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Guidelines for Verification of Ensemble Forecasts 

0. Aim of the document 

The aim of this document is to provide some guidelines and a theoretical 
background for the common methods used to verify probabilistic and ensemble 
forecast systems. These guidelines will be used as a starting point for 
incorporating the relevant probabilistic scores and accompanying graphics in the 
VERSUS software package. The information contained within this document will 
also form part of the VERSUS User’s Manual. 

1. Introduction 

The verification of a deterministic weather prediction system consists of the 
comparison of gridded model output, which can be interpolated or not, with point 
observations. A number of statistical scores evaluate different aspects of model 
performance while the forecast “error” is defined simply as the difference 
between the forecast value and the observation. The uncertainty associated with 
the forecast value is, however, not estimated. An Ensemble Prediction System 
(EPS), which is a probabilistic forecast system, aims to quantify this uncertainty 
using a set of perturbed Initial Conditions (ICs) and/or perturbed model 
formulations. Verification methods applied to ensemble forecasts have two main 
objectives: 1) to assess the characteristics of the ensemble distribution and 2) to 
verify the probability forecasts. EPS forecasts represent only one category of 
probabilistic forecasts; others types are associated with a dichotomous 
forecasted parameter or with a consistent set of probability values assigned to 
several categories of the predicted parameter.  

In general, four aspects must be verified in order to properly measure the quality 
of an ensemble system: 1) equal likelihood of each ensemble member, 2) 
superiority of ensemble mean to single control forecast, 3) high spread-skill 
relation and 4) reliable probability. It should be noted that these four aspects are 
interrelated. Since all perturbed ICs could possibly be true and all perturbed 
physics or varying physics schemes or alternative models are also equally 
plausible, the performance of all ensemble members should, in principle, be 
equivalent to one another on average. If this is not the case, it is indicative of 
problems with the choice of ensembling technique employed. For example, either 
the IC perturbations are too large or alternative models, physics schemes or 
perturbations are not equally plausible.  

A number of statistical scores have been developed and are applied in order to 
evaluate the usefulness of an EPS forecast system with respect to each of the 
four aforementioned aspects. In the following sections, the main attributes of an 
EPS forecast system will be presented and a set of the most common statistical 
scores, which will be implemented in the VERSUS software package, and their 
significance will be discussed. In addition, examples of the graphical 
representation of these statistical scores, which must be developed will also be 
provided. 
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2. Basic concepts 

 

2.1 Statistical Framework  

In the case of a dichotomous predictant, the same statistical framework for 
verification such as that described by Wilson (2002) can be applied with some 
simplifications. The joint distribution of forecasts and observations can be 
represented as p(x,f), where f represents the forecasts and x represents the 
observations, and p(f,x) is the joint probability of f and x. This joint distribution can be 
factored in two different ways: 

(a) as the calibration-refinement (CR) factorization, 
 
p(f, x) = p(x|f) p(f)    (1) 
 
where p(x|f) is the conditional distribution of observations given the forecast, and p(f) 
is the marginal (i.e., unconditional) distribution of the forecasts;  
 
and (b) using the likelihood-base rate (LBR) factorization, 
 
p(f, x) = p(f|x) p(x)    (2) 
 
where p(f|x) is the conditional distribution of forecasts given the observation, and p(x) 
is the marginal distribution of the observations. Each factorization involves the 
combination of a conditional distribution and a marginal distribution. The CR 
factorization (1) involves the conditional distribution of observations given forecasts 
(called “calibration”) and the marginal distribution of forecasts (called “refinement”). 
The likelihood-base rate factorization (2) involves the conditional distribution of 
forecasts given observations (called the “likelihood”) and the marginal distribution of 
observations (called the “base rate”). In the case of probabilistic forecasts of a 
dichotomous event, the verification framework is greatly simplified because there are 
only two possible observations. 
  
