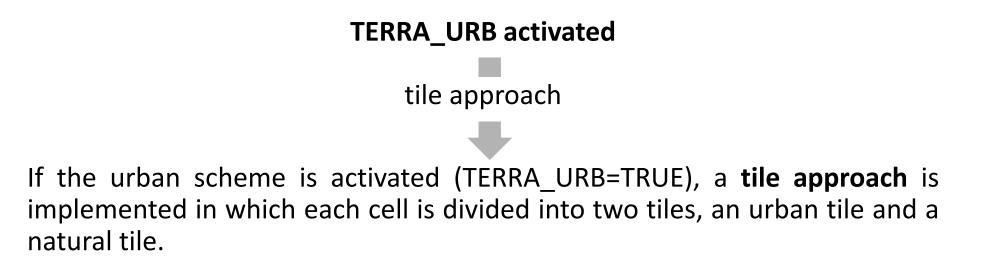
COSMO PP CITTÀ kick-off meeting

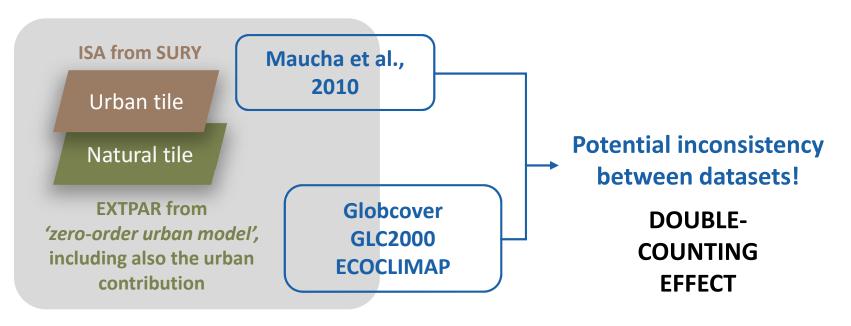
Update on urban canopy parameters for EXTPAR Survey of the existing datasets to derive ISA

Apreda C., Schulz J.-P., Reder A., Mercogliano P.

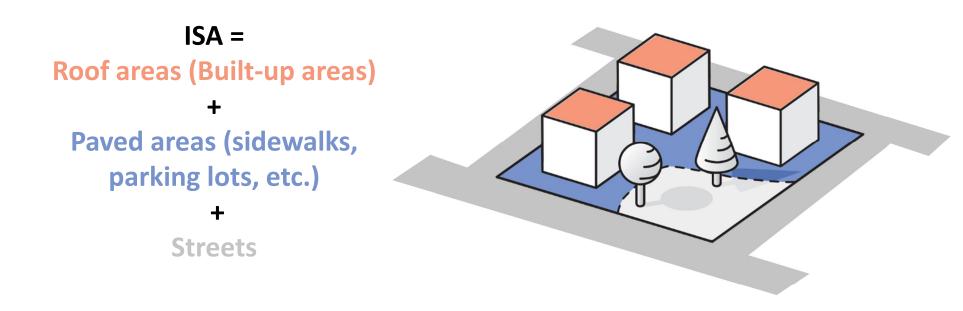
REgional Models and geo-Hydrological Impacts (REMHI) Division, CMCC Foundation

- Background
- Definition of ISA
- Desk review of datasets to derive ISA available for Europe
- Methodology
- Comparison between datasets at local level: results
- Summary and conclusions


The main goal of the **Task 2** is to update the current EXTPAR fields in TERRA_URB scheme within the ICON(-LAM) model.


The **subtask 2.2** aim to replace **Impervious Surface Area** (ISA) and **Anthropogenic Heat Flux** (AHF) global fields with more recent datasets by investigating the availability of suitable impervious cover classes within land cover datasets, adopting also Local Climate Zones (LCZs.)

The workflow is structured around the following items:


- **1. Survey of the existing datasets**
- 2. Derive a complete dataset for climate modelling at urban scale
- 3. Implement the dataset in EXTPAR

Potential incosistency when TERRA-URB is activated

The Impervious Surface Area (ISA) field defines the impervious surface of urban areas including all the sealed areas (covered by materials such as asphalt, concrete, brick and stone) such as buildings, streets and parking lots, without the vegetation cover (e.g. gardens, parks).

