

רס"ד

Towards Prognostic Aerosols in COSMO Microphysics Scheme

Harel Muskatel (IMS), Uli Blahak (DWD), Pavel Khain (IMS), Alexander Khain (HUJI)

Acknowledgments: Alessio Bozo (ECMWF)

A Part of T²(RC)² COSMO Priority Project

ICCARUS, March 19 2019

Aerosols effects on radiation transfer

Aerosols indirect effects on radiation

Figure 6. Cloud droplet effective radius (r_{eff}) versus liquid water content (LWC) for cumulus clouds in clean marine air over the northeastern Atlantic Ocean (diamonds, Atlantic Stratocumulus Transition Experiment (ASTEX)), in urban-industrial air off on the U.S. east coast (circles, Tropospheric Radiative Forcing Experiment (TARFOX)), and in air masses dominated by smoke from biomass burning (pluses, Brazil).

Aerosols indirect effects on radiation

Sensitivity of T_{2M} in 7-day experiment to SGS Reff

COSMO-EU / COSMO-DE setup (1-moment microphysics) /COSMO-DE results:

4

Aerosols effects on clouds formation & precipitation

- Cloud droplets number concentration in the default COSMO 1-mom scheme is fixed to cloud_num (500 cm⁻³). In 2-mom schemes it depends on fixed/climatology aerosols number concentrations
- But variations in the densities of aerosols which act as cloud condensation nuclei CCN can have large impact on cloud formation, dynamics and precipitation

Pristine tropical clouds with low CCN concentration can rain out too quickly to mature to long lived clouds

Polluted clouds with very high CCN concentrations may evaporate before rain can occur

Rosenfeld et al., Science, 321, 2008

Segal & Khain scheme in COSMO radiation

icloud_num_type_rad = 2 (Tegen) / 4 (CAMS)

- Cloud nuclei profile n_{CN}(z) is estimated from Tegen/CAMS aerosols
- Activation of n_{CN} to n_{CCN} is estimated from Segal & Khain (2006) parameterization based on the estimated vertical velocity at cloud base
- n_C is assumed equal to n_{CCN}
- 4D look-up table

$$n_{ccn}^{SK} = f(n_{cn}, log(\sigma), r_{mod}, w_{CB})$$

Segal & Khain scheme in COSMO radiation

- In "active" clouds (w_{nuc} > w_{cb,min} and q_c > 0 or clc_con > 0 over several adjacent height layers), activation is at cloud base and n_{CN} decreases exponentially above cloud base (→ autoconversion, accreation).
- All other grid points: derive n_c from lookup table based on local n_{CN} and w_{nuc}
- Let n_{CCN,SK} be the lookup table, then:

$$n_{C}(z) = \begin{cases} n_{CCN,SK} \left(n_{CN}(z_{cb}), w_{nuc}(z_{cb}) \right) \exp \left(-\frac{z-z_{cb}}{\Delta z_{a,1/e}} \right) & \text{if } w \ge w_{cb,min} \land q_{C}(z) > 0 \land z \ge z_{cb} \\ n_{CCN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) & \text{else} \end{cases}$$

$$\begin{bmatrix} \text{kg}^{-1} \end{bmatrix}$$

 Effective updraft speed w_{nuc} for nucleation, including turbulence, radiative cooling an parameterized convection:

$$w_{eff} = \overline{w} + 0.7 \sqrt{\frac{2 TKE}{6}} - \frac{c_p}{g} \frac{\partial T}{\partial t}\Big|_{\text{radiation}}$$

$$w_{nuc} = \max \left[w_{eff}, w^* \right]$$

$$w^* = \left(-g z_{topcon} \frac{\overline{w'\Theta'_{v,S}}}{\overline{\Theta_{v,S}}} \right)^{1/3} \text{ (convective velocity scale after Deardorff)}$$

z_{top_con}: PBL height as determined from Θ_v < Θ_{v,surf}+0.5 K, or upper bound of lowest continuous "clc_con" layer

Segal & Khain scheme in COSMO radiation

R_{eff} in SGS clouds:

- SGS water clouds with a fixed *R_{eff}*: Tuning parameter reff_ini_c (default: 5µm) luse_reff_ini_c_as_reffc_sgs = .TRUE.
- Improvment: SGS R_{eff} treated same way as in grid scale clouds luse_reff_ini_c_as_reffc_sgs = .FALSE.