Differences between p(x) and p(f) describe the unconditional biases in the forecast 
probabilities. The conditional distribution p(x|f) describes the conditional reliability of 
the forecast probabilities when compared to p(f) and "resolution" when only its 
sensitivity to p(f) is being considered. For a given level of reliability, forecasts that 
contain less uncertainty, i.e. ‘‘sharp forecasts’’, may be preferred over ‘‘unsharp’’ 
ones since they contribute less uncertainty to decision making. In contrast, p(f|x) 
measures the ability of the forecasts to ‘‘discriminate’’ between different observed 
outcomes. An ensemble forecasting system is discriminatory with respect to an 
event if it consistently forecasts the event’s (observed) occurrence with a probability 
higher than chance (i.e. climatology) and consistently forecasts its (observed) non-
occurrence with a probability lower than chance. In general, the utility of a 
forecasting system will depend on several attributes of forecast quality (Jolliffe and 
Stephenson, 2003). In the following section, a short description of each one of these 
attributes is provided. 
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2.2 Attributes 
 
Reliability is a measure of how closely the forecast probabilities correspond to the 
conditional frequency of occurrence of the event. For example, when a probability 
forecast of 0.20 is issued, we would expect the event to occur 20% of the time. 
Reliability is a measure of how well this holds up in reality. It should be noted that a 
forecasting system that simply forecasts the climatological probabilities of events 
may be reliable, but is not useful. This aspect can be improved by calibration, 
essentially relabeling the forecast probability values. 
 

 
Resolution provides a measure of how well the observations are “sorted” among the 
different forecasts. We would expect that the mean observation varies between 
forecasts and also differs from the overall mean observation. 
  
Sharpness indicates the degree of “spread” or variability in the forecasts. While 
probability forecasts vary between 0 and 1, perfect forecasts only include the two 
end points, 0 and 1. Therefore, sharper forecasts will tend toward values close to 0 
and 1, and sharpness measures the degree to which the forecasts approach these 
extreme values. Forecasts with greater variability (e.g., measured by the standard 
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deviation) are sharper forecasts. The basic shape of the distribution of forecasts can 
also provide feedback concerning the degree of sharpness of a set of forecasts. If 
the histogram of forecast relative frequencies is either “bell-shaped” or flat, then the 
forecasts cannot be considered very sharp. On the other hand, a U-shaped 
histogram, with most or all of the frequency at 0 or 1, indicates that the forecasts are 
relatively sharp. Finally, the histogram corresponding to perfect forecasts has two 
spikes, one at 0 and one at 1. It should be noted that sharpness is just one attribute 
describing forecast quality; sharp forecasts are not necessarily accurate. 
 
Discrimination is a measure of how well the forecasts discriminate between events 
and non-events. Ideally, the distribution of forecasts in situations when the forecast 
event occurs should differ from the corresponding distribution in situations when the 
event does not occur. 
 
Bias refers to the overall (average) error in the forecasts. It is simply a calculation of 
the difference between the mean forecast and the mean observation. 
 
Accuracy is a measure of the overall correspondence between the forecasts and 
observations. A number of different scores are appropriate for probability forecasts, 
including the Brier score, the correlation coefficient and the ROC area. 
 
Skill evaluates the relative accuracy by comparing the accuracy of the forecasts 
against the accuracy of some standard of comparison, such as climatological values 
or persistence. 
 
Based on the above, it is evident that a variety of different attributes may be of 
interest when evaluating the quality of a set of forecasts. No single attribute or 
measure alone can provide a complete picture of the characteristics of the forecasts. 
It is therefore suggested that a range of the aforementioned attributes are calculated 
in order to deliver an overall view of the quality of the forecasts. Of course, for very 
specific forecast applications, some attributes may be more useful than others. 
 

3. Statistical scores 
 
 
3.1 Deterministic metrics for the ensemble mean forecast  
 
There is a debate whether or not is a good idea to examine separately the ensemble 
mean as a normal deterministic output and what the benefits are. The verification of 
the ensemble mean can provide a general outlook of the skill of the model, filtering 
out smaller unpredictable scales and is needed in evaluating the spread-skill relation, 
something essential for an EPS system.  
 
