

A new urban parameterisation for the ICON atmospheric model

Jan-Peter Schulz, Paola Mercogliano, Marianna Adinolfi, Carmela Apreda, Francesca Bassani, Edoardo Bucchignani, Angelo Campanale, Davide Cinquegrana, Carmine De Lucia, Rodica Dumitrache, Giusy Fedele, Valeria Garbero, Witold Interewicz, Amalia Iriza-Burca, Adam Jaczewski, Pavel Khain, Yoav Levi, Bogdan Maco, Alan Mandal, Massimo Milelli, Myriam Montesarchio, Mario Raffa, Alfredo Reder, Leenes Uzan, Hendrik Wouters, Andrzej Wyszogrodzki, and the COSMO PP CITTA' team

ICON All-staff Meeting, 20-22 Jun. 2022, Heusenstamm

During the COSMO Priority Tasks AEVUS and AEVUS2 the TERRA_URB urban parameterisation in the COSMO model was demonstrated to be able to reproduce the key urban meteorological features. In the framework of the transition of the COSMO Consortium to the ICON model TERRA_URB needs to be implemented in ICON.

Deliverables: TERRA_URB in ICON.

Involved scientists: Jan-Peter Schulz (DWD) 0.4 FTE, Carmine De Lucia (CMCC)

0.1 FTE, Angelo Campanale (CMCC) 0.1 FTE

FTEs: 0.6 FTE

Steps of implementation:

- 1. First, keep operational land use classification GlobCover which includes one urban class, and hardcoded global constants for the urban canopy parameters, for testing the functionality of TERRA_URB in ICON.
- 2. Once the functionality is confirmed and the new urban canopy parameter fields are available from EXTPAR, implement them in ICON, likely together with a new land use classification (ECOCLIMAP-SG, including 10 urban classes).
- 3. Extended tuning of ICON for ECOCLIMAP-SG, first with TERRA_URB switched off, after successful tuning switched on.

Steps of implementation:

Porting of TERRA_URB from the COSMO to the ICON model par for par.

1. New namelist switches implemented:

lterra urb master switch, including thermal effects in TERRA

itype kbmo type of turbulence

Steps of implementation:

2. New fields implemented:

fr_paved impervious surface area (ISA)

ahf anthropogenic heat flux

urb isa impervious surface area of the urban canopy

urb_ai surface area index of the urban canopy

urb alb red albedo reduction factor for the urban canopy

Steps of implementation:

2. New fields implemented:

ALD LE DEA DUIMING AIGA NACION WITH ICODOCI TO AIDAN IN	urb	fr	bld	building area	fraction with	respect to	urban til
---	-----	----	-----	---------------	---------------	------------	-----------

urb h2w street canyon H/W ratio

urb_h_bld **building height**

urb alb th thermal albedo of urban material

urb alb so solar albedo of urban material

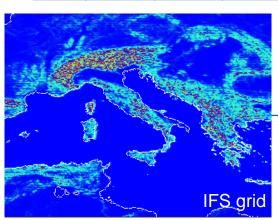
urb hcap volumetric heat capacity of urban material

urb_hcon thermal conductivity of urban material

Steps of implementation:

Porting of TERRA_URB from the COSMO to the ICON model par for par.

- 3. Modifications in ICON for TERRA_URB:
- In land surface (TERRA): Modify heat capacity and thermal conductivity.
- In turbulence: Modify thermal roughness length.
- In radiation: Modify visible and thermal albedo.
- In land surface (TERRA): Modify evaporation from bare soil.