Desk review of datasets to derive ISA available for Europe

Detect /Decilier	Resol	ution	Cov	verage		Source	
Dataset/Producer	Spatial	Temporal	Spatial	Temporal	Classification scheme	Jource	
Land cover datasets (Urban fie	Land cover datasets (Urban field)						
GlobCover/ESA & UCLouvain	300 m	Single year	Global	2009	FAO LCCS 22 classes	<u>https://bit.ly/3uzxbxC</u>	
ESA CCI/C3S LC project /VITO on behalf of the ECMWF	0.002778° (≈ 300 m)	yearly	Global	1992 -2020	FAO LCCS 22 classes	https://bit.ly/3twOnCp	
GLC2000 (Regional dataset)/EU-JRC	0.00892857° (≈ 960 m)	Single year	European	2000	FAO LCCS 23 classes	https://bit.ly/3ot9tAE	
CORINE Land Cover, CLC /EEA	100 m	Single year	European	1990 - 2000 - 2006 - 2012 - 2018	44 classes	https://bit.ly/3yl57dL	
Copernicus Global Landcover/Buchhorn et al., 2020	100 m	yearly	Global	2015-2019	10 classes (pecent coverage!)	https://lcviewer.vito.be/20 <u>19</u>	
Land cover dataset with LCZs							
ECOCLIMAP-SG/CNRM	300 m	Single year	Global	2018	33 classes (from ESA-CCI GLC v1.6.1 and CLC)	<u>https://bit.ly/3bihmDJ</u>	
European LCZ map/Demuzere et al., 2019	100 m	Single year	European	???	17 rural & urban LCZs	https://figshare.com/articl es/dataset/European_LCZ map/13322450	
Impervious areas datasets (ISA	field)						
GAUD /Liu et al., 2020	30 m	yearly	Global	from 1985 to 2015	Urban grid	<u>https://bit.ly/3wf9xqw</u>	
GAIA/Gong et al., 2020	30 m	yearly	Global	from 1985 to 2018	Non-impervious/ impervious areas	<u>Gong et al., 2020</u> https://bit.ly/3bhABxb	
CLMS Imperviousness Density, IMD/EEA	100 m 20 m 10 m (2018)	Single year	European (EEA39)	2006 – 2009 – 2012 – 2015 -2018	Degree of imperviousness (0-100%)	https://bit.ly/2Qwkipf	
Global Man-made Impervious Surface (GMIS) Dataset From Landsat	30 m	Single year	Global	2010	Non-impervious/ impervious areas	https://sedac.ciesin.colum bia.edu/data/set/ulandsat- gmis-v1	

Description of artificial classes – "URBAN" DATASETS

Dataset/Producer	Classes	Descriptions
GlobCover /ESA & UCLouvain	190. Artificial surfaces and associated areas (Urban areas >50%)	This class describes areas that have an artificial cover as a result of human activities such as construction (cities, towns, transportation), extraction (open mines and quarries) or waste disposal (LCCS).
ESA CCI/C3S LC project /VITO on behalf of the ECMWF	190. Urban areas	the class relies both on the Global Human Settlement Layer [Pesaresi et al., 2016] and on the Global Urban Footprint [Esch et al., 2017]
	111. Continuous urban fabric	The class is assigned when urban structures and transport networks are dominating the surface area. > 80% of the land surface is covered by impermeable features like buildings, roads and artificially surfaced areas. Non-linear areas of vegetation and bare soil are exceptional.
	112. Discontinuous urban fabric	The class is assigned when urban structures and transport networks associated with vegetated areas and bare surfaces are present and occupy significant surfaces in a discontinuous spatial pattern. The impermeable features like buildings, roads and artificially surfaced areas range from 30 to 80 % land coverage.
Corine Land Cover, CLC/EEA	121. Industrial or commercial units	Buildings, other built-up structures and artificial surfaces (with concrete, asphalt, tarmacadam, or stabilized like e.g. beaten earth) occupy most of the area. It can also contain vegetation (most likely grass) or other non-sealed surfaces. This class is assigned for land units that are under industrial or commercial use or serve for public service facilities.
	122. Road and rail networks and associated land	Motorways and railways, including associated installations (stations, platforms, embankments, linear greenery narrower than 100 m). Minimum width for inclusion: 100 m.
	123. Port areas	Infrastructure of port areas (land and water surface), including quays, dockyards and marinas.
	124. Airports	Airports installations: runways, buildings and associated land. This class is assigned for any kind of ground facilities that serve airborne transportation.
GLC2000 (Regional dataset)/EU-JRC	22. Artificial surfaces and associated areas	The land cover consists of built up area(s).

