U N I K A S S E L V E R S I T A T

Current status of *PT VAINT*

Evgenii Churiulin, Merja Tölle, Vladimir Kopeykin, Markus Übel, Juergen Helmert and Jean-Marie Bettems

Why is VAINT important?

Why the

- Seasonal phenological cycle of summer crops
 - Biogeophysical processes

• Energy and water cycle

Seasonal phenology

Winter

temperatures

• Seasonal cycle of the albedo and water availability

• Increase in frequency

Extreme events

• Increase in the need for modeling

Relevance

COSMO model:

- ➤ uses simplified phenology scheme
- \succ is not capable of modelling complex processes
- ➤ contains the phenology cycle based on a 6-year climatology
- Follows the same sinusoidal fitted curve between its max and min value each year
- \succ neglects any influence or feedback on the environmental conditions;

PT VAINT

SubTask1: Implementation of new photosynthesis/phenology scheme:

- *a)* The canopy photosynthesis and stomatal regulation module (done);
- *b*) The carbon allocation and plant growth module (in progress);
- c) The heterotrophic respiration and litter/soil carbon module (in progress);

SubTask2: Validation of new photosynthesis/phenology scheme:

- *a*) Run cosmo_v5.0_clm16 (without changes) and cosmo_v5.0_clm16 (with updates) (in progress);
- b) Run cosmo_v5.0.8 (without changes) (in progress);
- c) Run cosmo-ccl and cosmo with SubTask1 (b and c) (not started)

SubTask3: Validation of implementation (in progress)

SubTask4: Documentation (in progress)

a) The block schemes for source files (src_terra_multlay and scr_radiation) (done); <u>https://github.com/users/merajtoelle/projects/1#column-12685832</u>

b) The first version of documentation with new updates (done); <u>https://github.com/users/merajtoelle/projects/1#column-12685824</u>

Differences in approach

TERRA ML

VS

TERRA_ML (updated)

Stomatal conductance:

BATS-based

Environmental Controls Of Stomatal Conductance For Jack Pine

10 15 20 25 30 35

Temperature (°C)

"2-leaf" canopy with diffuse/direct light

Ball-Berry approach coupling with photosynthesis

Figure: Sellers et. al, 1997

Figure: Bonan, 2002

Differences in approach

TERRA_ML

VS

TERRA_ML (updated)

Stomatal behavior represented based on empirical **Jarvis approach** (Jarvis et. al., 1976)

$$\boldsymbol{g_{st}^{can}} = \frac{1}{r_{max}} + \left(\frac{1}{r_{min}} - \frac{1}{r_{max}}\right) [F_{rad}F_{wat}F_{tem}F_{hum}]$$

Where: F_{rad} – the influence on the stomatal resistance of radiation

- F_{wat} soil water content
- F_{tem} ambient temperature
- F_{hum} ambient specific humidity
- r_{max} maximal stomatal resistance
- r_{min} minimal stomatal resistance

Stomatal conductance explicitly related to photosynthetic assimilation model using **Ball-Berry approach** (Collatz et. al., 1991)

$$g_{st}^{can} = g_{st}^{sun} L^{sun} + g_{st}^{sha} L^{sha}$$
$$g_{st}^{sun} = \frac{1}{r_s^{sun}} = m \frac{A^{sun} e_s}{c_s e_i} P_{atm} + b$$
$$g_{st}^{sha} = \frac{1}{r_s^{sha}} = m \frac{A^{sha} e_s}{c_s e_i} P_{atm} + b$$

Where: r_s^{sun} and r_s^{sha} – stomatal resistance for *sun* and *sha* leaves

 g_{st}^{sun} and g_{st}^{sha} – stomatal conductance for *sun* and *sha* leaves

- e_s the vapor pressure at the leaf surface
- *e_i* the saturation vapor pressure inside the leaf at the skin temperature
- c_s the CO₂ partial pressure at the leaf surface

A – the leaf photosynthesis b - is the minimum stomatal conductance; m - parameter;

Photosynthesis:

C3 plants based on Farquhar model (1980)

