

Schweizerische Diogenossenschaft. Confériération suisse Contecerazione Sylizzera Confederazioni svizral

5% as Contederation

COLOBOC **Project Status**

Jean-Marie Bettems / MeteoSwiss

COLOBOC/SOILVEG Workshop Langen, February 28th , 2011

Observation sets for SVAT model validation.

- **Documentation** of various data sets on the COSMO web site.
- New permanent instruments at Payerne Measurement of turbulence @ 10m, in activity since spring 2009. Soil moisture and temperature.

SRNWP data pool action

Convenient access to recent operational high quality measurements, representative for different climate and different type of soils

SRNWP data pool

- Soil, surface and BL observations
- Currently 7 sites, data from 2006-2009, in a common ASCII format
- Possibly 2 new sites in the • near future: Debrecen (Hu), Valdai (Ru)

Review – COLOBOC, task 0

- Promote usage within the COSMO Community
 - \rightarrow extend default set of COSMO model meteograms
 - \rightarrow integrate in soil & BL developments (WG3)
 - \rightarrow routine inter-comparison of soil and surface fluxes (WG5)

.

- Make this effort sustainable
 - \rightarrow permanent action within COSMO?

Externalized TERRA module.

- Package including tests and documentation available on COSMO web, but not maintained (no committment by MeteoSwiss)
- Code remains fragile when used in a non tested configuration (code limitations are documented)
- Usefull functionality for e.g. soil spin-up, efficient experiments with snow model, measurement driven soil moisture analysis

 Extend COSMO SCM framework to include the functionality currently offered by Terra standalone (→ M. Raschendorfer) ?

Consolidate software for generating external parameters.

- New **code** for the aggregation and interpolation of the raw data to the target grid is ready (EXTPAR v1.1), and will be made available on the **COSMO web site**.
- **Reference system** at DWD, accessible through a Web interface is in test phase. A link will be put on the COSMO web site.

C Review – COLOBOC, task 3

Consolidate external parameters data set.

- New external parameters available now for any domain: *monthly NDVI climatology, minimum stomatal resistance, bare soil emissivity, deep soil temperature, lake fraction and lake depth* (for FLake module), *urban fraction* (for urban module), *monthly climatology for aerosols optical thickness (5 species)*
- Documentation of datasets available on the COSMO web site
- Planned till end of project MODIS derived solar albedo (MPI Hamburg) tests with MODIS calibrated real time phenology computation of topography smoothing in EXTPAR (instead of INT2LM)

- Historical records of vegetation characteristics reveal a substantial interannual variability of the start of season, which may limit the usefulness of a climatology based data set.
- A framework has been developed by R.Stöckli et al., using a prognostic phenology model with parameters constraint by MODIS data, which can provide an offline gridded forecast of the vegetation characteristics taking into account the actual evolution of the weather [Stöckli 2008].
- Basically a statistical approach is used, relying on an ensemble Kalman filter to define the optimal parameters of the phenology model, for a specified set of meteorological data predictor (e.g. from a NWP model).

- Code optimization for oro. radiation correction ; resources ?
- Scale separation for z0 / SSO derivation ; resources ?
- Higher resolution more recent data sets ; plans ?
 - → Provide soil types at higher resolution than FAO, based on more recent data, and including information on the vertical structure of the soil (Harmonized World Soil Database, dx=1km; 10km for FAO / European Soil DataBase)
 - → Provide **land cover** at higher resolution than GLC2000 and based on more recent data (GLOBCOVER, dx=300m; 1km for GLC2000)
 - → Provide **topography** at higher resolution than GLOBE (ASTER GDEM, dx=30m ; 1km for GLOBE)

Applications: high resolution simulations in complex topography or for special purposes, environmental modeling, production of of sub-scale heterogeneities for the turbulence scheme ...

Revision of TERRA and the associated look-up tables.

 Experiments at DWD and MCH to evaluate the modified land-surface scheme (TERRA parametrizations, external parameters, look-up tables).

Components of the **heat balance** from the eddy-flux measurements, standard model simulation (stand), and simulation with a new model (mire). Degero Srormyr mire, Sweden

Sensible heat

Latent heat

Review – COLOBOC, task 4

- Different studies (E.Davin/ETHZ, R.Orth/ETHZ, G.Vogel/DWD, F.Di Giuseppe/ ARPA-SIM) have shown some significant limitations of TERRA
 - missing grass layer (no specific treatment of canopy vegetation),
 - inexact temporal evolution of vegetation in spring (representation of inter-annual variability),
 - inconsistent temporal evolution of root depth and vegetation,
 - missing representation of vertical soil structure (in particular depth of active soil),
 - incorrect Bowen ratio (too much latent heat) .
- COSMO coupled with NCAR CLM improves on some of these features
- Many of the elements being developed for TERRA already exist within the CLM (e.g. tile, multi-layers snow model, urban module)
- CLM offers additional functionality in direction of environmental modeling (biochemical emissions)

- Development of mire parametrization by Roshdromet : priority task in COSMO WG3 ?
- Interest of the COSMO community to have CLM as an alternative SVAT model within the official COSMO code ?

New multi-layer snow model

- Code is available in latest COSMO release
- Ongoing tests at DWD, Roshydromet and MeteoSwiss

Snow analysis

• DWD and MeteoSwiss codes have been merged

Review – COLOBOC, task 5

New multi-layers snow model

In pipe

- (DWD) Finalize multi-layers snow model
- (A.Will) Tests in **climate** mode
- (RH) Investigate / correct **fresh snow density** and **snow density ageing** issues (important because of the interaction with the snow analysis step)
- (RH) Improve **albedo** in relation with snow and forest (dynamic evolution of snow over forest canopy)
- Improve partial snow cover representation, in particular by using the tile and/or mosaic approach (dynamic tile). This should have an important impact on the correctness of T_2M (currently a single soil surface temperature is allowed, even in presence of partial snow cover).

See task 7

• Fresh snow density to investigate in WG3

Urban module.

 Available and documented, but not maintained (no committment by MeteoSwiss, see new rules for COSMO code)

• What to do with this piece of code ?

Tiles and mosaic

• On going at DWD, incl. dynamic tile for partial snow cover

Is there a life after COLOBOC?

Priority Project :

The COLOBOC project definitly **ends** at the next COSMO GM (09.2011 in Roma).

• Working Group :

A proposal for splitting COSMO WG3 into WG3a and **WG3b**, with WG3b taking care of soil and surface aspects, has been made by the COSMO SMC to the COSMO StC.

- \rightarrow Federico Grazzini remains WG3a coordinator.
- \rightarrow A new coordinator for WG3b is nominated.
- \rightarrow Decision by StC in April.
- Collaboration :

Close collaboration with COSMO-CLM, and in particular SOILVEG, should continue.

- How **critical** is the further improvement of the lower boundary condition (in particular when compared with other components, e.g. numeric, turbulence) ...
 - ... for climate applications
 - ... for **short range forecasts** (2h 2d)
 - ... for **very high resolution** (≤ 1km) applications **in complex terrain**
- Which **aspects** of the lower boundary condition should be improved in priority (external parameters, model, soil moisture analysis ...)
- Is TERRA fit to support further development required in the future

Thank you for your attention!