Description of LCZs classes – ECOCLIMAP-SG

Dataset/Producer	Classes*	Descriptions
	24. LCZ1: compact high-rise	 Strong built-up NDVI <= 0.2 and high rise buildings (3D roughness 50-100m) Strong built-up NDVI <= 0.2 and very high rise buildings (3D roughness > 100m)
	25. LCZ2: compact mid-rise	 Continuous urban fabric (from CLC) Strong built-up NDVI <= 0.2 and medium rise buildings (3D roughness 25-50m)
	26. LCZ3: compact low-rise	 Strong built-up NDVI <= 0.2 and low rise buildings (3D roughness <25m)
	27. LCZ4: open high-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
ECOCLIMAP-	28. LCZ5: open midrise	• Medium built-up 0.2 < NDVI <= 0.3 (o 6)
SG/CNRM	29. LCZ6: open low-rise	• Light built-up 0.3 < NDVI <= 0.4
	30. LCZ7: lightweight low-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
	31. LCZ8: large low-rise	 Industrial or commercial unit, Airports (from CLC) Built-up with highly reflecting roof (associated to productive and commercial use) Roads
	32. LCZ9: sparsely built	 Road and rail networks and associated land, Mineral extraction sites, Dump sites, Construction sites, Green Urban Areas, Sport and leisure facilities (from CLC) Very light built-up NDVI > 0.4
	33. LCZ10: heavy industry	• Port areas (from CLC)

Description of impervious classes – "ISA" DATASETS

Dataset/Producer	Classes	Descriptions
GAUD /Liu et al., 2020	Urban areas	Pixels that are dominated by built elements (for example, buildings, roads, runways and so on).
GAIA /Gong et al., 2020	Artificial impervious area	Artificial impervious areas are mainly man-made structures that are composed of any material that impedes or prevents natural infiltration of water into the soil. They include roofs, paved surfaces, hardened grounds, and major road surfaces mainly found in human settlements.
CLMS Imperviousness Density, IMD/EEA	All impervious areas (1-100%)	The classes include all artificially sealed areas produced using automatic derivation based on calibrated Normalized Difference Vegetation Index (NDVI). They are per-pixel estimates of impermeable cover of soil (soil sealing) and are mapped as the degree of imperviousness (0-100%).

Description of impervious classes – "ISA" DATASETS

Dataset/Producer	Classes	Descriptions
GAUD /Liu et al., 2020	Urban areas	Pixels that are dominated by built elements (for example, buildings, roads, runways and so on).
GAIA /Gong et al., 2020	Artificial impervious area	Artificial impervious areas are mainly man-made structures that are composed of any material that impedes or prevents natural infiltration of water into the soil. They include roofs, paved surfaces, hardened grounds, and major road surfaces mainly found in human settlements.
CLMS Imperviousness Density, IMD/EEA	All impervious areas (1-100%)	The classes include all artificially sealed areas produced using automatic derivation based on calibrated Normalized Difference Vegetation Index (NDVI). They are per-pixel estimates of impermeable cover of soil (soil sealing) and are mapped as the degree of imperviousness (0-100%).

The first two datasets, **GAUD** and **GAIA**, are based on binary information: zero means non-impervious, values greater than zeros indicate impervious pixels, also specifying the urbanized year. **Impervious pixels are considered 100% sealed surfaces**.

GAUD /Liu et al., 2020	30 m	yearly	from 1985 to 2015
GAIA/Gong et al., 2020	30 m	yearly	from 1985 to 2018

CLMS-IMD dataset include information on all artificially sealed areas, which are mapped as the **degree of imperviousness (1-100%)**.

CLMS Imperviousness Density, IMD/EEA	100 m 20 m 10 m (2018)	Single year	2006 – 2009 – 2012 – 2015 - 2018
---	------------------------------	-------------	--

Desk review of datasets to derive ISA available for Europe

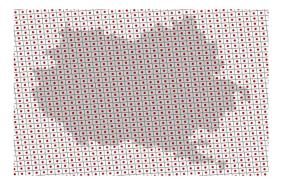
Urban datasets are based on artificial classes that include green urban areas such as garden and parks or on built-up areas without considering other sealed areas on the ground.

