

Microphysics of shallow cumulus clouds in LES simulations for testing the new COSMO parametrization

Pavel Khain¹, U. Blahak², H. Muskatel¹, Y. Levi¹

Thanks to: Elyakom Vadislavsky¹, R. Heiblum³, O. Altaratz³, I. Koren³

¹ The Israel Meteorological Service, ² Deutscher Wetterdienst, ³ Weizmann Institute of Science, Israel

COSMO User Seminar, Offenbach, March 2017

1. Motivation

- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Motivation

- Shallow cumulus are extremely important to radiation budget
- In COSMO these clouds are subgrid, liquid water content in grid points is zero!
- To estimate radiation transfer, we need the optical properties of subgrid clouds
- To calculate them we need the profiles of
 - 1. Cloud cover (CLC)
 - 2. Liquid water content (LWC)
 - 3. Effective radius of droplets (Reff)
- Question: How to estimate 1,2,3?
- There are 2 options:

•

- Already in the COSMO model (new scheme by U. Blahak):
 - **CLC** from the relative humidity at a grid point
 - LWC from saturation mixing ratio at a grid point
 - Reff from droplets number concentration (NC) and LWC
- LES simulation with detailed (Spectral-Bin) microphysics:
 - Simulate shallow cumulus explicitly for different stratifications and aerosols concentrations
 - Average the profiles of CLC, LWC, Reff over space and time to mimic COSMO resolution

1. Motivation

- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

COSMO new scheme (by U. Blahak)

Aerosol concentration clim. profile (derived from Tegen et al. 1997)

Effective updraft speed profile

(including turbulence, radiative cooling and parameterized convection)

Cloud droplets concentration profile

(from Segal & Khain 2006)

Subgrid clouds Liquid Water Content profile

(assuming proportionality to saturation mixing ratio)

Subgrid clouds effective radius profile

 $R_{eff}(z) = \alpha \left(\frac{LWC}{N_c}\right)^{\beta}$

Motivation

- Shallow cumulus are extremely important to radiation budget
- In COSMO these clouds are subgrid, liquid water content in grid points is zero!
- To estimate radiation transfer, we need the optical properties of subgrid clouds
- To calculate them we need the profiles of
 - 1. Cloud cover (CLC)
 - 2. Liquid water content (LWC)
 - 3. Effective radius of droplets (Reff)
 - Question: How to estimate 1,2,3?
 - There are 2 options:
 - Already in the COSMO model (new scheme by U. Blahak):
 - **CLC** from the relative humidity at a grid point
 - LWC from saturation mixing ratio at a grid point
 - Reff from droplets number concentration (NC) and LWC
 - LES simulation with detailed (Spectral-Bin) microphysics:
 - Simulate shallow cumulus explicitly for different stratifications and aerosols concentrations
 - Average the profiles of CLC, LWC, Reff over space and time to mimic COSMO resolution

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Simulations design

- System for Atmospheric Modelling (SAM) (Khairoutdinov and Randall, 2003) is used to conduct LES simulations (<u>http://rossby.msrc.sunysb.edu/~marat/SAM.html</u>)
- Nonhydrostatic, anelastic, cyclic horiz. boundary conditions, maintaining temp. & moisture gradients at model top
 - Microphysics: Spectral-Bin (Khain et al., 2013) with 33 mass bins for drops (radii from 2μm to 3.2mm) to simulate warm processes: droplet nucleation, diffusional growth, collision coalescence, sedimentation, breakup
- Resolution: horiz. 100m, vertical 40m, time step: 1s, runtime: 8h. Domain: 12.8 X 12.8 X
 5.1km
- Initial temp. perturbations near the surface at first time step

٠

•

- Simulated case: Barbados Oceanographic and Meteorological Experiment (BOMEX) (Siebesma et al., 2003) – trade wind cumulus cloud field
- Aerosols: different size distributions (from 100 to 5000 cm⁻³), where only the large size tails are activated in cumulus

Shallow cumulus simulations

SAM-SBM: BOMEX case CCN=5000cm-3 4 (min)

Shallow cumulus simulations

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

1. Assume no mixing with surrounding

<mark>Dry a</mark>i

- The droplets are growing with height (diffusional growth)
- The number concentration stays similar with height
- *Each droplet represents size distribution !

