UNIKASSEL
JUSTUS-LIEBIG-

Vegetation Atmosphere INTeractions (VAINT)

Evgenii Churiulin ${ }^{1}$, Merja Tölle ${ }^{1}$, Juergen Helmert ${ }^{2}$ and Jean-Marie Bettems ${ }^{3}$
${ }^{1}$ - Center for Environmental Systems Research, Kassel, Germany
2 - Deutscher Wetterdienst, Offenbach am Main, Germany
${ }^{3}$ - MeteoSwiss, Zurich, Switzerland

Motivation

Changes in the seasonal phenological cycle due to winter of

1) summer crops affect the local climate by changes in the biogeophysical processes;

Seasonal phenology of vegetation impacts on the energy and
2) water cycle, and can amplify extreme events by changes of the seasonal cycle of the albedo and water availability;

The frequency of extreme events increases and will increase in
3)
the near future. Hence, the need for modelling phenology will also increase;

Motivation

Forecasting the phenological cycle of vegetation provides
4) valuable information to assist with turbulent flux estimations relevant for boundary layer processes;

Knowing the evolution and magnitude of the seasonal LAI and
5) the plant coverage allows for a more realistic estimation of the surface albedo;

The need to improve

Example of annual cycle of leaf area index for grass in the COSMO model

Jan-Peter Schulz et.al., 2015

UNIKASSEL

The need to improve

Example of annual cycle of leaf area index for grass in the COSMO model

Jan-Peter Schulz et.al., 2015

——— Measurement
LAI current parameterization
LAI adopted from Polcher (1994)
LAl adopted from Knorr et al. (2010)

Relevance

COSMO model use simplified phenology scheme, which are in

1) general not capable to model the complex processes of the growing season in spring, the evolution of LAI, plant coverage and the senescence in autumn;

COSMO model contains the phenology cycle is based on a 6-
2) year climatology. Cycle follows the same sinusoidal fitted curve between its max and min value each year while neglecting any influence, feedback on the environmental conditions;

Evolution of land surface modelling

$1^{\text {st }}$ generation LSM:
$2^{\text {nd }}$ generation LSM:
$3^{\text {rd }}$ generation LSM: "bucket model" \star "Big-leaf" approach \star Photosynthesis
conductance

No explicit treatment of vegetation
(biogeography)
Carbon cycle

Vegetation dynamics

1970

Bucket model:
Manabe, 1969

1980

BATS:
Dickinson, 1984 SIB:
Sellers et al., 1986 TERRA-ML

SiB2:
Sellers et. al, 1992
LSM:
Bonan, 1995
Seller et. al. (1997) classification

Evolution of land surface modelling Vertical discretization

no canopy layer "Big-leaf approach" "2-leaf" approach
"bucket hydrology"
2-layer hydrology
Multi-layer hydrology

Multi-layer canopy

Bucket model:
Manabe, 1969

BATS:
Dickinson, 1984
SIB:
Sellers et al., 1986

CLM3:
Oleson et al, 1984

Edouard Davin, 2013 - Introduction to the CLM COSMO General Meeting, 2-7 September 2020

CLM 4.5:
Oleson et al, 2013 ORCHIDEE:
Ryder et al, 2013 8

Parameterization of the surface fluxes

$$
\begin{gathered}
E_{b}+\sum_{k=1}^{k e_{\text {soil,hy }}} T_{r_{k}}+E_{i}+E_{\text {snow }}=-\left(F_{q^{v}}^{3}\right)_{s f c} \\
E_{\text {snow }}-\text { evaporation from snow } \\
E_{b}-\text { evaporation from soil } \\
T_{r_{k}}-\text { plant transpiration } \\
E_{i}-\text { interception }
\end{gathered}
$$

Biological processes play a major role in controlling evapotranspiration

$2^{\text {nd }}$ generation Biophysical models (TERRA_ML)

Stomatal behavior represented based on empirical relations (Jarvis et. al., 1976)

Figure: Bonan, 2002

$3^{\text {rd }}$ generation

Photosynthesis models
(CLM)
Stomatal conductance explicitly related to photosynthetic assimilation model using Ball-Berry approach
(Collatz et. al., 1991)

Figure: Sellers et. al, 1997

Limitation of $2^{\text {nd }}$ generation LSMs

Vegetation explicitly represented in 2nd generation LSMs but...
Stomatal conductance is calculated empirically without considering the actual process controlling stomatal functioning

Maximization of water use efficiency (photosynthesis/water) Edouard Davin, 2013 - Introduction to the CLM

