Optical properties of atmospheric snow
in ICON

Martin Köhler, Simon Gruber, Uli Blahak, Harel Muskatel, Pavel Khain
DWD, Israel Meteorological Service
Optical Properties of Hydrometeors

- old:
 - interpolating tables of $r_{\text{eff}}(q)$
 - cloud ice, cloud droplets

- new:
 - explicitly consider number conc. (2mom)
 - cloud ice, cloud droplets, rain, snow, (graupel)
 - extension to large ice particles
 - fits for RRTM

\[
\begin{align*}
&g(r_{\text{eff}}) & \quad & \text{g(AR)} \\
&\text{SSA}(r_{\text{eff}}) & \quad & \text{SSA}(r_{\text{eff}}) \\
&\text{ext}(r_{\text{eff}}) & \quad & \text{ext}(r_{\text{eff}}) \\
\end{align*}
\]
Optical Properties of Hydrometeors

Fu, 1996; Fu et al., 1998; Fu, 2007

\[r_e = \frac{\int V(L)n(L)dL}{\int \bar{A}(L)n(L)dL} \]

\[AR = \frac{\int \frac{D}{L}\bar{A}(L)n(L)dL}{\int \bar{A}(L)n(L)dL} \]

\[n(D) = N_0 D^v \text{ext}[-\lambda D^\mu] \]

\[D = ax^b \]

\[g = \frac{a_0 + a_1 AR + a_2 AR^2 + a_3 AR^3}{a_4 + a_5 AR + a_6 AR^2 + a_7 AR^3 + a_8 AR^4} \]

\[SSA = \frac{b_0 + b_1 r_e + b_2 r_e^2 + b_3 r_e^3}{b_4 + b_5 r_e + b_6 r_e^2 + b_7 r_e^3} \]

\[ext = \frac{c_0 + c_1 r_e + c_2 r_e^2}{c_3 + c_4 r_e + c_5 r_e^2 + c_6 r_e^3} \]
Code overview: icon-nwp-cloud-opt

50 pages of additions & changes
• mo_art_cloud_opt.f90
• mo_art_cloud_opt_calc.f90
• mo_art_cloud_opt_data.f90
• mo_art_cloud_opt_util.f90
• mo_newcld_optics.f90
• mo_nwp_rrtm_interface.f90
 • 6 calls to radiation_nwp (full grid and reduced)
 • icalc_opt=0: qv,qc,qi
 • irad_use_2mom=1: qv,qc,qi,qr,qs
 • irad_use_2mom=2: … & qnc…

current namelist parameters:
• icalc_opt = 1 ! 0 : ECHAM, 1 : Fu 1996
• irad_use_2mom = 1 ! reff for 1mom; 2mom (1,2)
• lrad_incl_qrqsqg = .true. ! snow and graupel radiation
• lrad_use_largsizeapprox = .false. ! true: from 150um new Blahak
• lrad_ice_smooth_surfaces = .false. ! not used (smooth or rough ice)
• lrad_ice_fd_is_gsquared = .true. ! not used
1mom: reff vs qi

old

Occurence in %

new

Occurence in %
1mom: reff and ddt

old r_{ICE} in μm

new r_{ICE} in μm

diff ddt lw in K h$^{-1}$

diff ddt sw in K h$^{-1}$
2mom: reff and ddt

old r_{ICE} in µm

new r_{ICE} in µm

diff ddt lw in K h$^{-1}$

diff ddt sw in K h$^{-1}$
net top solar

new-optic - CERES bias: 9.9 W/m²

ICONdefault - CERES bias: 16.2 W/m²
diff: -6.3 W/m²
outgoing long-wave

new-optic - CERES
- bias: -13.8 W/m²

ICONdefault - CERES
- bias: -3.7 W/m²

new-optic - ICONdefault
- diff: -10.1 W/m²
cloud-opt vs default

201201 24h forecast

temperature [K]
Min: -1.02 Max: 0.2052 Mean: -0.04179 RMS: 0.1041 Mem: 31

SW tendency [K/day]
Min: -0.298 Max: 0.1748 Mean: -0.001768 RMS: 0.05299 Mem: 31

diag. ice water content [kg/kg]

LW tendency [K/day]
Min: -1.244 Max: 0.4671 Mean: -0.03985 RMS: 0.1424 Mem: 31
issues: radiation workshop 201709 at DWD

• bias:
 • optically thicker in SW (6.3 W/m²) good
 • warmer OLR (10.1 W/m²) bad
 • tune $r_{e,\text{ice}} (\Rightarrow N_{\text{eff}}$)

• debugging (calc_n0_snow)

• code cleaning:
 • 6 radiation calls with different argument lists
 • logicals as integers