but using $LWC_{SGS} = QC_RAD/(CLC * radqcfact)$

QC_RAD = QCI_CON * CLC_CON + QC_SGS * CLC_SGS * (1 – CLC_CON)

$$R_e = c_1 \left(\frac{q_C}{n_C}\right)^{c_2}$$

Segal & Khain scheme in COSMO microphysics

Number concentration of cloud droplets in <u>1-mom scheme options</u>:

- icloud_num_type_gscp = 1
 - Cloud number concentration is a tuning parameter cloud_num default: 500 cm⁻³
- icloud_num_type_gscp = 4
- Cloud number concentration is calculated using CAMS + SK the same way as for itype_num_type_rad = 4
- Effective in the auto-conversion parameterization from cloud droplets to raindrops:

$$\frac{d(qc)}{dt} \sim -\frac{qc^4}{qnc^2} = -\frac{qc^2}{xc^2}$$

(xc = mean droplet mass)

CAMS prognostic aerosols

Atmosphere Monitoring Service

itype_aerosol = 4

- Based on IFS with additional prognostic aerosol variables
- Input aerosols analysis:
 - NASA/MODIS Terra and Aqua Aerosol Optical Depth at 550 nm
 - NASA/CALIOP CALIPSO Aerosol Backscatter
 - > AATSR, PMAP, SEVIRI, VIIRS
- Verification based on AERONET (text adapted from Benedetti CUS2016)

CAMS prognostic aerosols

species	r _{mode} [µm]	σ	$\rho [kg \cdot m^{-3}]$	<u></u> <i>m</i> [<i>kg</i>]	Soluble fraction
sea salt [0.03, 0.5]	0.1992, 1.992	1.9, 2.0	1183	7.5023E-17	1
sea salt [0.5, 5]	0.1992, 1.992	1.9, 2.0	1183	3.3269E-15	1
sea salt [5, 20]	0.1992, 1.992	1.9, 2.0	1183	9.3421E-15	1
Dust [0.03,0.55]	0.29	2.00	2610	2.8694E-16	0.1
Dust [0.55,0.9]	0.29	2.00	2610	4.7291E-16	0.1
Dust [0.9,20]	0.29	2.00	2610	1.5570E-15	0.1
OM Hydrophobic [0.005,20]	0.471, 0.0118	2.51, 2.0	1800	1.7860E-18	0
OM Hydrophilic [0.005,20]	0.0212	2.24	1000	1.3411E-18	0.59
BC Hydrophobic [0.005,5]	0.0118	2.00	1000	5.9774E-20	0
BC Hydrophilic [0.005,5]	0.0118	2.00	1000	5.9774E-20	1
Sulfate [0.005,20]	0.0355	2.00	1760	2.8658E-18	1

$$n(x, y, z) = MR(x, y, z) \cdot \rho_{air} / \overline{m_{v}}$$

 $r_{mode,SK} = [0.02 \; \mu m, 0.04 \; \mu m]$, $\ln(\sigma_g) = [0.1, 0.5]$

$$\overline{N} = \sum_{aer} N_{aer} \qquad \overline{R_{mode}} = \frac{1}{\overline{N}} \sum_{aer} N_{aer} R_{aer}$$
$$\overline{\sigma_g^2} = \frac{1}{\overline{N}} \sum_{aer} N_{aer} \left(\sigma_{g_aer}^2 + (R_{aer}/\overline{R})^2 \right)$$

Case study: April 25-27, 2018

- Three days with massive storm cells & flash floods
- 14 deaths. Judean desert and Arava
- Zafit valley disaster: 10 teenager hikers. April 26, 2018 13:15Z.

ECMWF synoptic analysis layered over MODIS True Color RGB image, 26 April 12:00 UTC

Airmass RGB and ECMWF Z500 25-04-2018 06:00 UTC

ttps://www.eumetsat.int/website/home/Images/ImageLibrary/DAT 4038669.html

Thanks to Oren Davidoff !