JUSTUS-LIEBIG-

Stomatal functioning

Stomata open

$$
\begin{array}{cc}
\text { High } \mathrm{CO}_{2} & \text { Dry Air } \\
\mathrm{CO}_{2} & \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

High light levels
Warm temperature

Moist leaf
Moist air

High leaf nitrogen

Stomata close (smaller pore opening)

Low light levels
Cold temperature Dry air

Dry leaf

High CO_{2}
Low leaf nitrogen

Comparison

TERRA_ML
 vs
 New scheme
 Surface temperature and energy balance

Single interface with one temperature ($\boldsymbol{t} \boldsymbol{-} \boldsymbol{g}$) and bulk density

Distinguishes temperature and energy fluxes for canopy (tv) and ground (tg)

Radiation fluxes

Fluxes based on grid scale albedo and temperature

Albedo dependences from vegetation

Technically in src_radiation

Comparison

TERRA_ML

 vsNew scheme

Stomatal conductance

BATS-based

Empirical Jarvis-type approach

Ball-Berry approach
Coupling with photosynthesis
"2-leaf" canopy
with diffuse/direct light

Subgrid-scale heterogeneity

Only accounts for partial coverage of snow

Tile approach in ICON-TERRA

Tile approach

Vegetation types adapted for ICON

Individual Sub-Tasks 1

Implementation of three new modules in current

 photosynthesis/phenology scheme of COSMO/ICON code1) The canopy photosynthesis and stomatal regulation;
2) Carbon allocation and plant growth;
3) Autotrophic/Heterotrophic respiration and litter/soil carbon dynamics;
*The new modules will be implemented in a way to minimize the additional computational time introduced by these new parameterizations

Individual Sub-Tasks 2

Quantification of impact on implemented parameterizations

*

Impact of new scheme on the albedo and on evapotranspiration/latent heat flux will be quantified
** The start from a specific date need to be accounted for NWP applications, and the necessary predictions to be written out and read in each time step

Individual Sub-Tasks 3

Validation of implementation of new

photosynthesis/phenology scheme

Sub-Task 3 includes verification of prognostic and diagnostic parameters affected by the photosynthesis/phenology scheme.
*Especially, the diagnostic parameters such as the $2 m$ air temperature will be affected by an improved photosynthesis/phenology scheme.
** Adjustments to such diagnostics will be made if required.

Individual Sub-Tasks 4

Documentation of new photosynthesis/phenology scheme

In the final phase 4 required documentations in forms of internal works reports (COSMO consortium) as well as scientific publications for peer-reviewed journals will be prepared.

Our contacts:

GitHub page: https://github.com/users/merajtoelle/projects/1

Address: Center for Environmental Systems Research Wilhelmshöher Allee 47, 34117 Kassel

Email: evgenychur@gmail.com

Background

\rightarrow Vegetation dynamics are prescribed in lookup tables or in gridded maps with effective plant properties for each raster cell.
\rightarrow As a consequence, the development of the leaf area index (LAI), for example, is the same in each year.
\rightarrow The dynamics are "frozen" and hence do not depend on the prevailing weather conditions.
\rightarrow Errors in turbulent fluxes resulting from this coarseness translate into changes in regional air and surface temperature, evolution of the atmospheric boundary layer, and spatial distribution of rainfall.
\rightarrow In general, a warmer climate will accelerate vegetation development...

UNIKASSEL

Differences between the models

	TERRA-ML	Veg3D	JS-BACH	LPJmL	Caraib
Vegetation layer	NO / Vegetation parameters	YES / Big leaf concept (shaded and sunlit leaves)			
Turbulent fluxes	Surface temperature	Vegetation temperature	Vegetation temperature	Vegetation temperature	Vegetation temperature
Vegetation parameters	Weighted average	Dominant			
Radiation	Albedo constant	Albedo depends on vegetation			

Modifications in TERRA

- modify...
- Add photosynthesis, respiration, allocation, and phenology

Gantt chart

	Time	09/20	11/20	01/21	03/21	05/21	07/21	09/21	11/21	01/22	03/22	05/22	07/22
Task													
1													
2													
3													
4													

UNIKASSEL JUSTUS-LIEBIG-

FTEs summary

	Institution	CESR	MeteoSwiss	DWD
Task				
1		1.39	0.005	0.005
2		0.29	0.005	0.005
3		0.19	0.005	0.005
4		0.09	0.005	0.005
Total FTEs		1.96	0.02	0.02

Total of 2 FTEs over 2 years

