrl

The maximum differences in low cloudiness are observed on the boundary of the cloud in the place, where there are the greatest changes in SWE between ctrl and experiment

SWE, 12h forecast, 10 April 2013

Ctrl

Exp

T2m, exp-ctrl, 12h (left) and 24h(right) forecast, 10 April 2013

SWE field for winter period 2013-2014. 1 December 2013

SWE field for winter period 2013-2014. 31 December 2013

SWE field for winter period 2013-2014. 20 January 2014

SWE field for winter period 2013-2014. 28 February 2014

Future plans

- Implementation of SWE calculation into COSMO-Ru operational system in order to:
- make correction of initial fields of SWE and snow density (T2m improvement on snow boundary)
- Improve the T2m forecast skill
- provide COSMO- production for the hydrologic calculations

2.2. TERRA tuning for snow conditions

Motivation

- When snowfalls occur it's necessary for different services to have information about the amount of fallen snow. Such an information could be especially useful for transportation, public utilities and for planning evens such as Olympic Games.
- For the present moment operational system with fresh snow postprocessing didn't exist.

Algorithm of fresh snow depth calculation

Fresh snow depth calculation is based on the dependency on air temperature and precipitation sums. The basic equations are the following:

$$
\rho_{s, f}=67,92+51,25 e^{\frac{T_{a}}{2.59}}, T_{a} \leq 0^{0} C ; \rho_{s, f}=\min \left(200,119,2+20 T_{a}\right), T_{a}>0^{0} C
$$

$$
h_{s, f}=\frac{p_{s} \cdot \rho_{w}}{\rho_{s, f}}
$$

$\rho_{s, f}$ - fresh snow density (kg/m³), T_{a} - air temperature (${ }^{\circ} \mathrm{C}$), p_{s} - sum of precipitation (mm)
$\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ - density of water
In November 2013 the algorithm was implemented in FieldExtra (release 11.2.0) by Jean-Marie Bettems (for details see http://www.cosmo-model.org/ content/support/software/default.htm\#fieldextra)

Scheme of fresh snow postprocessing at Roshydromet

Fresh snow postprocessing is done for COSMO-Ru output with the resolution of $7,2.2$ and 1.1 km four times a day for each prognostic hour

Results of implemented technology

- During Sochi Olympic Games 7-21 February 2014 there were 2 events with snowfalls
- Comparison between different versions of COSMO-model ($7 \mathrm{~km}, 2.2 \mathrm{~km}$ and 1 km) was done

Snow depth measurements

- There are 4 automatic meteorological stations (AMS) situated in Roza Khutor Alpine resort, which send snow depth data regularly (each 10 minutes)
- Also there are 3 meteorological stations sending information about snow once a day

Case study 1: snowfall 17-19 February 2014

Hourly snow depth measurements on stations

Case study 1: snowfall 17-19 February 2014

- From the AMS data one can see, that during the maximum intensity of snowfall was 18 February. Snow increments on stations were about 25-30 cm.
- Meteorological stations also fixed snow growth, but not in details. On station Kordon Laura snow decreasing was connected with positive air temperatures and mixed precipitation in 17-19 February.

Snow depth, cm

February 2014	Aibga	Kordon Laura	Gornaya Karusel 1500 m
17	101	10	36
18	105	7	39
19	120	5	51

Map of fresh snow depth (cm). COSMO-Ru 2.2 36-hour forecast (left) and 42hour (right) from 00 UTC 17 February 2014

16:00 18FEB 2014 (MSK): Height of fresh snow for 6 h .

Forecast on 36 hours from 04h 17FEB 2014 (Msk) Postprocessing of COSMO-RU 2.2 km

22:00 18FEB 2014 (MSK): Height of fresh snow for 6 h .

Forecast on 42 hours from 04h 17FEB 2014 (Msk)
Postprocessing of COSMO-RU 2.2 km

Map of fresh snow depth (cm). COSMO-Ru 1.136 -hour forecast from 00 UTC 17 February 2014. Territory detalization

Forecast on 36 hours from 04h 17FEB 2014 (Msk)
Postprocessing of COSMO-RU 1.1 km

16:00 18FEB 2014 (MSK): Height of fresh snow for 6 h .