The following datasets are adopted for the comparison of ISA values:

- **1. ECOCLIMAP-SG**
- **2.** GAUD, Global Annual Urban Dynamics
- 3. GAIA, Global Artificial Impervious Areas
- 4. CLMS Imperviousness Density, IMD

Furthermore, such datasets are compared with the ISA dataset adopted in COSMO-CLM simulation (reference dataset \rightarrow Maucha et al., 2010)

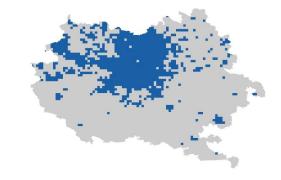
Methodology


To make a comparison between datasets with different spatial resolution, a 2km grid is adopted as a reference grid.

The operational workflow is organized in **3 steps** (ArcGIS workflow):

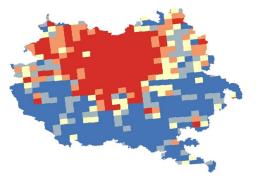
Create the target grid (polygons) from points (centroids)

> Target grid 2 km grid



The target grid is centered on the points of the COSMO-CLM domain

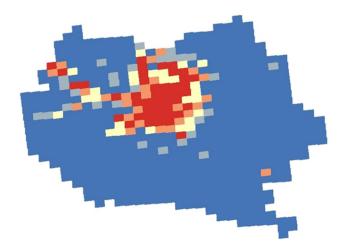
Convert the raster version of datasets into polygon features


ISA datasets original resolution (100m, 30m, 10 m ,...)

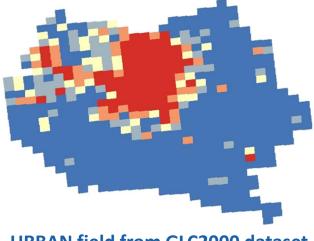
Calculate the % of ISA within each cells of the target grid

% of ISA within each cell 2 km grid

		Com	pared v	vith		
ID	Туре	Reference datasets	Datas	ets (our elaboration)	Spatial scale	Scope
C1	«Urban» dataset	GLC2000 from COSMO-CLM simulation	GLC2	000	2 km grid	Verify the consistency of the interpolation method adopted to derive the urban values from GLC2000 (is the same method adopted to derive ISA values)
C2	C2 «ISA» 2010 from dataset COSMO-CLM simulation	C2.1	CLMS – IMD 2006 CLMS – IMD 2009 CLMS – IMD 2012 CLMS – IMD 2015 CLMS – IMD 2018	2 km grid	Verify the potential update of current ISA field (from Maucha et al., 2010) with more recent and	
		C2.2	GAUD 2015 GAIA 2018 CLMS – IMD 2018	Original resolution 2 km grid	more detailed datasets	


ID	Туре	Datasets (our elaboration)	Spatial scale	Scope
C3		CLMS – IMD 2018 ECOCLIMAP-SG	Original resolution 2 km grid	Verify the potential update of current ISA field (from Maucha et al., 2010) with LCZ classes and/or imperviousness density.

Milan (2 km grid)


Open issue: check with the project team the interpolation method adopted in COSMO-CLM for land cover classes and the method to derive URBAN areas from GLC2000 dataset!!!

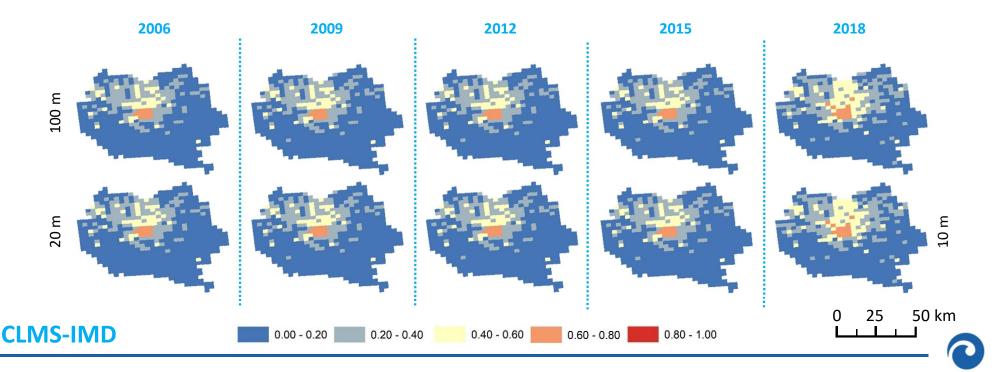
$\uparrow \uparrow \uparrow$

The map highlight an increase in the % of urban areas as compared to the data adopted in the COSMO-CLM simulation

URBAN field from COSMO-CLM (GLC2000)

