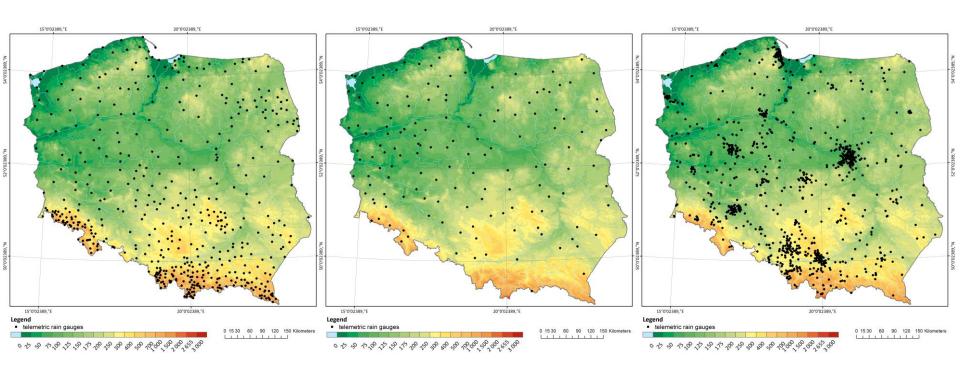
Subtask 2.1 Development and testing automatic QC methods based on the RainGaugeQC algorithms developed at IMGW-PIB


Design and implementation of adaptation of the RainGaugeQC software for QC of unprofessional gauges

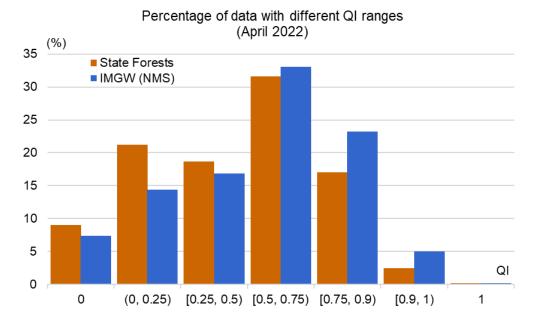
(standard RainGaugeQC: Ośródka et al., AMT 2022)

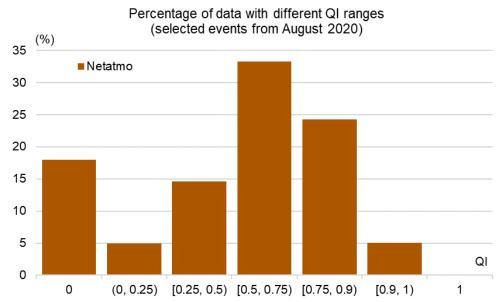
Abbr.	Algorithm	Sub-algorithms	Standard RainGaugeQC	version for unprofess. gauges
GEC	Gross Error Check		Х	х
RC	Range Check		Х	х
RCC	Radar Conformity Check	1) Detection of incorrect "no precipitation" data	х	х
		2) Detection of false precipitation reports	х	X
TCC	Temporal Consistency Check	1) Detection of blocked sensors	х	X
		2) Comparison of two sensors	х	
		3) Time series comparison with weather radar		X
		4) Bias correction with adjusted radar data		X
SCC	Spatial Consistency Check	1) Detection of outliers from the local vicinity	х	Х
		Advanced detection of outliers taking into account additional percentiles	х	Х

Available data from rain gauge networks

IMGW-PB
– state network,
professional

Board of the State Forests


– state network,
unprofessional


Netatmo
– private,
amateur gauges

Subtask 2.1 Development and testing automatic QC methods based on the RainGaugeQC algorithms developed at IMGW-PIB

Analysis of quality controlled data

Task 3.1 Processing different rainfall data sources (private rain gauges, commercial microwave links, sewer/water service stations, etc.)

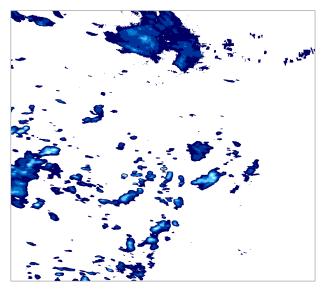
RainGRS+ model:

Quality-based combination of rain gauge, radar and satellite data (QPE)

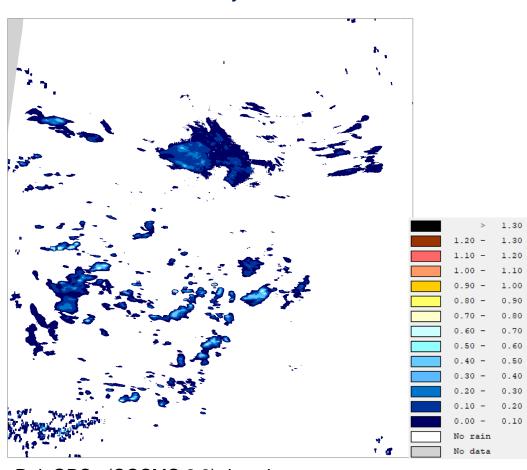
Input data:

- IMGW rain gauge network
- IMGW POLRAD radar network
- EUMETNET OPERA radar precipitation
- Meteosat (NWC-SAF) based precipitation estimates (algorithm: Jurczyk et al., 2020, Remote Sensing)
- PWS data sets

Combination of estimates:


- 1. RainGRS+ = RainGRS (rain gauges, radars PL, and satellite estimates) + satellite precipitation
- 2. RainGRS+ = rain gauges + radars PL + OPERA + satellite precipitation

Task 3.1 Processing different rainfall data sources (private rain gauges, commercial microwave links, sewer/water service stations, etc.)



Determination of QPE (quantitative precipitation estimation) for COSMO 2.8 km domain (1200 km x 1300 km) with extended RainGRS+ system

Example of QPE fields: RainGRS and RainGRS+ (mm / 10 min), 2019-03-05, 12:00 UTC. Version #1.

RainGRS (PL) domain

RainGRS+ (COSMO 2.8) domain

Problem: some data may be not available or of poorer quality outside the Poland domain