• turn off old $q_{i,\text{adj}} = q_i + 0.1q_s$

• $n(T,\text{snow})$ from Fields et al (2005)
 • mid-latitude
 • tropics (data needed)

• $n_{\text{ice}}(T)$ separately for
 • microphysics (for sedimentation)
 • radiation
Extra slides
work to do

• results:
 • optically thicker in SW (6.3 W/m^2) good
 • warmer OLR (10.1 W/m^2) bad

• model dies in subroutine calc_n0_snow
 • calculate snow number concentration
 • T-dependent moment relations (Field et al 2005)

• single-scattering albedo (a-1?), extinction coefficient

• any missing physics?
 • cloud optics for sub-grid and mixed-phase clouds (shallow cumulus, artic stratus, Southern oceans)

• make a list of work items left to do
Including Snow, diff ddt lw in K h$^{-1}$

2mom, without snow

2mom, with snow

1mom, without snow

1mom, with snow
cloud and snow optics: ICON physics

- Ice optics: Fu 96 (SW) and Fu 98 (LW)
- Liq. optics: Key/Stamnes

\[r_e = \text{5um or } r_e = f(w^*, \ldots) \quad \text{or} \quad r_e = \alpha \left(\frac{q_I}{CNC} \right)^\beta \]

- 2-moment cloud optics (qc, qi, qr, qs, qg and number concentrations)
- 1-moment cloud optics (qc, qi, qr, qs, (qg))
- snow optics: extension to large particles from Uli Blahak
Current Status

• done
 – calculation of $\text{re}(\xi)$
 • cloud ice, cloud droplets, rain, snow, graupel
 – fits for RRTM bands
 – „cloud cover“ for rain, snow and graupel
 – works with 1mom and 2mom

• to do
 – proper implementation into radiation interfaces
 – (fine-) tuning
2mom: reff vs xi

• old
 Occurrence in %

• new
 Occurrence in %
Case Study

- 2016.01.18 12 UTC
- ICON LAM
- R3B08 (~6.5 km)

q_{ICE} in mg m$^{-3}$

old r_{ICE} in µm

new r_{ICE} in µm
mom: lower Troposphere, h = 3000 m

q_{ICE} in mg m$^{-3}$

old r_{ICE} in µm

new r_{ICE} in µm
2mom: upper Troposphere, $h = 8000$ m

q_{ICE} in mg m$^{-3}$

n_{ICE} in cm$^{-3}$

old r_{ICE} in µm

new r_{ICE} in µm
2mom: lower Troposphere, h = 3000 m

q_{ICE} in mg m$^{-3}$

n_{ICE} in cm$^{-3}$

old r_{ICE} in µm

new r_{ICE} in µm
Snow, $h = 3000$ m

2mom
q_{SNOW} in mg m$^{-3}$

1mom
q_{SNOW} in mg m$^{-3}$

re_{SNOW} in µm
Simon Gruber DWD radiation talk 201709
Optical Properties of Hydrometeors

- old:
- interpolating tables of $r_{\text{eff}}(q)$
- cloud ice, cloud droplets
Issues

• general findings
 – new r_{ICE} smaller in upper layers \rightarrow stronger cooling
 – new r_{ICE} larger in lower layers \rightarrow stronger heating

• 1mom: r_{ICE} become very large in lower layers
 – tuning $n_{ICE}(T)$

2mom: partly very low n_{ICE} \rightarrow very large r_{ICE}
 - seamless ICON: using 2mom globally (40km) and nested (5km) ?

• using qi from microphysics or from cloud cover parameterization?
Martin DWD radiation talk 201709
ICON radiation bias

Helmut Frank: 168h forecasts, global mean

ICON R2B6 from IFS 240h forecasts from 201201
scores

dei2_296 vs. dei2_292 -- climate mean errors -- 31 forecasts from 20120101 + 24h sfc