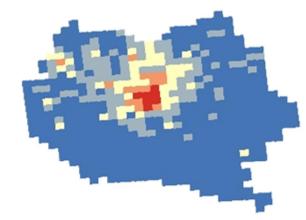

URBAN field from GLC2000 dataset

0 12.5 25

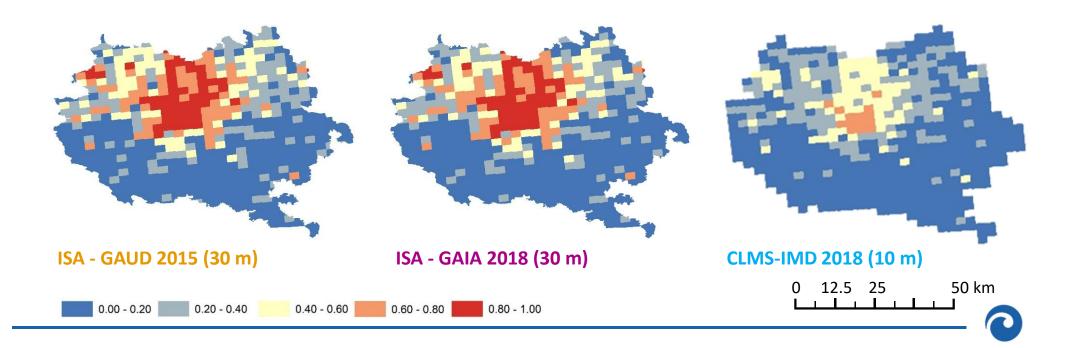

50 km

Milan (2 km grid)

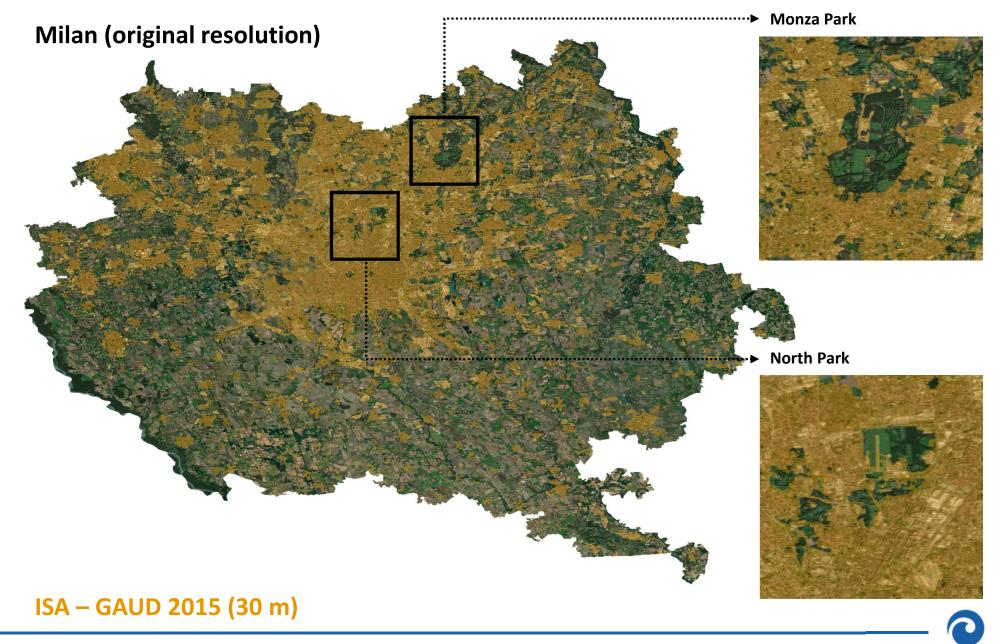
5 different years of CLMS-IMD dataset are compared by considering two spatial resolutions, 100 and 20 meters (10 meters for 2018). There is an increase in ISA values in 2018 in the northern part of the city.