3.1.1 Continuous parameters 
 
Mean error 
The mean error (ME) measures the average difference between a set of forecasts 
and corresponding observations. Here, it measures the average difference between 
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the ensemble mean forecasts and observations. The ME of the ensemble mean 
forecast Y  given the observation, x, is given by: 

 
Versus computations: Mean value of all ensemble members for each parameter 
 
 
Root mean square error 
The mean square error (MSE) measures the average square error of the forecasts. 
The Root Mean Square Error (RMSE) provides the square root of this value, which 
has the same units as the forecasts and observations. Here, the forecast 
corresponds to the ensemble mean value and an 'error' represents the difference 
between the ensemble meanY and the observation, x. The equation for the RMSE is: 

 
Versus computations: Mean value of all ensemble members for each parameter 
 
 
Correlation coefficient 
The correlation coefficient measures the strength of linear association between two 
variables. Here, it measures the linear relationship between n pairs of ensemble 
mean forecasts and corresponding observations. A correlation coefficient of 1.0 
denotes a perfect linear relationship between the forecasts and observations. A 
correlation coefficient of -1.0 denotes a perfect inverse linear relationship (i.e. the 
observed values increase when the forecasts values decline and vice versa). The 
ensemble mean forecast may be perfectly correlated with the observations and still 
contain biases, because the correlation coefficient is normalized by the overall mean 
of each variable. A correlation coefficient of 0.0 denotes the absence of any linear 
association between the forecasts and observations. However, a low correlation 
coefficient may occur in the presence of a strong non-linear relationship, because 
the correlation coefficient measures linear association only. The Pearson product-
moment correlation coefficient, r, which is given by: 

 
where Cov(x, Y ) is the sample covariance between the ensemble mean forecasts 
and their corresponding observations. The sample standard deviations of the 
forecasts and observations are denoted Std(Y ) and Std(x) , respectively. The 
sample covariance between the n pairs of forecasts and observations is 

 
where mU

 and m
x
 are the overall sample means of the (ensemble mean) forecasts 

and observations, respectively. 
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Versus computations: Mean value of all ensemble members, mean value of 
observations, standard deviation of mean ensemble forecasts, standard deviation of 
observations. 
 
3.1.2  Dichotomic parameters 
 
If only the ensemble mean is examined, EPS forecasts can be treated through the 
measures used for completely “confident” forecasts of dichotomic parameters, 
namely all the already inserted scores in VERSUS. Many of the attributes discussed 
in previous paragraphs, can be evaluated using these commonly used measures. 
For example, POD and POFD are related to discrimination, and FAR is related to 
reliability. Unfortunately, because only three numbers are required to specify the joint 
distribution of forecasts and observations in this case (i.e., the dimensionality of the 
completely confident dichotomous forecast verification situation is three), the 
measures are also strongly related, in sometimes complex ways. Improvements in 
one measure (e.g., POD) generally are associated with degradations in another 
measure (e.g., POFD, FAR). Thus, it is critical to consider a variety of measures 
when evaluating these types of forecasts, despite their apparent simplicity. One 
particularly important dependency is the strong relationship of FAR, CSI, and other 
measures to the climatological probability, p(x=1) (Brown and Young 2000; Mason, 
1989). This relationship makes it inappropriate to compare forecasts for situations 
with different climatological probabilities, and also limits use of these measures for 
certain types of observations (Brown and Young 2000). 
 
3.2  Probabilistic Scores 
 
Brier Score 

Answers the question: What is the magnitude of the probability forecast errors? 
 