Forecast on 36 hours from 04h 17FEB 2014 (Msk) Postprocessing of COSMO-RU 1.1 km

Case study 1: snowfall 17-19 February 2014
 Fresh snow depth results (example for Roza Khutor 4)

- According to formula mentioned above, fresh snow depth strongly depends on precipitation sums and air temperature
- Maps of fresh snow are prepared under the model standard output
- For each station (meteograms) fresh snow depth is calculated according to output improvements done for altitude correction of T2m and some redistribution within model precipitation types (rain/snow, especially for temperatures close to zero)
- As we could research only some episodes of fallen snow, well-known statistical processing of results (MAE, RMSE...) couldn't be representative. So comparison was done for the accuracy of fresh snow and precipitation amount forecasts.

Some sections of meteogram (example for AMS Roza Khutor 4)

Case study 1: snowfall 17-19 February 2014
 Fresh snow depth results (example for Roza Khutor 4)

- Maximum intensity of snowfall was observed during February 18. The best precipitation sums (forecast till 48 hours) were predicted from start 18 UTC February 16,00 UTC February 17 and 06 UTC February 17 (error is up to 25%), so the most accurate fresh snow depth forecasts were done while using these forecasts (also with an error up to 25%, both for resolution 2.2 and 1 km). Further in time - the worse precipitation sums (and hence, fresh snow depth) forecasts. It's more significant for 1 km resolution COSMO version (errors could be up to 4 times for forecast with start 12 and 18 UTC February 18).

16 February 18 UTC	-11%
17 February 00 UTC	2%
17 February 06 UTC	23%
17 February 12 UTC	-49%
17 February 18 UTC	-41%
18 February 00 UTC	-54%
18 February 06 UTC	-98%
18 February 12 UTC	-54%
18 February 18 UTC	-174%

Errors in fresh snow depth forecasts (6-hour sums) based on COSMO-model 2.2 km (for 48 hours):

+ : overestimation
\square^{-}: underestimation

Hourly fresh snow depth (cm). Different colours - COSMO-Ru 2.2 different forecasts (42-hour duration)

Obs - observations
Numbers - date and hour of forecast start

Hourly fresh snow depth (cm). Different colours - COSMO-Ru 2.2 different forecasts (42-hour duration)

Obs - observations
Numbers - date and hour of forecast start

Case study 1: snowfall 17-19 February 2014

12-hour precipitation sums at meteorological stations and COSMO-Ru 2.2

The most accurate forecasts

Often the COSMO-model overestimate precipitation sums

Case study 1: snowfall 17-19 February 2014
 Fresh snow depth results (example for Roza Khutor 4)

- The studied region is the complex mountain region. Recommendations can't be exact because of process difficulty and the variety of different estimations. Besides, only some cases were studied - that's not enough for making generalization.
- When working with amount of fresh snow for the whole integration period (42-48 hours), one can see that intensity of precipitation is well observed: the earlier start of forecast calculation - the better. Peaks are also reproduced not badly.
- Forecast calculated at later start hours produce less amount of fresh snow and short precipitation period (on station snow is still observed).
- If we compare the common intervals for different fresh snow forecasts (6-hour sums) COSMO-Ru 2.2 km , we'll get:

obs	1618	1700	1706	1712	1718
20	18	25,6	31	18,2	18,6

obs	1800	1806	1812
16,6	11,8	10	13,8

The whole results are ambiguous. Yet the fact of precipitation occasion is reproduced by the COSMO-model in mountain region

Fresh snow depth forecasts could also be available on the site www.snow-forecast.com

Snowfall for 6 hrs ending Tuesday 18 Feb at 10 pm MSK

FREEZING LEVEL CONTOURED (RED) IN METRES Tuesday 18 Feb at 10 pm

FREEZING LEVEL CONTOURED (RED) IN METRES Wednesday 19 Feb at 4 am

Maps are generated only for four main hours: 00, 06, 12, 18 UTC (COSMORu - for each prognostic hour from 6 hours during 00, 06, 12 and 18 UTC calculations of versions 7, 2.2 and 1.1 km)

