Verification of the new parametrization of shallow convection from Steef Böing (SB14)

New namelist Iconv_clo (default is false ie. the old formulation) There is an internal switch Ifixedfrac to use the GRANT version of the new shallow convection SB14. Ifixedfrac now hard coded to .FALSE. meaning that SB14 uses the free cloud fraction formulation

Here the results of 2 periods (Winter and Summer) which covered each 2 months are verified with COSMO-1 (1.1km over the operational domain) with:

- the standard (575, reference) and
- the modified shallow convection, SB14 (576, experiment)

SYNOP VERIFICATION

Period Spring/Summer : 01/05/2015-01/07/2015
Results: +/- means exp. is better/worse, ~ means experiment same as reference
(+~) TD_2M: dew point temperature reduce negative bias (below for alps)
(+~) TOT_PREC12: reduce negative bias
(${ }^{\sim}$) CLCT, increase positive bias (mostly for 30% threshold)
Neutral for other parameters.
TD_2M: MMOD 576-1_00@alps 575-1_00@alps, MOBS

SYNOP VERIFICATION

Period Spring/Summer: 01/05/2015-01/07/2015
Results: +/- means exp. is better/worse, ~ means experiment same as reference (+~) RELHUM_2M: reduce negative bias (below for Switzerland)

SYNOP VERIFICATION

Period Winter: 01/12/2014-01/02/2015
Results:
(+ $^{\sim}$) RELHUM_2M, reduced bias from negative to positive (ME: mean error) Neutral for other parameters.

Reduce temperature bias (below 750hPa), slight increase above.

UA verification: COSMO-1 testsuite shallowConv-vs, COSMO-1 regular ($01.05,-30,06,2015$)

[^0]Reduce bias and standard deviation for rel＿hum．（see below） Neutral for other variables．

UA verification：COSMO－1 testsuite shallowConv－vs．COSMO－1 regular（ $01,05,-30,06,2015$ ）

$$
5-1020-2
$$

[^0]: 『- - 575 』 - 578