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bias (New, Ref)</th>
<th>RMS (New, Ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOT_PREC</td>
<td>-0.169500, -0.173500</td>
<td>0.342200, 0.392400</td>
</tr>
<tr>
<td>TCC</td>
<td>-0.0485400, -0.0614400</td>
<td>0.100300, 0.166400</td>
</tr>
<tr>
<td>HCC</td>
<td>-0.0213000, -0.0287300</td>
<td>0.103700, 0.0877800</td>
</tr>
<tr>
<td>MCC</td>
<td>-0.0187700, -0.0153300</td>
<td>0.079110, 0.0778900</td>
</tr>
<tr>
<td>LCC</td>
<td>-0.0258000, -0.0362000</td>
<td>0.111600, 0.118800</td>
</tr>
<tr>
<td>TOV</td>
<td>0.0795000, 0.0882200</td>
<td>0.255900, 0.546600</td>
</tr>
<tr>
<td>TOC</td>
<td>-0.0064000, -0.0063600</td>
<td>0.0030500, 0.0037500</td>
</tr>
<tr>
<td>TQI</td>
<td>-0.0077100, -0.0054700</td>
<td>0.0131400, 0.0106900</td>
</tr>
<tr>
<td>ACCLHFL_G</td>
<td>0.760200, 0.457100</td>
<td>11.1400, 11.2000</td>
</tr>
<tr>
<td>ACCSHFL_S</td>
<td>-4.68000, -5.05400</td>
<td>14.0700, 14.0600</td>
</tr>
<tr>
<td>ACCTHB_G</td>
<td>-6.08200, -6.41100</td>
<td>10.2100, 7.05100</td>
</tr>
<tr>
<td>ACCSOB_T</td>
<td>7.14200, 13.4300</td>
<td>17.9600, 18.3650</td>
</tr>
<tr>
<td>ACCTHB_T</td>
<td>5.64300, 13.4200</td>
<td>13.4200, 13.4200</td>
</tr>
<tr>
<td>PS</td>
<td>-5.58500, -6.82000</td>
<td>535.400, 535.400</td>
</tr>
<tr>
<td>T_2M</td>
<td>-0.270900, -0.1027900</td>
<td>1.13700, 0.944000</td>
</tr>
<tr>
<td>T_G</td>
<td>0.6693100, 0.2472000</td>
<td>1.64400, 1.565000</td>
</tr>
<tr>
<td>U_10M</td>
<td>-0.0185200, -0.0308400</td>
<td>0.51150, 0.536400</td>
</tr>
<tr>
<td>V_10M</td>
<td>0.021130, 0.00116000</td>
<td>0.44800, 0.441500</td>
</tr>
<tr>
<td>W_SO L1</td>
<td>-0.0151000, -0.0152000</td>
<td>0.142000, 0.1397000</td>
</tr>
<tr>
<td>W_SO L2</td>
<td>-0.0465000, -0.0369800</td>
<td>0.257000, 0.2571000</td>
</tr>
<tr>
<td>W_SO L3</td>
<td>-0.1062000, -0.1054000</td>
<td>0.662000, 0.6614000</td>
</tr>
<tr>
<td>W_SO L4</td>
<td>-0.5604000, -0.3365000</td>
<td>1.584000, 1.556000</td>
</tr>
<tr>
<td>W_SO L5</td>
<td>-0.9131000, -0.9142000</td>
<td>3.266000, 3.266000</td>
</tr>
<tr>
<td>W_SO L6</td>
<td>-0.0946000, -0.0976000</td>
<td>1.123000, 1.123000</td>
</tr>
<tr>
<td>W_SO L7</td>
<td>-0.2706000, -0.2706000</td>
<td>3.390000, 3.390000</td>
</tr>
<tr>
<td>W_SO L8</td>
<td>-0.8118000, -0.8123000</td>
<td>10.170000, 10.170000</td>
</tr>
<tr>
<td>T_SO L1</td>
<td>0.0265400, 0.0589600</td>
<td>0.908000, 0.9248000</td>
</tr>
<tr>
<td>T_SO L2</td>
<td>0.0117800, 0.0072200</td>
<td>1.027000, 1.040000</td>
</tr>
<tr>
<td>T_SO L3</td>
<td>-0.0137000, 0.0004300</td>
<td>0.684100, 0.695500</td>
</tr>
<tr>
<td>T_SO L4</td>
<td>-0.0346000, -0.065071000</td>
<td>0.658000, 0.755000</td>
</tr>
<tr>
<td>T_SO L5</td>
<td>-0.0448000, -0.0268000</td>
<td>0.280700, 0.270600</td>
</tr>
<tr>
<td>T_SO L6</td>
<td>-0.0262600, -0.02457000</td>
<td>0.103400, 0.1070500</td>
</tr>
<tr>
<td>T_SO L7</td>
<td>-0.0656600, -0.06502000</td>
<td>0.0552000, 0.0552000</td>
</tr>
<tr>
<td>T_SO L8</td>
<td>-0.000374100, -0.000385000</td>
<td>0.0461300, 0.04617000</td>
</tr>
<tr>
<td>ACCSOB_T</td>
<td>9.89800, 16.17900</td>
<td>22.7900, 22.7900</td>
</tr>
<tr>
<td>AGCTHB_T - CERES</td>
<td>-3.76900, -3.89600</td>
<td>8.76500, 8.76500</td>
</tr>
<tr>
<td>AGCLHFL_S - WHCI</td>
<td>-11.1500, -11.1400</td>
<td>18.7600, 18.7600</td>
</tr>
<tr>
<td>AGCSHFL_S - WHCI</td>
<td>-6.03400, -5.332000</td>
<td>16.8300, 16.8300</td>
</tr>
<tr>
<td>AGCSHFL_S - WHCI</td>
<td>-5.95000, -4.9584000</td>
<td>10.6700, 10.6700</td>
</tr>
<tr>
<td>T_2M - WHCI</td>
<td>-0.6223000, -0.6223000</td>
<td>0.695000, 0.695000</td>
</tr>
<tr>
<td>T_G - WHCI</td>
<td>-0.1221000, -0.1196000</td>
<td>0.605000, 0.590000</td>
</tr>
<tr>
<td>SP_10M - WHCI</td>
<td>-0.473600, -0.4410000</td>
<td>0.827900, 0.8053000</td>
</tr>
</tbody>
</table>