The Brier Score (BS) measures the average square error of a probability forecast. It 
is analogous to the mean square error of a deterministic forecast, but the forecasts, 
and hence error units, are given in probabilities. The Brier Score measures the error 
with which a discrete event, such as ‘flooding’, is predicted. It is given from: 
 

 
 
 

• N  =  number of points in the “domain” (spatio-temporal) 
• io   =  1 if the event occurs 

                  =  0 if the event does not occur  

•  if  = is the probability of occurrence according to the forecast system (e.g.  
                        the  fraction of ensemble members forecasting the event) 

 
It is sensitive to climatological frequency of the event. In the absence of any 
forecasting skill, the best strategy to optimise the Brier Score is to forecast the 
climatological frequency. The more rare an event, the easier it is to get a good BS 
without having any real skill. For this reason, the Brier Skill Score (see below) is 
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preferred because it references the score to climatology (sample or long-term). The 
perfect score is 0 and is possible for perfect deterministic forecast. 
 
Versus computations: if  fraction of ensemble members forecasting an event 
 
 
Brier Score Decomposition 

The Brier Score can be decomposed into several components that are relevant for 
interpretation of the sources of errors in the forecasts (Murphy 1973) which is useful 
for exploring dependence of probability forecasts on ensemble characteristics: 
 
 
 
 
                                        reliability                  resolution         uncertainty 
 
ō total frequency of the event (sample climatology)  
 
For this decomposition, it is assumed that there is a discrete number of forecast 
possibilities, M, and the forecasts and observations have been sorted by the forecast 
value. Each of the terms in can be interpreted in the context of attributes of forecast 
quality as it was discussed above. 
  
The first term is a reliability measure: for forecasts that are perfectly reliable, the 
sub-sample relative frequency is exactly equal to the forecast probability in each 
sub-sample.  It measures the difference between the forecast and the mean 
observation associated with that forecast value, over all of the forecasts. 
 
The second term is a resolution measure: if the forecasts sort the observations into 
sub-samples having substantially different relative frequencies than the overall 
sample climatology, the resolution term will be large. This is a desirable situation, 
since the resolution term is subtracted. It is large if there is resolution enough to 
produce very high and very low probability forecasts.  
 
The uncertainty term ranges from 0 to 0.25. If the event was either so common, or 
so rare, that it either always occur or never occur, then bunc=0. When the 
climatological probability is near 0.5, there is more uncertainty inherent in the 
forecasting situation (bunc=0.25).  
 
Versus computations: if  fraction of ensemble members forecasting an event 
                                     ō total frequency of the event (sample climatology) 
                                        sample climatology= obs. occurrences/ num. forecasts 
 
Brier Skill Score 

Answers the question: What is the relative skill of the probabilistic forecast over that 
of climatology, in terms of predicting whether or not an event occurred? 

å å
= =

-+---=
M

k

M

k
kkkkk ooooN

N
ofN

N
BS

0 0

22 )1()(
1

)(
1



Last updated: 08 Dec 2010                  Guidelines for verification of ensemble forecasts, F.Gofa HNMS 
 

The Brier Skill Score (BSS) measures the performance of one forecasting system 
relative to another in terms of the Brier Score (BS). The BS measures the average 
square error of a probability forecast of a dichotomous event. The BSS comprises a 
ratio of the BS for the forecasting system to be evaluated (the "main forecasting 
system"), over the BS for the reference forecasting system BSREF. Commonly, the 
reference forecast is the sample climatology. 

 
 
 

 
 
As a measure of average square error in probability, values for the BS approaching 
zero are preferred. It follows that a BSS closer to 1 is preferred, as this indicates a 
low BS of the main forecasting system relative to the BS of the reference forecasting 
system. This score should always be applied to a sufficiently large sample, one for 
which the sample climatology of the event is representative of the long term 
climatology. The rarer the event, the larger the number of samples needed to 
stabilise the score. For best results the Brier skill score should be computed on the 
whole sample, i.e., the skill should be computed for an aggregated sample, not 
averaged for several samples. 
 
Relative Operating Characteristic 

Answers the question: What is the ability of the forecast to discriminate between 
events and non-events? 