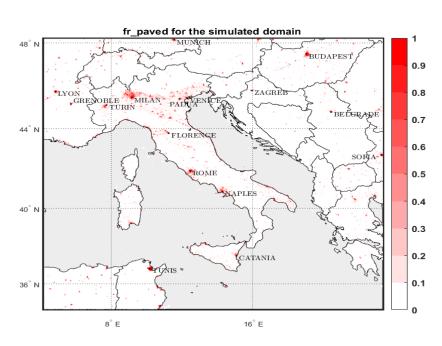
Model set up

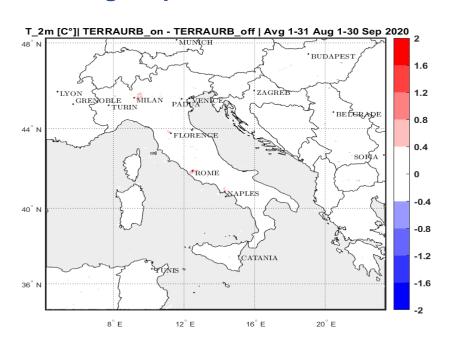
Model Set-Up

Model	Forcing	Grid type	Grid point	Horizontal resolution	Horizontal discretizatio n	Time step	Vertical coordinates	Scheme of temporal integration	Scheme of spatial differentiatio n
ICON	IFS (ECMWF) 0,075°	The unstructure d icosahedral- triangular grid	451384	2 km	Arakawa C- grid	24 s	65 vertical levels	Two-time level predictor- corrector time stepping scheme	Mixture of finite volume / finite difference discretization

Downscaling from 8,5km to ~2km

A. Campanale (CMCC)

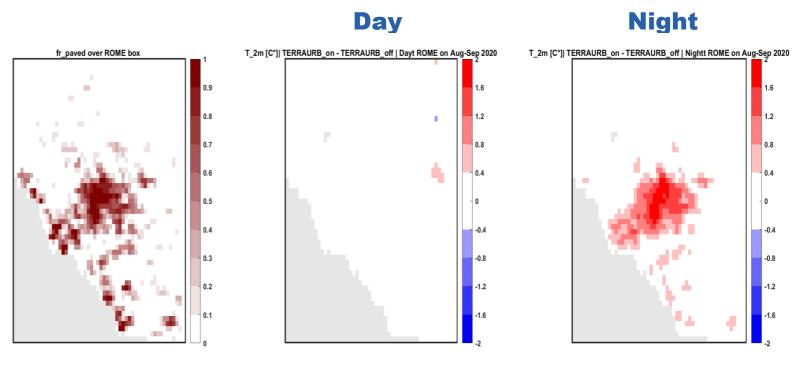


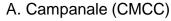


T_2m difference averaged over Aug.-Sep. 2020

A. Campanale (CMCC)

Schulz et al.: TERRA_URB in ICON 21 Jun. 2022 10



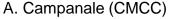


11

Task 1: Implementation of TERRA_URB in ICON

T_2m difference at day and at night over Rome in Aug.-Sep. 2020





12

Task 1: Implementation of TERRA_URB in ICON

Urban heat island effect for Milan, Rome, Naples and Tunis in Aug-Sep 2020

Schulz et al.: TERRA_URB in ICON 21 Jun. 2022

Task 2: External parameters

Subtask 2.2: New urban external parameters in EXTPAR for ICON(-LAM)

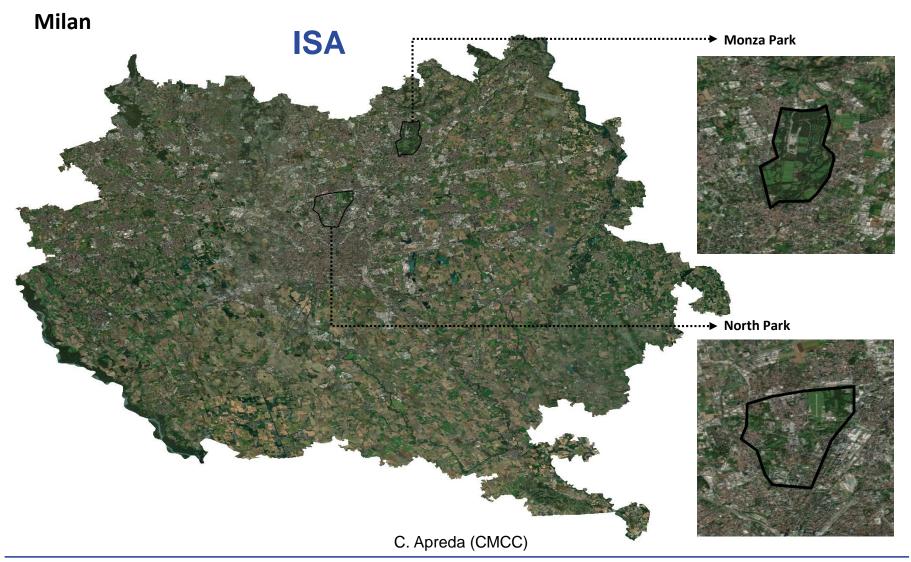
Meanwhile, two raw EXTPAR datasets for TERRA_URB are outdated and should be replaced. Furthermore, several internal parameters describing the urban geometry and the urban thermal and radiative properties, which were hardcoded in TERRA_URB as global constants, will be replaced by 2-dimensional fields from EXTPAR.