C4 plants based on Collatz model (1992)

$$\mathbf{w}_{c} = \begin{cases} \frac{V_{cmax} (c_{i} - \Gamma_{*})}{c_{i} + K_{c} (1 + \frac{O_{i}}{K_{0}})}, \text{ for } C_{3} \text{ plants} \\ V_{cmax} \text{ , for } C_{4} \text{ plants} \end{cases}, \mathbf{w}_{j} = \begin{cases} \frac{(c_{i} - \Gamma_{*}) 4.6 \alpha \phi}{c_{i} + 2 \Gamma_{*}}, \text{ for } C_{3} \text{ plants} \\ 4.6 \alpha \phi \text{ , for } C_{4} \text{ plants} \end{cases}, \mathbf{w}_{e} = \begin{cases} 0.5 V_{cmax}, \text{ for } C_{3} \text{ plants} \\ 4000 V_{cmax} \frac{c_{i}}{P_{atm}}, \text{ for } C_{4} \text{ plants} \end{cases}$$

Where: w_c, w_j, w_e — the limited rates of carboxylatio, the light and carboxylase

 V_{cmax} – the maximum rate of carboxylation

$$K_c$$
; K_o — the Michaelis–Menten constants for CO₂ and O₂

- $\boldsymbol{\Gamma}_*$ the CO₂ compensation point
- c_i the internal leaf CO₂ partial pressure
- O_i the O₂ partial pressure
- α the quantum efficiency coefficient
- ϕ the absorbed photosynthetically active radiation

A, A_{sun} , A_{sha} – the leaf photosynthesis; for sunlit and for shaded leaves

 $A^{sun \ or \ sha} = min(w_c, w_j, w_e)$

 $\mathbf{A} = A^{sun}L^{sun} + A^{sha}L^{sha}$

The maximum rate of carboxylation :

$$V_{cmax} = V_{cmax25} (2.4)^{\frac{T_v - 25}{10}} f(T_v) f(DYL) f(N) f(F_{wat})$$

Where: V_{cmax25} – the maximum rate of carboxylation at 25°C

- T_v leaf temperature or skin temperature
- $f(T_v)$ function of thermal breakdown of metabolic processes
- f(N) function of nitrogen limitations
- f(DYL) function of daylength
- $f(F_{wat})$ function of soil water content

 $V_{cmax25} = N_a F_{LNR} F_{NR} \alpha_{25}$

Where: N_a – the area-based leaf nitrogen concentration

- F_{LNR} the fraction of leaf nitrogen in Rubisco
- F_{NR} the mass ratio of total Rubisco molecular mass to nitrogen in Rubisco
- α_{25} the specific activity of Rubisco

Figure: Crous et. al, 2013

Implemented in COSMO_v5.0_clm16

The area-based leaf nitrogen concentration:

 $N_a = \frac{1}{CN_L SLA}$

Specific leaf area indices for sunlit (SLA^{sun}) and shaded (SLA^{sha}) leaves:

$$SLA^{sun} = \frac{\int_0^L SLA(x)e^{-Kx} dx}{L^{sun}} = \frac{-(cSLA_mKL + cSLA_m + cSLA_oK - SLA_m - SLA_oK)}{K^2L^{sun}}$$

$$SLA^{sha} = \frac{\int_{0}^{L} SLA(x)[1 - e^{-K_{x}}]dx}{L^{sha}} = \frac{L(SLA_{o} + \frac{SLA_{m}L}{2}) - SLA^{sun}L^{sun}}{L^{sha}}$$

- Where: CN_L the leaf carbon-to-nitrogen ratio
 - **SLA** the specific leaf area indices
 - *L* and *S* the leaf and stem area indices
- SLA_m and SLA_o the linear slope coefficient and the value for SLA at the top of the canopy

Implemented in COSMO_v5.0_clm16

The new algorithm for "2-leaf" canopy (sunlit and shaded leaves)

Sunlit (f_{sun}) and shaded (f_{sha}) fraction of canopy:

 $f_{sun} = 1 - \frac{e^{-KL}}{KL} \qquad \qquad f_{sha} = 1 - f_{sun}$

Sunlit (L^{sun}) and shaded (L^{sha}) leaf area indices:

$$L^{sun} = f_{sun}L \qquad \qquad L^{sha} = f_{sha}L$$

The light extinction coefficient:

$$K = \frac{G(\mu)}{\mu}$$

Figure: Luo et. al, 2018

- Where: e^{-KL} the fractional area of sun flecks on a horizontal plane below the leaf area index *L*;
 - K the light extinction coefficient;
 - $G(\mu)$ the relative projected area of leaf and stem elements in the direction $cos^{-1}\mu$;
 - μ the cosine of the zenith angle of the incident beam;

Implemented in COSMO_v5.0_clm16

The new algorithm for "2-leaf" canopy (sunlit and shaded leaves)

Sunlit (ϕ^{sun}) and shaded (ϕ^{sha}) absorbed photosynthetically active radiation (PAR):

$$\phi^{sun} = \frac{\left(\phi_{dir}^{\mu} + \phi_{dif}^{\mu} f_{sun} + \phi_{dif} f_{sun}\right) \left(\frac{L}{L+S}\right)}{L^{sun}}$$

$$\phi^{sha} = \frac{\left(\phi_{dif}^{\mu} f_{sha} + \phi_{dif} f_{sha}\right) \left(\frac{L}{L+S}\right)}{L^{sha}}$$

Where:

 ϕ^{μ}_{dir} – the portion of the incoming visible waveband direct beam radiation

- ϕ^{μ}_{dif} the absorbed visible waveband direct beam radiation;
- ϕ_{dif} is the incoming visible waveband diffuse radiation;

Figure: Cabello et. al, 2011

Research territory

Stations: Rollesbroich Linden Lindenberg *Period:* 01.01.1999 – 31.12.2015 Data for verification: GLEAM FLUXNET EURONET EOBS **HYRAS**

Air temperature in 2m - T_2M

Station: Rollesbroich Parameter: T2m Period: 03.2012 to 10.2012

Soil temperature in 2m - TS

Station: Rollesbroich Parameter: TS Period: 03.2012 to 10.2012

Relative_humidity in 2m - RELHUM_2M

Station: Rollesbroich Time step: 2012-03-01 to 2012-10-01

Station: Rollesbroich Parameter: RELHUM Period: 03.2012 to 10.2012

Average latent heat flux (surface) - ALHFL_S

Station: Rollesbroich Time step: 2013-03-01 to 2013-10-01

Station: Rollesbroich Parameter: ALHFL_S Period: 03.2013 to 10.2013

Mode1: <u>Daily</u> Mode2: <u>Monthly</u>

Station: Rollesbroich Parameter: ALHFL_BS Period: 03.2012 to 10.2012

Specific_humidity in 2m - QV_2M

Station: Rollesbroich Parameter: QV_2M Period: 03.2012 to 10.2012

Surface_specific_humidity - QV_S

Station: Rollesbroich Parameter: QV_S Period: 03.2012 to 10.2012

Stomata resistance - RSTOM

Station: Rollesbroich Time step: 2000-03-01 to 2000-10-01

Station: Rollesbroich Parameter: RSTOM Period: 03.2012 to 10.2012

- 1) Continue work on VAINT PT;
- 2) Validation of new photosynthesis algorithm;
- 3) Implementation new modules for carbon allocation, plant growth, heterotrophic respiration and litter/soil;
- 4) Validation of new modules;
- 5) Update documentation + articles;

DWD

U N I K A S S E L V E R S I T 'A' T

Our contacts:

GitHub page: https://github.com/users/merajtoelle/projects/1

Address: Universität Kassel - CESR

Wilhelmshöher Allee 47, 34117 Kassel

Email: evgenychur@uni-kassel.de

Special acknowledgements to Marina Shatunova

Discussion questions:

Do you need the new parameters for the COSMO community?

- * *sfldir_par* direct component of photosynthetic active radiation flux at the ground;
- * *sfldifd_par* diffuse downward component of photosynthetic active radiation flux at the ground;
- * *sfldifu_par* diffuse upward component of photosynthetic active radiation flux at the ground;
- * *cos_zen_ang* cosine of solar zenith angle;
- * *ztraleav* transpiration rate of dry leaves;
- * *ztrang* transpiration contribution by the different layers;
- * *ztrangs* total transpiration ;
- * *zverbo* total evapotranspiration;

Accumulated values:

*asfldir_par; *asfldifd_par; *asfldifu_par; *aztraleav; *aztrang; *aztrangs; *azverbo;

Discussion questions:

Why the *EVATRA_SUM* and *TRA* in src_setup_wartab are incorrect?