The Relative Operating Characteristic (ROC; also known as the Receiver Operating 
Characteristic) measures the quality of a binary prediction or “decision” based on the 
forecast probability. A binary prediction is generated from the forecast by defining a 
probability threshold above which the discrete event is considered to occur. For 
example, a decision maker might issue a flood warning when the forecast probability 
of a flood exceeds 0.9. The ROC curve plots the forecast quality for several 
probability thresholds. For example, given a decision on whether to issue a flood 
warning, a probability threshold of 0.7 corresponds to a higher level of risk aversion 
(i.e. a lower threshold for warning) than a probability of 0.9. As the threshold 
declines, the probability of correctly detecting an event (the Probability of Detection 
or POD) will increase, but the probability of False Detection will also increase.  
-  X-axis: False Alarm Rate or probability of an incorrect forecast of an event 
- Y-axis: the POD or probability with which an event is correctly forecast to occur. 
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A contingency table can be built for each probability class (a probability class can be 
defined as the % of ensemble elements which actually forecast a given event) 
 
Versus computations: Contingency table for each probability class 
 
 
Ranked Probability Score  

Answers the question: How well did the probability forecast predict the category that 
the observation fell into?  

The most common measure used to evaluate probability forecasts of multiple 
categories is the Ranked Probability Score (RPS). This measure is analogous to the 
BS, and has the form: 

 
 
 
 

• J  =  number of forecast categories 
• oj  =  1 if the event occurs in category j 

                   =  0 if the event does not occur in category j 
•  fj   =  is the probability of occurrence in category j  

This score is used to assess multi-category forecasts, where J is the number of 
forecast categories (for example, rainfall bins: 0-1 mm, 1-5 mm, 5-10 mm, etc.),The 
RPS penalizes forecasts less severely when their probabilities are close to the true 
outcome, and more severely when their probabilities are further from the actual 
outcome. For two forecast categories the RPS is the same as the Brier Score.  

Ranked Probability Skill Score  

Answers the question: What is the relative improvement of the probability forecast 
over climatology in predicting the category that the observations fell into?  

The RPSS measures the improvement of the multi-category probabilistic forecast 
relative to a reference forecast (usually the long-term or sample climatology). It is 
similar to the 2-category Brier skill score, in that it takes climatological frequency into 
account. Because the denominator approaches 0 for a perfect forecast, this score 
can be unstable when applied to small data sets. This score should always be 
applied to a sufficiently large sample, one for which the sample climatology of the 
event is representative of the long term climatology. The rarer the event, the larger 
the number of samples needed to stabilise the score. For best results the ranked 
probability skill score should be computed on the whole sample, i.e., the skill should 
be computed for an aggregated sample, not averaged for several samples.          
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4. Graphical representation of scores and probabilities 

4.1 Deterministic scores graphs 

A composite graph with the values of RMSE values for each member for each 
parameter is a first necessary approach to present the statistical value of an 
ensemble system. Such capability has already been added to the VERSUS system. 
It is however essential to add as a separate line the calculated score for the 
ensemble mean. In this way the error spread around the mean forecast is more 
visible. 

  

 

4.2 Reliability diagrams 

Answers the question: How well do the predicted probabilities of an event 
correspond to their observed frequencies? 

The reliability diagram measures the accuracy with which a discrete event is forecast 
by an ensemble or probabilistic forecasting system. According to the reliability 
diagram, an event should be observed to occur with the same relative frequency as 
its forecast probability of occurrence over a large number of such forecast-
observation pairs. The Reliability diagram plots the average forecast probability 
within each bin on the x-axis. The y-axis shows the corresponding fraction of 
observations that fall in each bin. If the forecast is perfectly reliable, the observed 
fraction within each bin will equal the average of the associated forecast 
probabilities, forming a diagonal line on the reliability diagram. Deviation from the 
diagonal line represents bias in the forecast probabilities, notwithstanding sampling 
uncertainty. The reliability diagram may be computed for several discrete events. 
 