- 1.00 Percent bias
- 1.00 Percent rms
ICON radiation bias

net top solar

ICON - CERES

bias: 12.12 W/m²

difference: 4.81 W/m²

TKE cloud input - default

ICON R2B6 from IFS 240h forecasts from 201201
diagnostic clouds with convective anvil and TKE variance

Convective source to cloud cover and condensate in equilibrium

\[\frac{\partial CC}{\partial t} = \frac{D_u}{\rho} - \frac{CC}{\tau_{diss}} \]

Anvil decay time-scale

Observational estimate: 1-2 hours
ICON: 1500s

Non-convective total water variability

\[\Delta q_{liq} \approx \sigma_{qt} \text{ taken from TKE scheme (RCLD)} \]
\[\Delta q_{ice} = 0.05 q_{sat} \]
RCLD and qi/ql from ICON
ICON radiation bias – solution ideas

- TKE input to cloud diagnostic
 - Saturation standard deviation
- Convective input to cloud diagnostic
 - Detrainment mass flux
 - Updraft condensate
 - Cloud wake
 - Cloud overlap
 - Qc tendency
- TKE/shallow convection: stratocumulus
- Cloud albedo (aerosols, zalbvisdir)
- Snow radiative properties

Neggers, Heus, Siebesma, 2011
ICON RRTM radiation code

- nwp_radiation
 - mo_nwp_rad_interface
 - nwp_rrtm_radiation
 - mo_nwp_rrtm_interface
 - radiation_nwp
 - mo_radiation
 - rttm_interface
 - mo_radiation
 - newcld_optics
 - mo_newcld_optics

- dimensions:
 - nbnds_lw = 16 longwave bands
 - nbnds_sw = 14 shortwave bands

- input:
 - ktype: type of convection
 - zland: land fraction
 - zglnac: glacier fraction
 - zcdnc: cloud drop number concentr.
 - zlwc: liquid water content
 - ziwc: ice water content

- output:
 - tau_lw: LW optical depth
 - tau_sw: SW optical depth
 - omg: cloud single scatt. albedo
 - asy: cloud asymmetry factor

- • pre_radiation_nwp_steps
 - • sfc_albedo_modis
 - • sfc_albedo
 - • nwp_ozon_aerosol
 - • nwp_rrtm_radiation_repartition
 - • nwp_rrtm_radiation
 - • nwp_rrtm_radiation_reduced
 - • nwp_rg_radiation
 - • nwp_rg_radiation_reduced

- • tune_dust
 - • radiation_nwp

- • gas_profile
 - • rrtm_interface

- • art_rad_aero_interface
 - • set_bc_aeropt_kinne
 - • add_bc_aeropt_stechnikov
 - • set_bc_aeropt_kinne
 - • add_bc_aeropt_stechnikov
 - • rad_aero_diag
 - • newcld_optics
 - • lrtm
 - • srtm_srtm_224gp
 - • psrad_cloud_optics
 - • psrad_lrtm
 - • psrad_srtm
ICON RRTM radiation code

- cloud diagnostic
 - cloud fraction
 - cloud liquid water
 - cloud ice water
- cloud overlap
- McICA
- snow
 - cloud ice + 0.2 * snow (of cloud ice)
- effective radius
 - liq and ice: Roeckner, ECHAM5 docu
 - IFS:
 - liq: Martin et al. 1994
 - ice: Ou and Liou, 1995 (fct(T))
- optical thickness
- single scattering albedo
- asymmetry factor

\[r_{e}^{liq} = f(lnd, gl, oc) \left(\frac{q_{liq}}{CNC} \right)^{1/3} \]
\[r_{e}^{ice} = 83.8q_{i}^{0.216} \]

\[\tau_{liq} = 0.77 f(band, r_{e}^{liq}) \text{ LWP} \]
\[\tau_{ice} = 0.85 f(band, r_{e}^{ice}) \text{ IWP} \]

inhomogeneity factor