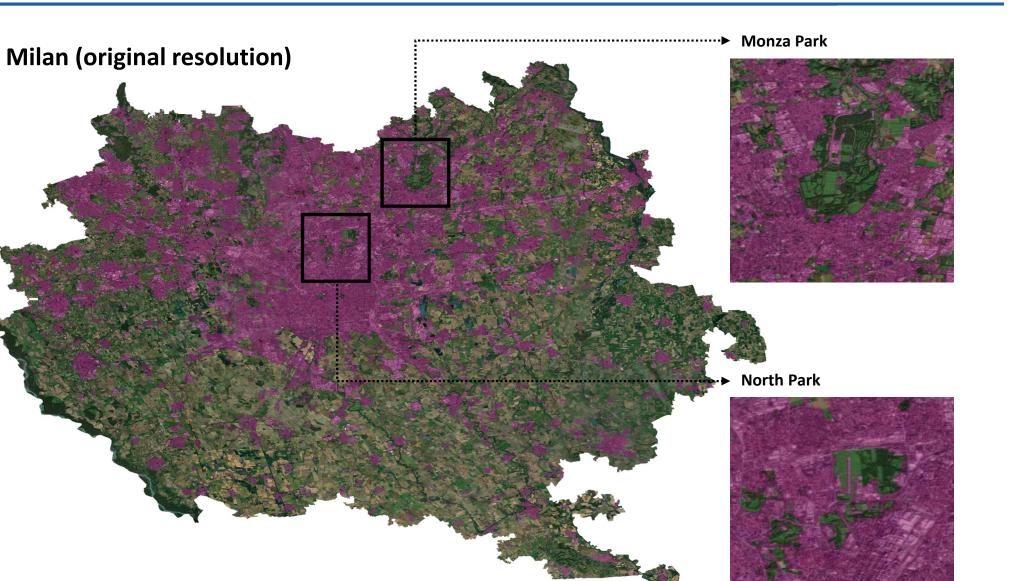


ISA field from COSMO-CLM simulation (Maucha et al., 2010)

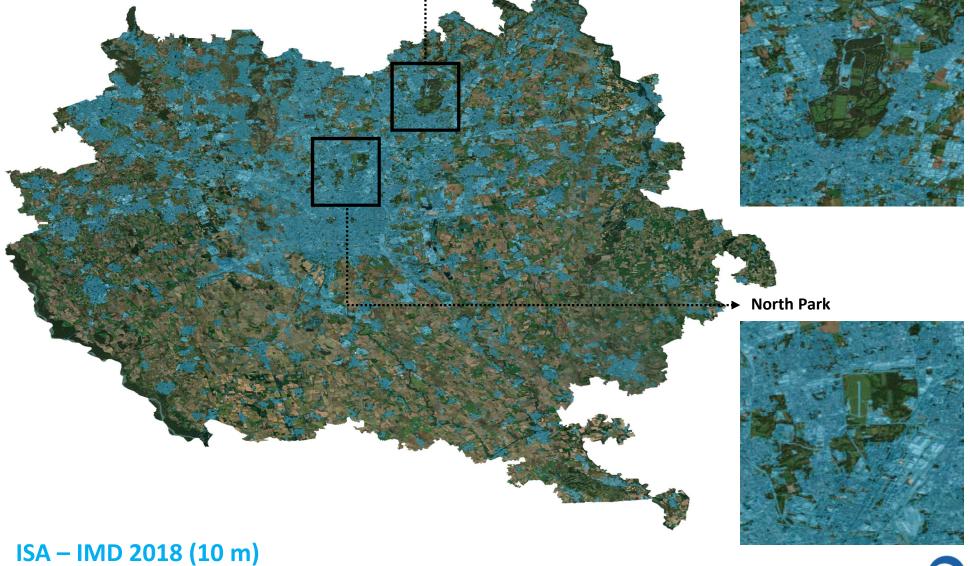


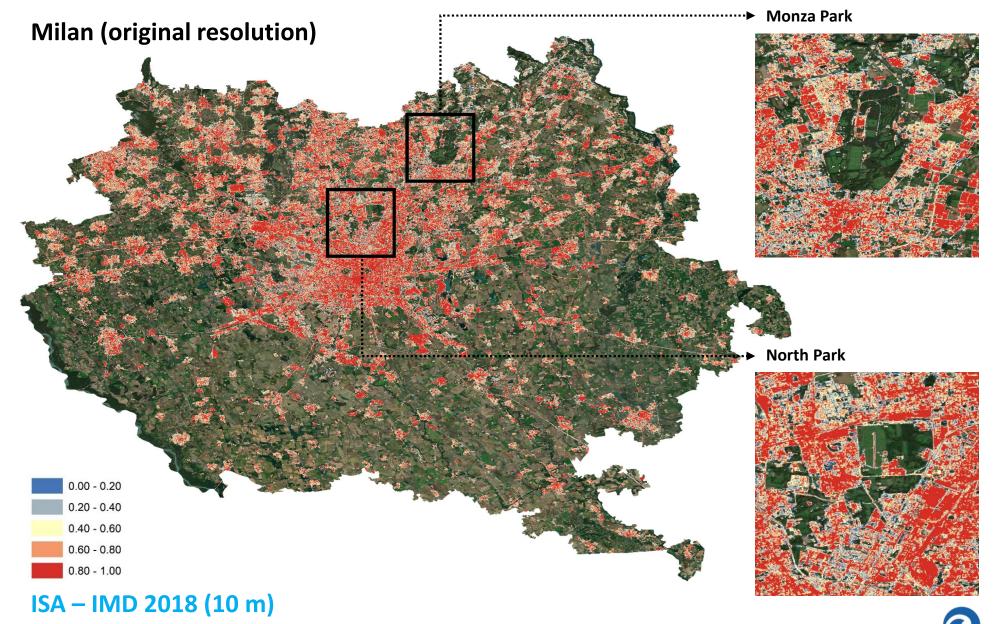
Milan (2 km grid)