Each event is represented by a separate reliability curve. The number of forecasts 
that fall in each bin is referred to as the 'sharpness' of the forecasts and is displayed 
as a histogram for each of the forecast bins. Ideally, the forecast probabilities will be 
sharp, i.e. issued with little uncertainty, but also reliable. The reliability diagram is 
conditioned on the forecasts,p(x|f) and it is a good partner to the ROC  
 
To construct a reliability diagram, do the following: 
1. For each forecast probability category count the number of observed occurrences 
2. Compute the observed relative frequency in each category k 
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obs. relative frequencyk= obs. occurrencesk/ num.forecastsk 
3. Plot observed relative frequency vs forecast probability 
4. Plot sample climatology ("no resolution" line) 

sample climatology= obs. occurrences/ num. forecasts 
5. Plot "no-skill" line halfway between climatology and perfect reliability (diagonal) 
lines 
6. Plot forecast frequency separately to show forecast sharpness 
 
In a perfect reliable system the forecast probability is equal to the observed 
frequency so the graph is a straight line oriented at 45o to the axes. If the curve lies 
below the 45° line, the probabilities are overestimated whether if the curve lies above 
the 45° line, the probabilities are underestimated. The more flat is the curve the 
lower resolution the probabilities have. The frequency of the forecasts in each 
probability bin of the histogram shows the sharpness of the forecast. Below are given 
examples of graphs created to represent the reliability diagram and ways to interpret 
a graph that was created. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

a.climatoligical forecast, b.minimal resolution, c.underforecasting 
bias, d.good resolution at the expense of reliability, e.reliable of rare 
event, f.small sample size and small ensemble 
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The reliability term measures the mean square distance of the graph line to the 
diagonal line (see top left diagram). Points between the "no skill" line and the 
diagonal contribute positively to the Brier skill score (resolution > reliability). The 
resolution term measures the mean square distance of the graph line to the sample 
climate horizontal dotted line. 

4.3 Rank Histogram  

Answers the question: How well does the ensemble spread of the forecast represent 
the true variability (uncertainty) of the observations? 

Also known as a "Talagrand diagram", this method checks where the verifying 
observation usually falls with respect to the ensemble forecast data, which is 
arranged in increasing order at each grid point. In an ensemble with perfect spread, 
each member represents an equally likely scenario, so the observation is equally 
likely to fall between any two members. It measures how well the ensemble spread 
of the forecast represents the true variability (uncertainty) of the observations. 
 
To construct a rank histogram, do the following:  
1. At every observation point rank the N ensemble members from lowest to highest. 
This represents N+1 possible bins that the observation could fit into, including the 
two extremes  
2. Identify which bin the observation falls into at each point  
3. Tally over many observations to create a histogram of rank.  
Interpretation:  
Flat: ensemble spread correctly represents forecast uncertainty  
U-shaped: ensemble spread too small, many observations falling outside the 
extremes of the ensemble  
Dome-shaped: ensemble spread too large, most observations falling near the center 
of the ensemble  
Asymmetric: ensemble contains bias  
 

  
 

Explanation of Talagrand diagram construction and interpretation of its shapes 
 
A flat rank histogram does not necessarily indicate a good forecast, it only measures 
whether the observed probability distribution is well represented by the ensemble.  
 

Rank histogram (Talagrand Diagram) 
Frequency of occurrence of the observation 

in each bin of the rank histogram of the 
distribution of the values forecast by an 

ensemble 
range of forecast value 

V1 V2 V3 V4 V5 

Outliers below 
the minimum 

Outliers above 
the maximum 

I II III IV 

If the ensemble members and the verifying 
observation are independent realisations 
of the same probability distribution, each 
interval is equally likely to contain the 
verifying observed value (measure of 
reliability) 

U-shape: negative 
bias in the variance 

dome-shape: positive 
bias in the variance 

Asymmetrical: bias in the mean 
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4.4 ROC curves 

ROC measures the ability of the forecast to discriminate between two alternative 
outcomes, thus measuring resolution. It is not sensitive to bias in the forecast, so 
says nothing about reliability. A biased forecast may still have good resolution and 
produce a good ROC curve, which means that it may be possible to improve the 
forecast through calibration. The ROC can thus be considered as a measure of 
potential usefulness. 