Can be that in COSMO we are using (soil water content function), but in CLM (soil water potential)?

Do you have in COSMO (TERRA-ML) a tuning parameters which are related to stomatal regulation, latent heat?

Date: 12.04.1999

Date: 12.05.1999

Date: 12.06.1999

Station: Rollesbroich Parameter: ALHFL S

NIKASSEL

R S I

Т 'А' Т

Period: 04.1999 to 05.1999

Period: 07.1999 to 08.1999

Period: 05.1999 to 06.1999

Station: Rollesbroich Parameter: ALHFL S

Period: 08.1999 to 09.1999

Preparatory work with COSMO_v5.0_clm16

Have been added changes in next src_files:

data_fields src_allocation src_setup_vartad

near_surface

io_metadata

src_gridpoints

organize_data

data_constance

The **15 new global data parameters** have been added: **7 for src_radiation** and **8 for srs_soil_multlay**

The 7 accumulation parameters have been added: 3 for src_radiation and 4 for src_soil_multlay

The additional option for CASE(111) has been added

The 3 additional parameters have been added

The 3 additional parameters have been added

The 5 additional constant values have been added

Have been added changes in next src_files:

src_radiation The 4 additional parameters:

- *sfldir_par* direct component of photosynthetic active radiation flux at the ground;
- *sfldifd_par* diffuse downward component of photosynthetic active radiation flux at the ground;
- *sfldifu_par* diffuse upward component of photosynthetic active radiation flux at the ground; *cos_zen_ang* cosine of solar zenith angle;

src_soil_multlayThe 4 local parameters have been changed on 4 global parameters and2 outside modules have been implemented: src_phenology and data_phenology

- *ztraleav* transpiration rate of dry leaves;
- *ztrang* transpiration contribution by the different layers;
- *ztrangs* total transpiration ;
- *zverbo* total evapotranspiration;

Have been implemented in COSMO_CLM:

data phenology The module contains:

new constant values for C3 and C4 PFTs

new parameters for canopy photosynthesis

new parameters for stomatal conductance

src_phenology The module contains 4 new subroutine:

get_stomatal_grid - create a grid with PFT values instead of Land Use Class
get_sun_data - calculate of daylength and solar declination angel
get_stomatal_data - calculate of 2-leaf canopy parameters with diffuse/direct light
stomata - calculate stomatal regulation and photosynthesis parameters

CESR_projectThe separate project which are applying for **PT VAINT** statistical analysis and data
visualization;

Possible reasons:

Not parameterized parameters:

leafc: 30 [kgC/m2] forc_hgt_u: 30 [m]

Not balance in experiment runs:

Calculated experiment only for 2012 and 2013 years

New stomatal regulation algorithm:

Need different tuning parameters

Errors in new algorithms:

Errors in dimensions;

Errors in adaptation COSMO data to CLM data;

Errors in PFT grid

Differences between the models:

	TERRA-ML	Veg3D	JS-BACH	LPJmL	CARAIB	CLM v3.5
Vegetation layer	NO / Vegetation parameters	YES / Big leaf concept	YES / Big leaf concept	YES / Big leaf concept	YES / Big leaf concept (shaded and sunlit leaves)	YES / Big leaf concept (shaded and sunlit leaves)
Turbulent fluxes	Surface temperature	Vegetation temperature	Vegetation temperature	Vegetation temperature	Vegetation temperature	Vegetation temperature
Vegetation parameters	Weighted average	Dominant	Tile approach	Tile approach	Tile approach	Tile approach
Radiation	Albedo constant	Albedo depends on vegetation	Albedo depends on vegetation	Albedo depends on vegetation	Albedo depends on vegetation	Albedo depends on vegetation
PFT	NO		YES	YES	YES	YES
Documentation	YES		YES	YES / NO	YES / NO	YES
Programming language	Fortran 90		C++		Fortran 77	Fortran 90

Our decision:

We have been applying a Community Land Model (CLM 3.5 – 4.0) as the main example for the new

implementations in TERRA-ML