In GAUD and GAIA datasets, impervious pixels are considered 100% sealed surfaces. Furthermore, due to their lower spatial resolution as compared with CLMS-IMD, they tend to overestimate ISA.



ISA field from COSMO-CLM simulation (Maucha et al., 2010)





Milan (original resolution)

New ISA classes			
ISA high=80%	3		
ISA medium=60%	2		
ISA low=30%	1		

C3

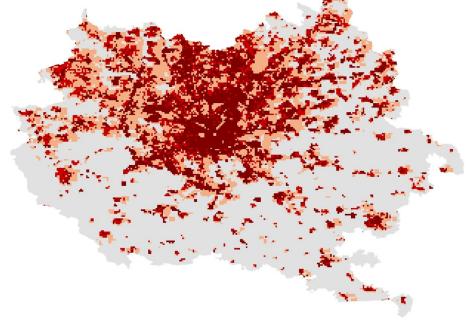
LOCAL CLIMATE ZONES - LCZs ECOCLIMAP-SG include 10 urban

classes derived from CORINE urban classes and translated by adopting LCZs classes.

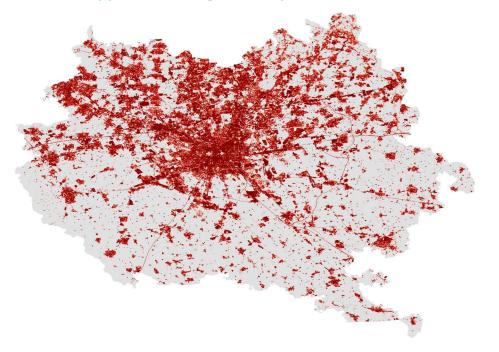
ISA dataset

The classes of CLMS-IMD include all artificially sealed areas, which are mapped as the degree of imperviousness (1-100%).

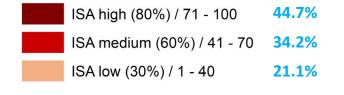
New ISA classes		ECOCLIN			
New ISA Cla	35565	ECOCLIMAP-SG classes	LCZs	CLMS-IMD	
ISA high=80%	3	24-25-26-30-31	1-2-3-7-8	71-100%	
ISA medium=60%	2	27-28-29-33	4-5-6-10	41-70%	
ISA low=30%	1	32	9	1-40%	


Such a classification is our proposal, all suggestions are welcome!