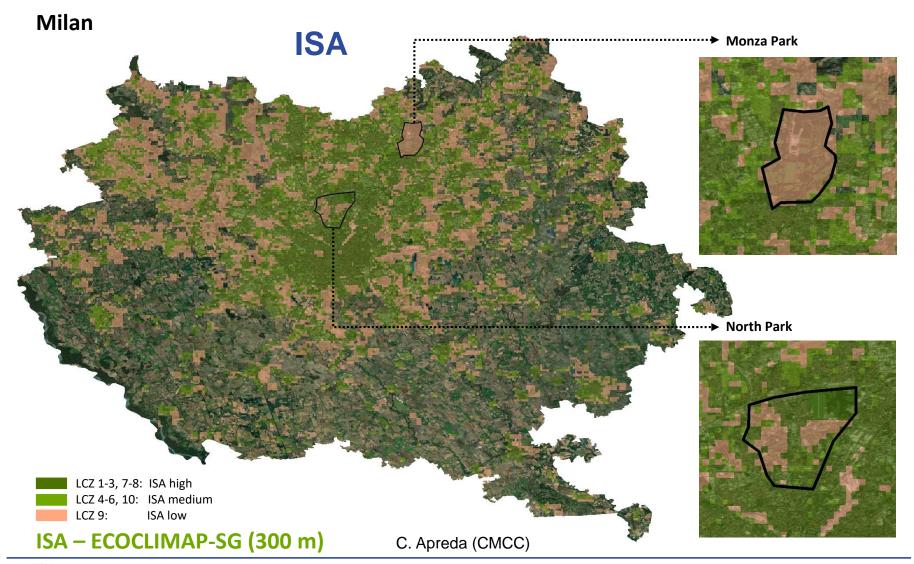
Deliverables: New urban external parameters in EXTPAR for ICON-LAM.

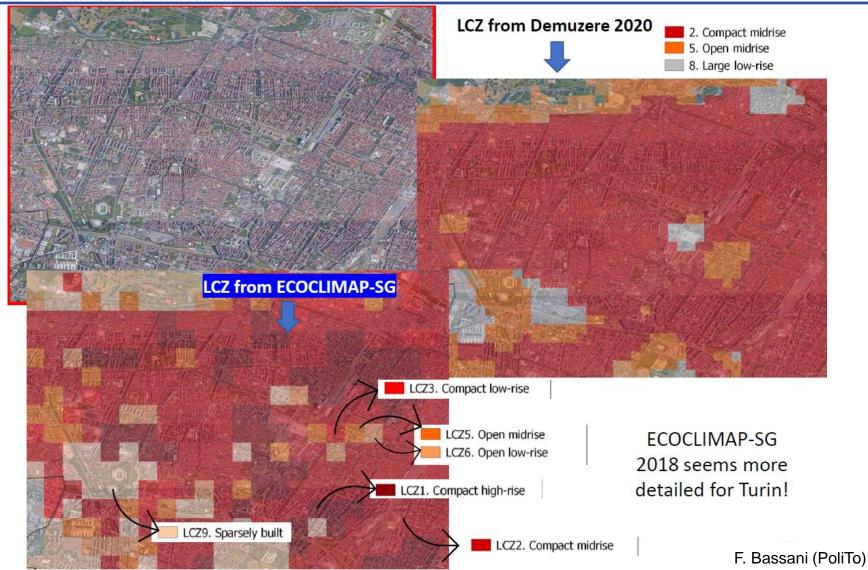
Involved scientists: Carmela Apreda (CMCC) 0.2 FTE, Adam Jaczewski (IMGW-PIB) 0.35 FTE, Andrzej Wyszogrodzki (IMGW-PIB) 0.15 FTE, Valeria Garbero (ARPAP) 0.15 FTE, Massimo Milelli (ARPAP) 0.05 FTE, Francesca Bassani (PoliTo) 0.2 FTE, Jan-Peter Schulz (DWD) 0.2 FTE