Π

2

2. Air close to the cloud is very humid

Dry air

σ

<u>ס</u>

MM

Ī

Cloud Π Humid

air

Dry

.

3. Entrainment leads to decreasing droplets concentration, keeping their size ~constant

4. Neglecting the dissipation at cloud top...

Height dependence?

LWC – increase with height NC – stay more or less constant Reff – increase with height

Horizontal dependence?

LWC – big variation NC – big variation Reff – small variation

On average over many cloudy grid-points?

Height dependence?

LWC – increase with height NC – stay more or less constant Reff – increase with height

Horizontal dependence?

LWC – big variation NC – big variation Reff – small variation

Cloud 2

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Example of simulation results for 5000 CCN cm⁻³:

scatter over all grid points and times

Averaged (over space and time) profiles

Possible parametrization of the Effective Radius ?

Everywhere in the cloud:

$$LWC(z) = \frac{4\pi\rho_w}{3}NC(z)\left(\frac{R_{eff}(z)}{1.08}\right)^3$$

Specifically, in cloud core: $\operatorname{Reff}(z) \approx \overline{\operatorname{Reff}(z)}$ $LWC(z) \approx LWC_{adiab}(z)$ $NC(z) \approx const \approx NC_{cloud \ base}$ from Segal & Khain 2006 $\overline{R_{eff}(z)} \approx 1.08 \left(\frac{LWC_{adiab}(z)}{\frac{4\pi\rho_w}{3} NC_{cloud\ base}} \right)^{1/3}$

Averaged (over space and time) profiles

color: number of grid points (log scale)

Averaged (over space and time) profiles

color: number of grid points (log scale)

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Simulations at different conditions

CCN concentrations of 100, 250, 500, 2000, 5000 cm⁻³

(Only the tails of the CCN distributions are activated)

 3 different stratifications (inversion at 1000m, 1500m, 2000m)

Cloud Cover averaged profiles

Effective radius profiles for low CCN concentrations

Effective radius profiles for high CCN concentrations

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Suppose we are able to estimate averaged Reff profile from given stratification and CCN concentration

What about averaged LWC profile?

(assuming averaged profile is what we need)

Number Concentration averaged profiles

Effective Radius averaged profiles

Liquid Water Content averaged profiles

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile
- 4. Next steps

Estimation of averaged LWC profile

 $\overline{LWC}(z) = \frac{4\pi\rho_w}{3}NC(z)\left(\frac{R_{eff}(z)}{1.08}\right)^3 \approx \frac{4\pi\rho_w}{3}\overline{NC}\left(\frac{R_{eff}}{1.08}\right)$ $\overline{LWC}_{estim}(z)$

Let's check this assumption...

Estimation of averaged LWC profile

Estimation of averaged LWC profile

The assumption works ...

$$\overline{LWC}(z) \approx \frac{4\pi\rho_w}{3}\overline{NC}\left(\frac{\overline{R_{eff}}}{1.08}\right)^3$$

So, how to parametrize $\overline{LWC}_{estim}(z)$?

We need:

$\overline{R_{eff}}(z)$ - Have already (see previous slides)

NC_{cloud base}

Probably can be parametrized ... ?