Comparison between LCZs and ISA dataset CLMS - IMD 2018 ECOCLIMAP-SG

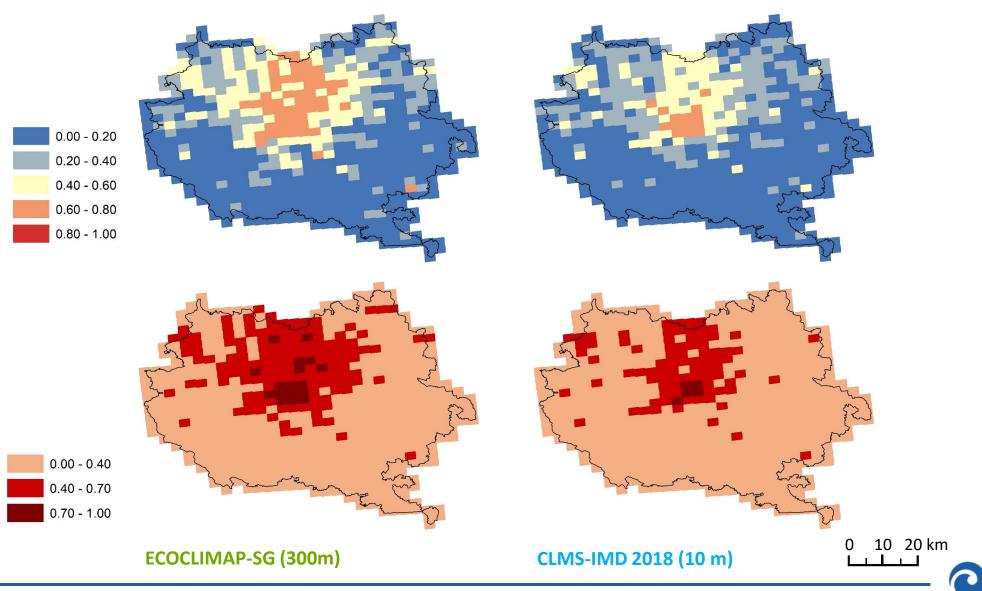

C3

Milan (original resolution)


ECOCLIMAP-SG include 10 urban classes derived from CORINE urban classes and translated by adopting LCZs classes.

The classes of CLMS-IMD include all artificially sealed areas, which are mapped as the degree of imperviousness (1-100%).

ISA high (80%) / classes 24-25-26-30-31	35.9%
ISA medium (60%) / classes 27-28-29-33	20.1%
ISA low (30%) / class 32	44.0%


ECOCLIMAP-SG (300m)

CLMS-IMD 2018 (10 m)

0 5 10 km

C3

The study selected and analyzed datasets to derive ISA currently available over Europe identifying 3 main typology:

- 1. Land cover datasets with artificial/urban classes → GLOBCOVER, ESA-CCI/C3S, GLC2000, CORINE (URBAN dataset)
- 2. Land cover dataset with LCZs classes \rightarrow ECOCLIMAP-SG
- 3. Datasets with impervious classes \rightarrow GAUD, GAIA, CLMS-IMD (ISA datasets)

Then, the study focus on datasets with impervious classes by comparing them with each other and with the reference dataset for ISA in COSMO-CLM simulation (Maucha et al., 2010).

Some considerations

- LCZs looks very promising for the aims of PP-CITTÀ
- CLMS-IMD could have an added value related to the degree of imperviousness (1-100%)
- We need to further check the relevance of spatial resolution in determining ISA

Summary and conclusions

OPEN ISSUES

- check with the project team the interpolation method adopted in COSMO-CLM for land cover classes
- identify the reference year for dataset of Maucha et al., 2010
- fine-tuning of range/intervals for classifying ISA

POTENTIAL FUTURE ACTIVITIES (beyond the aim of the task 2)

- conversion of Arcgis workflow into Python scripts
- running simulations with new datasets (e.g. run the same year with different ISA datasets)
- preparing a paper

All comments and suggestions are welcome!

[dataset] CNRM, ECOCLIMAP Second Generation. https://bit.ly/3bihmDJ

[dataset] Copernicus LMS (2020). Imperviousness Density 2018. https://bit.ly/3oDkdMQ

[dataset] European Commission, Joint Research Centre (2003). *Global Land Cover 2000 database*. <u>https://bit.ly/3vnFMDH</u>

[dataset] Huang, Y. (2019). GAIA File List. https://bit.ly/3bhABxb

Gong P., Li X., Wang J., Bai Y., Chen B., Hu T., Liu X., Xu B., Yang J., Zhang W., Zhou Y. (2020). Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. *Remote Sensing of Environment, 236*. <u>https://doi.org/10.1016/j.rse.2019.111510</u>

[dataset] Huang, Y. (2020). *High spatiotemporal resolution mapping of global urban change from* 1985 to 2015. <u>https://doi.org/10.6084/m9.figshare.11513178.v1</u>

Liu, X., Huang, Y., Xu, X. et al. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. *Nat Sustain 3*, 564–570. <u>https://doi.org/10.1038/s41893-020-0521-x</u>

Maucha, G., Büttner, G., Kosztra, B., 2010. *European validation of GMES FTS Soil Sealing Enhancement*, Final draft. European Environment Agency, European Topic Centre Land Use and Spatial Information.

Thank you!

carmela.apreda@cmcc.it Jan-Peter.Schulz@dwd.de alfredo.reder@cmcc.it paola.mercogliano@cmcc.it