FTEs: 1.3 FTE

Description of LCZs classes – ECOCLIMAP-SG


Dataset/Producer	Classes*	Descriptions
	24. LCZ1: compact high-rise	 Strong built-up NDVI <= 0.2 and high rise buildings (3D roughness 50-100m) Strong built-up NDVI <= 0.2 and very high rise buildings (3D roughness > 100m)
	25. LCZ2: compact midrise	 Continuous urban fabric (from CLC) Strong built-up NDVI <= 0.2 and medium rise buildings (3D roughness 25-50m)
	26. LCZ3: compact low-rise	• Strong built-up NDVI <= 0.2 and low rise buildings (3D roughness <25m)
	27. LCZ4: open high-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
ECOCLIMAP-	28. LCZ5: open midrise	• Medium built-up 0.2 < NDVI <= 0.3 (o 6)
SG/CNRM	29. LCZ6: open low-rise	• Light built-up 0.3 < NDVI <= 0.4
	30. LCZ7: lightweight low-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
	31. LCZ8: large low-rise	 Industrial or commercial unit, Airports (from CLC) Built-up with highly reflecting roof (associated to productive and commercial use) Roads
	32. LCZ9: sparsely built	 Road and rail networks and associated land, Mineral extraction sites, Dump sites, Construction sites, Green Urban Areas, Sport and leisure facilities (from CLC) Very light built-up NDVI > 0.4
	33. LCZ10: heavy industry	• Port areas (from CLC)





ECOCLIMAP-SG vs Globcover 2009

ECOCLIMAP-SG		GLOBCOVER
1. sea and oceans	water	21 'water bodies
2. lakes	water	21 'water bodies
3. rivers	water	21 'water bodies
4. bare land	nature	20 bare areas
5. bare rock	nature	20 bare areas
6. permanent snow	nature	22. pernament snow & ice
7. boreal broadleaf deciduous	nature	07 closed broadleaved deciduous forest
8. temperate broadleaf deciduous	nature	06 open/closed broadleaved deciduous forest
9. tropical broadleaf deciduous	nature	06 open broadleaved deciduous forest
10. temperate broadleaf evergreen	nature	05 closed broadleaved evergreen forest
11. tropical broadleaf evergreen	nature	05 closed broadleaved evergreen forest
12. boreal needleleaf evergreen	nature	08 closed needleleaved evergreen forest
13. temperate needleleaf evergreen	nature	08 closed needleleaved evergreen forest
14. boreal needleleaf deciduous	nature	09 open needleleaved decid. or evergr. forest
15. shrubs	nature	13 closed to open shrubland
16. boreal grassland	nature	14 closed to open herbaceous vegetation
17. temperate grassland	nature	14 closed to open herbaceous vegetation
18. tropical grassland	nature	14 closed to open herbaceous vegetation
19. winter C3 crops (lower temperatu	nature	02 rainfed croplands
20. summer C3 crops	nature	02 rainfed croplands
21. C4 crops (warmer environments)	nature	02 rainfed croplands
22. flooded trees	nature	16 closed to open forest regulary flooded
23. flooded grassland	nature	18 closed to open grassland regularly flooded

ECOCLIMAP-SG natural classes correspond well with GLOBCOVER natural classes and the corresponding values could be copied.

On the other hand the CITTA project gives exceptional opportunity to update the lookup tables according to recent state of the art

A. Jaczewski (IMGW-PIB)

Schulz et al.: TERRA_URB in ICON

Conclusions

- The first aims of the COSMO Priority Project CITTA' are:
 - 1. Implement the urban canopy scheme TERRA_URB in ICON.
 - 2. Provide new urban canopy parameters for TERRA_URB in ICON.
- Both activities are on-going:
 - 1. There is already an Initial Release of TERRA_URB in gitlab in icon-nwp/master. Further developments will come soon.
 - 2. The global land use dataset ECOCLIMAP-SG was converted and made available in NetCDF. A preliminary set of look-up tables was developed. The implementation of ECOCLIMAP-SG in EXTPAR is on-going.
- Experiments with TERRA_URB in ICON-LAM have started in several groups of the project. First results look promising. Characteristic features of urban surfaces in atmospheric models, for instance the Urban Heat Island effect, are already represented.

