

COSMO-CLM² : A summary of its development and evaluation

Edouard Davin, Leta Klauser and Sonia Seneviratne

Community Land Model

- Open source
- Extensively documented and evaluated
- State of the art (3rd generation) Land Surface Model representing the links between energy, water and nutrient cycles within the terrestrial biosphere

COSMO-CLM²

First version:

- Implementation finished in 2009
- COSMO-CLM version 4.0
- CLandM version 3.5

Reference:

Davin, E. L., R. Stoeckli, E. B. Jaeger, S. Levis and S.I. Seneviratne (2011), COSMO-CLM²: A new version of the COSMO-CLM model coupled to the Community Land Model, *Clim. Dyn., published online.*

Evaluation at FLUXNET sites

COLOBOC/SOILVEG Workshop

Indirect mechanism via cloud cover

Sensitivity tests with COSMO-CLM (artificial tuning of bowen ratio) support this mechanism

(Davin et al., 2011)

SW radiation bias (JJA) against GSWP-2

SW radiation bias (JJA) against GSWP-2

COLOBOC/SOILVEG Workshop

Scores for temperature and precipitation

Annual mean bias (IPCC/CORDEX setup)

COLOBOC/SOILVEG Workshop

Role of diffuse/direct radiation partitioning

- The nature of light (diffuse or direct) and not only its quantity affects ecosystem functioning
- Relevant for the carbon cycle and also water and energy fluxes
- Opportunity to couple explicitly downward direct and diffuse radiation components in recent COSMO versions

Default procedure (CTL)

New procedure (EXP)

IAC**ETH**

Fraction of direct light

T2m: correlation with CRU (June; 1986-2006)

Regions	CTL	EXP
British Isles	0.88	0.9
Iberian Peninsula	0.95	0.96
France	0.93	0.95
Mid-Europe	0.87	0.86
Scandinavia	0.86	0.91
Alps	0.92	0.95
Mediterranean	0.9	0.91
Eastern Europe	0.61	0.66

Mechanism

Summary

- The CLandM has a positive effect on surface fluxes and surface climate (seems robust across different regions/COSMO versions)
- More realistic diffuse/direct radiation treatment has a promising effect on water/energy fluxes (will become essential for biogeochemical cycles)

On-going and future steps

- Revision of the coupling procedure
 - Prototype version with OASIS4 has been implemented
- Consolidation of the interface
 - e.g., problem with momentum fluxes, adaptation to Runge-Kutta dynamics
- Switch to CLM4 (Lawrence et al. 2011)
 - To be done
- Evaluation with full Carbon-Nitrogen cycle and prognostic phenology

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect at European scale (summer)

- More diffuse → more light for shaded leaves → enhanced photosynthesis and stomatal conductance → more transpiration
- Compensating effect limiting the change in ET: less light reaching the ground, thus less bare soil evaporation

COLOBOC/SOILVEG Workshop

Soil evaporation compensating mechanism

- Less light reaching the ground with increased diffuse
- Thus change in ground evaporation opposite of transpiration

Effect on temperature (summer)

- Small cooling consistent with increased ET
- Slightly reduced bias

T2m bias (JJA)

COLOBOC/SOILVEG Workshop

Evaporative fraction bias (JJA) against GSWP-2

COLOBOC/SOILVEG Workshop

IAC**ETH**

Annual mean bias

COLOBOC/SOILVEG Workshop

- Half of the evapotranspiration flux to the atmosphere is conveyed by plants
- > Biological processes play a major role in shaping the terrestrial water cycle