CAMS aerosols number concentration

CAMS aerosols number concentration [cm⁻³] 2018-04-25 01:00:00Z

- 14000

- 12000

- 10000

8000

6000

4000

- 2000

14000

- 12000

- 10000

8000

6000

4000

- 2000

0

0

New cloud droplets number concentration

CAMS effects on cloud number concentration [cm⁻³] 2018-04-25 01:00:00Z

icloud_num_type_gscp/rad = 4

Case study: April 25-27, 2018

OBS EC COSMO oper

0.1 0.5 1 3 5 10 15 20 30 40 60 80 100 150 200 [mm]

15

Impact on radiation

Impact on T2m

CAMS aerosols number concentration

Peak event April 25 14Z

CAMS aerosols number concentration [cm⁻³] 2018-04-25 14:00:00Z

New cloud droplets number concentration

Peak event April 25 14Z

CAMS effects on cloud number concentration [cm⁻³] 2018-04-25 14:00:00Z

Peak event April 25 14Z

CAMS effects on R_{eff} [µm] 2018-04-25 14:00:00Z

Peak event April 25 14Z

R_{eff}(QC) [µm] 2018-04-25 14:00:00Z

New cloud droplets number concentration

Peak event April 25 14Z

NCCLOUD(N_{cn}) 2018-04-25 14:00:00Z

Case study: April 25-27, 2018

New cloud_rad

CAMS background aerosols

CAMS & SK Ncn → rad + microphysics

0.95 0.94 0.93 0.93 0.92 0.78 0.38 0.04

OBS for 6h before 2018042518 Fraction: 0.98 0.88 0.77 0.71 0.60 0.30 0.06 0.00

COSMO oper

0.97 0.97 0.96 0.96 0.95 0.85 0.48 0.07

0.1 0.5 1 3 5 10 15 20 30 40 60 80 100 150 200 [mm]

Case study 2 : 06-08/12/2018

Raaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	0.9 0.89 0.9 0.96 0.91 0.97 0.87 0.66 0.58 0.55 0.34 0.02 -0.12 -0.38 -0.13 0 -0.11 -0.03 -0.1	0.97 0.92 0.91 0.97 0.91 0.92 0.95 0.77 0.68 0.33 0.42 0.37 0 -0.14 -0.56 -0.22 0.07 -0.13 -0.15 -0.16	0.97 0.92 0.91 0.97 0.92 0.9 0.95 0.77 0.72 0.35 0.43 0.21 0.01 -0.15 -0.56 -0.19 0.08 -0.1 -0.19 -0.19 -0.17	0.97 0.91 0.9 0.97 0.92 0.92 0.89 0.87 0.66 0.66 0.66 0.55 0.34 0.69 -0.08 -0.34 -0.19 0.04 -0.19 0.04 -0.08 0.22 0
	Oper 5.5	Old CAMS 5.1		New CAMS 5.1

Prognostic aerosols in ice nucleation

The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds

James D. Atkinson¹, Benjamin J. Murray¹, Matthew T. Woodhouse¹[†], Thomas F. Whale¹, Kelly J. Baustian¹, Kenneth S. Carslaw¹, Steven Dobbie¹, Daniel O'Sullivan¹ & Tamsin L. Malkin¹

→ Nature, 498 (7454) 358 – 355 (2013)

Prognostic aerosols in ice nucleation

- COSMO 2-mom scheme is using Phillips (2008) heterogeneous ice nucleation scheme
- The homogenous nucleation used is based on Kaercher, Hendricks & Lohmann 2006 (KHL06 scheme) – not treated here
- In the Phillips parametrization ice nuclei (IN) number concentrations are assumed fixed:
 - nc_dust = $0.162 \ cm^{-3}$
 - nc_soot = $15 \ cm^{-3}$
 - nc_organic = $177 \ cm^{-3}$
- The fraction of nucleation of each species is calculated from a look-up table based on temperature and super-saturation

ion/Deposition

CAMS aerosols number concentration

Ice number concentrations based on CAMS

CAMS effects on IN number concentration per liter 2018-04-25 14:00:00Z

12000 - 200 200 **R**_{eff} using default scheme Ice R_{eff} using CAMS N_{cn} - 175 - 175 10000 - 150 - 150 8000 - 125 - 125 Height [m] 6000 - 100 - 100 - 75 - 75 4000 - 50 - 50 2000 - 25 - 25 - 0 - 0 0 -34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00

CAMS effects on ice R_{eff} [µm] 2018-04-25 14:00:00Z

IWC based on CAMS

Concluding remarks and outlook

- A new cloud droplets number concentration based on CAMS prognostic aerosols concentrations and Segal & Khain nucleation scheme is implemented
- More realistic approach to define cloud droplets densities and effective radii of grid scale and sub-grid scale clouds
- High sensitivities of radiation, T2m, rain, QC etc.
- Prognostic aerosols are now available also in the 2-mom scheme's heterogeneous nucleation process

Outlook:

- Testing against observations
- Test version in IMS
- Same approaches in ICON model

The End