 
The ROC is conditioned on the observations (i.e., given that Y occurred, what was 
the corresponding forecast?)  It is therefore a good companion to the reliability 
diagram, which is conditioned on the forecasts. 

To construct a ROC curve, do the following:  
1. From original dataset, determine bins  

n You can use binned data as for Reliability diagram but there must be 
enough occurrences of the event to determine the conditional 
distribution given occurrences – may be difficult for rare events. 

n Generally you need at least 5 bins. 
2.For each probability threshold, determine HR and FA 
3.Plot HR vs FAR to give empirical ROC curve. 
4.Use binormal model to obtain ROC area; recommended whenever there is 
sufficient data >100 cases or so. 
 

 
 
 
The area under the ROC curve ("ROC area") is a useful summary measure of 
forecast skill. Perfect: ROC area = 1, No skill: ROC area = 0.5, ROC skill score 
ROCS= 2 (ROC area -0.5). 
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Interpretation of ROC curves 

 
 

4.5 Ranked Probability Skill Score Graph 

Measures the improvement of the multi-category probabilistic forecast relative to a 
reference forecast (usually the long-term or sample climatology). It is rather unstable 
when applied to small data sets. An example graph is given below. 

 

 

5. Spread-Skill Relationship 

EPS are designed to represent the full uncertainty range as realistic as possible. To 
assess if this is the case, the spread-skill relationship (SSR) is often investigated. 
Palmer et al. [2005] showed that in a 'perfect ensemble' the mean of the spread 
should be equal to the root mean square error over the same period. The unbiased 
estimator of the standard deviation  is given by: 
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where M is the ensemble size, fm is the forecast value of the mth member and f 
represents 
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When the spread line is below and far from the RMSE line then the ensemble is 
considered underdispersive. Example graph of this spread/skill correlation is given 
below. 

                    

6. Cost - Loss model 

A cost-loss analysis is a useful tool for all decision makers, especially while 
forecasting precipitation events and identifying the skill of the forecast system. The 
score is based on the fact that a certain event can cause an economic loss L, which 
can be avoided if the event is forecasted, by taking a protective action whose cost is 
C. depending on the ratio between C and L the forecast system can either be useful 
or not for a user. The scores FAR and HR can be used as indicators for the skill of 
the forecast system. 

                                        

With a deterministic forecast system, the mean expense for unit loss is:  

                                         

ō=a+c is the sample climatology (the observed frequency), while a,c are taken from 
the contingency table prepared for a specific threshold of the event. 
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In the case of an EPS or probabilistic forecast system, the user has to fix a 
probability threshold k and when this threshold is exceeded a protective action needs 
to be taken. In this case, FAR and HR are calculated for the specific probability 
threshold. The value V of the forecast system is defined as a reduction in ME with 
respect to the ME sustained if only climatological information were available and it is 
expressed as a percentage of the value which would be achieved by a perfect 
forecast: 

 

The ME for a perfect forecast system is the expense taking a preventing action every 
time the event occurs. Both ME(climate) and ME(perfect formulas are given below 
together with a diagram. 

 

 

 

The action is taken always when C/L< ō and never in any other case. 

 

7. Remarks 

A number of measures can be added for a more spherical approach of an ensemble 
verification. Such methods can be those based on object-oriented verification, similar 
to the ones used for deterministic forecasts and described by Ebert and McBride 
(2000). Also a useful tool could be the ability to compare two or more ensemble 
systems and the statistically significant difference in their performance, using for 
example a bootstrap method (Wilks 1995, Hamill 1999). This can be the interest of a 
second phase of implementation of ensemble verification techniques inside VERSUS 
system. 

 

Contingency 
table 

 

Observed 

Yes No 

Forecast 

 
Yes a b 

No c d 
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