Forecast for Roza Khutor Alpine resort (1448 m) from www.snow-forecast.com

Summary				lig				$\begin{aligned} & \text { some } \\ & \text { cloud } \end{aligned}$	clear			clo							light
Snowcm		-	1	1	4	7	-	-	-	-	-	-	-	-	-	-	-	-	-
Rain mm		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
Max ${ }^{\circ} \mathrm{C}$		1	1	2	1	0	0	0	0	3	5	5	6	7	7	6	6	6	5
Min ${ }^{\circ} \mathrm{C}$	0	1	0	2	0	-1		-1	-1	0	3	5	5	6	6	6	5	5	4
$\begin{aligned} & \text { WChill } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	-4	-2	-4	-3	-5	-5		-1	-5	-4	-1	1	2	3	3	3	3	4	2

Amount of fresh snow (cm) during 18 February 2014

obs	1618	1700	1706	1712	1718	1800
28,2	30	30	39,5	22,1	25,4	21,3

COSMO-Ru 2.2 forecasts with start 18 UTC 16 February and 00 UTC 18 February doesn't include one 6-hour interval

Information for 4 mountain stations in Sochi region is available (output COSMO-Ru 2.2 km - 53 stations, $1.1 \mathrm{~km}-24$ stations).

- If we compare results for February 18 between COSMO-Ru 2.2 and COSMO-Ru 1.1 forecasts, then numbers will be close

Amount of fresh snow (cm) during 18 February 2014

obs	1618	1700	1706	1712	1718	1800
28,2	30	30	39,5	22,1	25,4	21,3

COSMO-Ru 2.2 forecasts with start 18 UTC February 16 and 00 UTC February 18 doesn't include one 6hour interval

COSMO-Ru 1.1 forecasts with start 00 UTC February 17 and 00 UTC
February 18 doesn't include one 6hour interval

Case study 2: snowfall 21 February 2014

Hourly snow depth measurements on stations

Roza Khutor 2 (2137 m)

Roza Khutor 8 (1740 m)

Case study 2: snowfall 21 February 2014

- This snowfall was not so intensive than the previous one and lasted for several hours during February 21 2014, in the first half of the day.
- Meteorological stations also fixed snow growth, but not in details. On station Kordon Laura snow cover melted 21 February.

Snow depth, cm

February 2014	Aibga	Kordon Laura	Gornaya Karusel 1500 m
21	119	-	65
22	124	-	68

Case study 2: snowfall 21 February 2014

- On station Roza Khutor 4 there were 2 peaks of falling snow. The first peak was reproduced only by forecast started at 12 UTC February 19 by COSMORu 2.2 km.

First peak, fresh snow depth (cm), 6-hour sums

obs	1906	1912	1918	2000
5,0	0,0	3,1	0,0	0,0

Second peak, fresh snow depth (cm), 6-hour sums

First peak, fresh snow depth (cm), 6-hour sums

obs	1912	1918	2000	2006	2012	2018	2100	2106
5,0	0,0	2,2	0,0	0,0	0,0	0,7	0,0	0,0

COSMO-Ru 1.1 km
Second peak, fresh snow depth (cm), 6-hour sums

obs	2000	2006	2012	2018	2100	2106
2,6	2,1	0,0	0,0	1,2	0,0	0,0

Forecasts for some dates didn't produce any precipitation

Case study 2: snowfall 21 February 2014

Gornaya Karusel

COSMO-Ru 2.2 (up) and 1.1 (bottom) forecast, start 19 February 18 UTC

Observation: 3 cm change from 21 to 22 February

Summary some some rain light snow snow

Snow cm -	-	-	2	-	-	
Rain mm -	-	1	-	-	-	
Max $^{\circ} \mathbf{C} 5$	5	3	1	2	2	
Min $^{\circ} \mathbf{C}$	3	3	2	1	1	1
WChill ${ }^{\circ} \mathbf{C}$	-2	-3	-4	-2	0	
Freezing level (m) 2200	2350	2150	1750	1900	1800	

