

New Cloud Optical Properties in ICON

S. Gruber¹, M. Köhler², U. Blahak², H. Muskatel³, P. Khain³, B. Vogel¹

¹Institute of Meteorology and Climate Research, KIT ²Deutscher Wetterdienst ³Israel Meteorological Service

l old

- Iookup-tables of r_{eff}(q)
- cloud ice, cloud droplets

Fu, 1996; Fu et al., 1998; Fu, 2007
 effective radius

$$r_e = \frac{\int V(L)n(L)dL}{\int \bar{A}(L)n(L)dL}$$

aspect ratio $AR = \frac{\int \frac{D}{L} \bar{A}(L) n(L) dL}{\int \bar{A}(L) n(L) dL}$

Fu, 1996; Fu et al., 1998; Fu, 2007
 effective radius

$$r_e = \frac{\int V(L)n(L)dL}{\int \bar{A}(L)n(L)dL}$$

aspect ratio
$$AR = \frac{\int \frac{D}{L} \bar{A}(L) n(L) dL}{\int \bar{A}(L) n(L) dL}$$

- optical properties of hydrometeors for RRTM (Fits by U. Blahak and H. Muskatel)
 - extinction coefficient

$$ext = \frac{\sum_{i} c_{i} r_{e}^{i}}{\sum_{j} c_{j} r_{e}^{j}}$$

single-scattering-albedo

$$SSA = \frac{\sum_{i} b_{i} r_{e}^{i}}{\sum_{j} b_{j} r_{e}^{j}}$$

asymmetry parameter

$$g = \frac{\sum_{i} a_{i} r_{e}^{i}}{\sum_{j} a_{j} r_{e}^{j}}$$

l old

- lookup-tables of r_{eff}(q)
- cloud ice, cloud droplets

new

- explicitly consider number conc.
- cloud ice, cloud droplets, rain, snow, graupel

- explicitly consider number conc.
- cloud ice, cloud droplets, rain, snow, graupel

$$x = \frac{q}{n}$$
$$L = ax^{b}$$

$$r_e = \frac{\int V(L)f(L)dI}{\int \bar{A}(L)f(L)dI}$$
$$r_e = \alpha x^{\beta}$$

l old

new, 2mom

Case study I: Model Setup

Case study I: Model Setup

- Arctic winter 2015 / 2016
- two-moment bulk microphysics: Seifert and Beheng, 2006
- improved calculation of cloud optical properties: Fu, 1996; Fu et al., 1998; Fu, 2007
- cirrus nucleation: Barahona and Nenes, 2008
 heterogeneous nucleation: Philips et al., 2013
- activation of CCN: Barahona et al., 2009
- prognostic aerosol: mineral dust, sea salt

Radiative Temperature Tendency

Radiative Temperature Tendency

Radiative Temperature Tendency

ICON vs Calipso

ICON vs Calipso

Case study II: Model Setup

- two-moment bulk microphysics: Seifert and Beheng, 2006
 - sub-stepping for microphysics (150 s \rightarrow 5 s)
- improved calculation of cloud optical properties: Fu, 1996; Fu et al., 1998; Fu, 2007
- cirrus nucleation: Barahona and Nenes, 2008
 heterogeneous nucleation: Philips et al., 2013
- activation of CCN: Barahona et al., 2009
- prognostic aerosol: mineral dust, sea salt

 $\mathbf{r}_{\text{eff}}~\text{and}~\text{dd}\mathbf{T}$

Issue: Diagnostic n_{ICE}

Current Status

Karlsruher Institut für Technologie

- calculation of r_{eff} / AR based on particle mean mass
- fits for RRTM bands
- used for cloud ice, cloud droplets, rain, snow, graupel
- case study I:
 - new optical properties agree better with Calipso
- case study II
 - change of sign in ICON radiation biases
 - optically thicker in for sw
 - more OLR
- used with 1mom r_{eff,ICE} become very large

Next Steps

- sub-grid scale clouds / aerosol effect
- new n_{ICE}(T) only for radiation?
- what about reduced grid / "repartitioned radiation"?

Net. Shortwave at TOA

bias: 14.0 W m⁻²

bias: 16.2 W m⁻²

Outgoing Longwave Radiation at TOA

bias: 5.1 W m⁻²

bias: -3.7 W m⁻²