- 1. Motivation
- 2. COSMO new parametrization of SGS cloud properties (for radiation)
- 3. LES simulations
 - A. Simulations design
 - B. How should LWC, NC and Reff behave with height?
 - Schematic explanation
 - C. Possible parametrization of Reff(z)?
 - Example of simulation results for 5000 CCN cm⁻³
 - Reff(z) for different simulations
 - D. Possible parametrization of averaged LWC(z)?
 - Averaged profiles of LWC, NC and Reff
 - Estimation of averaged LWC profile

Next Steps

SAM :

- Only the tail of aerosols size distributions is currently activated → Investigate for other typical aerosol distributions
- Investigate for other temperature/humidity profiles, also different surface fluxes
- Should we perform *weighted* averaging of LWC and Reff profiles over space?
- COSMO :
 - Perform idealized COSMO simulations with similar sounding profiles and aerosol concentrations to those used in SAM
- Validation:
 - Compare profiles of subgrid COSMO Reff, NC, LWC, CLC with those obtained in SAM
- Alternative parametrization ?
 - Analyze the possibility to set up an alternative parametrization:

Thank you!

Uli's parametrization:

Option 2: Tegen / Segal & Khain

- icloud_num_type_rad = 2
 - Cloud nuclei profile $n_{CN}(z)$ is estimated from Tegen aerosols
 - Activation of n_{CN} to n_{CCN} is estimated from Segal & Khain (2006) parameterization based on the estimated vertical velocity at cloud base
 - n_c is assumed equal to n_{CCN}

n_{CN}(x,y,z) from Tegen aerosol climatology

- Tegen climatology is for opt. thickn. τ of 5 aerosol types: sea salt, sulfuric acid, other organics, black carbon and dust, where the black carbon is already contained in the "other organics".
- Assumptions about spec. extinction coefficient β_{ext} , modal radii, aerosol bulk density and soluble fraction η lead to total N_{CN} number per area. Assumption of an exponentially decreasing vertical profile (in terms of mass fraction!) leads to 3D CN concentrations:

n_{ccN}(x,y,z) from Tegen / Segal & Khain

... + Updraft-based activation parameterization of n_{CCN}:

n_{ccN}(x,y,z) from Tegen / Segal & Khain

- Parameterized after Segal and Khain (2006) as function of n_{CN} and w_{cb} at cloud base, where mean radius and width of an assumed log-normal aerosol distribution is assumed constant (2D lookup tables)
 - In "active" clouds (w_{nuc} > w_{cb,min} and q_c > 0 or clc_con > 0 over several adjacent height layers), activation is at cloud base and n_{CN} decreases exponentially above cloud base
 (→ autoconversion, accreation).
 - \rightarrow All other grid points: derive n_c from lookup table based on local n_{CN} and w_{nuc}
 - \rightarrow Let $n_{\text{CCN.SK}}$ be the lookup table, then:

$$n_{C}(z) = \begin{cases} n_{CCN,SK} \left(n_{CN}(z_{cb}), w_{nuc}(z_{cb}) \right) \exp \left(-\frac{z-z_{cb}}{\Delta z_{a,1/e}} \right) & \text{if } w \ge w_{cb,min} \land q_{C}(z) > 0 \land z \ge z_{cb} \\ n_{CCN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) & \text{else} \end{cases}$$

$$\begin{bmatrix} \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) \\ \text{kg} \\ n_{CN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right)$$

→ Effective updraft speed w_{nuc} for nucleation, including turbulence, radiative cooling an parameterized convection:

$$w_{eff} = \overline{w} + 0.7 \sqrt{\frac{2 TKE}{6}} - \frac{c_p}{g} \frac{\partial T}{\partial t}\Big|_{\text{radiation}}$$

$$w_{nuc} = \max \left[w_{eff}, w^* \right]$$

$$w^* = \left(-g z_{topcon} \frac{\overline{w'\Theta'_{v,S}}}{\overline{\Theta_{v,S}}} \right)^{1/3} \text{ (convective velocity scale after Deardorff)}$$

-1

z_{top_con}: PBL height as determined from Θ_v < Θ_{v,surf}+0.5 K, or upper bound of lowest continuous "clc_con" layer