Forecast for Roza Khutor Alpine resort (1448 m) from www.snow-forecast.com

	Thursday 20			Friday	y 21		Saturday 22			Sunday 23			Monday 24			Tuesday 25		
	AM	PM	night		PM	night	AM	PM	night									
$\begin{gathered} \text { Wind } \\ (\mathrm{km} / \mathrm{h}) \end{gathered}$	20	(20)	20															
Summary	some clouds	some clouds	rain shwrs	light snow	rain shwrs	nnow	clouds	some clouds	some clouds	some cloud	some clouds	some clouds	some clouds	clear	some clouds	some clouds	clear	clear
Snowem		-	-	2	-		-	-	-	-	-	-	-	-	-	-	-	-
Rain mm		-	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
Max ${ }^{\circ} \mathrm{C}$	6	6	4	2	3	2	4	5	5	6	6	6	7	7	7	8	8	8
Min ${ }^{\circ} \mathrm{C}$	4	4	3	1	2	2	3	4	5	5	5	5	6	6	7	7	7	7
$\begin{aligned} & \text { WChill } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	0	0	-1	-4	0	2	3	4	4	4	4	3	5	5	6	6	7	7
Freering level (m)	2200	2350	2150	1750	1900	1800	2150	2400	2350	2300	2350	2350	2350	2450	2500	2500	2550	2550

Again, underestimation of fresh snow depth in comparison with observations ($7,6 \mathrm{~cm}$). As well as according to COSMO-model forecasts for February 21.

Case study 3: snowfall 26-28 February 2014

Hourly fresh snow depth (cm). Different colours - COSMO-Ru 2.2 different forecasts (42-hour duration)

Hour resolution is too sharp, so maximum value can be smudged between nearest hours

Case study 3: snowfall 26-28 February 2014

Roza Khutor 4 (AMS)

Fresh snow depth (cm), 6-hour sums: observations and COSMO-Ru 2.2 forecasts

February	obs	2512	2518	2600	2606	2612	2618	2700	2706	2712	2718
26	11,8	8,0	10,6	6,5	10,3						
27	13,2	2,7	5,8	6,5	10,9	8,7	12,7	9,8	9,4		
28	19,5							0,1	4,7	5,3	5,0

underestimation

Freezing $\begin{array}{lllllll}1150 & 1300 & 1100 & 1400 & 1850 & 2000\end{array}$ level (m) 11001300

Available forecasts at February 26, 27 and 28 on www.snow-forecast.com

Case study 3: snowfall 26-28 February 2014 Aibga and Gornaya Karusel
COSMO-Ru 2.2 forecast, start 26 February 18 UTC

Observation: 6 cm change from 27 to 28 February

Observation: 4 cm change from 27 to 28 February

	Thursday 27			Friday 28		
	AM	PM	night	AM	PM	night

Freezing
level (m)

Series of COSMO-Ru fresh snow depth postprocessing system $7 \mathrm{~km} \rightarrow 2.2 \mathrm{~km} \rightarrow 1.1 \mathrm{~km}$

Roza Khutor 4 (AMS)

COSMO-Ru 2.2 km, start 00 UTC March 5

COSMO-Ru 1.1 km, start 00 UTC March 5

During March 5 fresh snow depth was $10,8 \mathrm{~cm}$, precipitation was mostly in the first part of the day

Aibga
COSMO-Ru 2.2 km, start 00 UTC March 5

COSMO-Ru 1.1 km, start 00 UTC March 5

Obs: snow depth increase on 2 cm (but: precipitation at positive temperature). 3 UTC March 5 12-hour precipitation 4 mm

Differences are connected with type of precipitation and its amount

Experiment - COSMO-Ru 7 forecast. T2m. 5 April 2012. Start - 00 UTC

Experiment - COSMO-Ru 7 forecast. T2m. 5 April 2012. Start - 00 UTC

COSMO-Ru 2.2 forecast, start 10 February 201400 UTC

Experiment - COSMO-Ru 2 forecast. T2m. 10 February 2014. Start - 00 UTC

Conclusions

- Fresh snow depth postprocessing was implemented in the operational system of COSMO-Ru forecast preparation and visualization with different resolutions (7, 2.2 and 1.1 km).
- Preliminary results were studied. It was shown that COSMO-Ru fresh snow depth forecasts could be used by different services.
- As there were only some case studies, it's hard to say which forecast is better (with start at 00 or 06 or 12 or 18 and with resolution 2.2 km or 1.1 km).

Goal - to couple and test the technology of initialisation of SWE based the standard measurements of the WMO network

Development and implementation of technique of SWE initialization: 0.6 FTE, S 2014-M 2015

SONDJF (02 FTE) - Analisys of results for 2013-2014 winter and tuning for 1-d Snow model
MAMJJA (02 FTE) - coupling with COSMO technologies and analysis for large terrains and phases of snow periods for different climate zones SON (02 FTE) - Finalize of preparing of new software with description codes

Thank you for your attention!

