TERRA Activities in climate mode at BTU Cottbus

A.Will (BTU Cottbus) COLOBO/SOILVEG meeting, 1.3.2010 Langen

(COMET (R) Website at http://meted.ucar.edu/)

Overview

- **1. Optimal configuration for TERRA**
- 2. Land use changes (lakes) at high resolutions in Brandenburg
- 3. Evaluation of new model version

2 Physics of the soil model TERRA

Req.: $z \ge z_{cl} = \frac{n_{cl}}{2} D_{rock}$ with $D \le D_{rock} = \sqrt{2/\pi (\lambda_0/\rho_0 c_0)_{rock}} \sqrt{\Delta t} \simeq 8.5 \cdot 10^{-4} \sqrt{\Delta t}$

3. Optimal configuration

Brandenburgische Technische Universität Cottbus

3.1 Thickness of the upper soil layer Δz_1

3.2 Soil depth z_{max}

3.1 Thickness of the upper soil layer and soil depth

Brandenburgische Technische Universität Cottbus

Resolution of relevant forcings (d,y, turb.)

Configurations		COSMO	COSMO	CLM-E /				
		-EU -DE CLM-K		Forcing frequency				
$\Delta_x [\mathrm{km}]$	ω	2.2	7	18	d	У	10y	100y
$\Delta_{atm}t$	[m/s]	25 (RK)	40 (LF)	90 (LF)				
$\Delta_f v$	[m/s]	14	14	10				
$\Delta_f t$		$150 \mathrm{~s}$	$500 \mathrm{\ s}$	0.5 h	$0.5 \mathrm{d}$	0.5 y	5 y	50 y
T_0	[K]	1			20	40	3	1
m_0		1			8		4	1
n_{cl}		2.3			5.3	6	3.4	2.3
D_{clay}	[m]	0.0033	0.0059	0.011	0.055	1.1	3.3	11
D_{rock}	[m]	0.010	0.019	0.036	0.18	3.4	11	34
$\Delta_1 z$	[m]	0.01	0.019	0.035	0.017	0.41	2.6	33
z_{cl}	[m]	0.012	0.022	0.042	0.47	10	18	39

Results consistent with literature and practice!

3.3 Linear grid stretching $\Delta z_k / \Delta z_{k+1} = b$

b-tu

3.3 Linear grid stretching $\Delta z_k / \Delta z_{k+1} = b$

b-tu

4. Results, 4.1 Regions 1964-1973

b-tu

4. Results at dx=dy=50km 4.2Configuration

Simulation period Evaluation period Dynamics: Soil configurations: Grid Stretching Number of layers: Model version:

4.2 Soil Temperature at z=0.11m

- annual cycle
- daily cycle

4.2 $T_{so,X}$ (z) - $T_{so,LF-2}$ (z) 1964-1973, z=0.11m

b-tu 4.2 $T_{so,LF-1.5}$ (z) - $T_{so,LF-2}$ (z) 1964-1973, z=0.11m

4.2 $T_{so,X}$ (z) - $T_{so,LF-2}$ (z) 1964-1973, z=0.11m

b-tu 4.2 $T_{so,LF-1.5}$ (z) - $T_{so,LF-2}$ (z) 1964-1973, z=0.11m

4.3 $T_{2m,LF-1.5}(z) - T_{2m,LF-2}(z)$ 1964-1973

Brandenburgische Technische Universität Cottbus

DIFF: 2m Temperature CLM100-CLM110, 1973-197302

Brandenburgische Technische Universität Cottbus

DIFF 2m Temperature: AREA MEAN, ME_ (259 POINTS, GRID: GRD212)

Summary

b-tu

Brandenburgische Technische Universität Cottbus

- 1. **Grid configuration parameters** can be derived for a homogeneous soil from the analytical solution of the heat conduction equation
- 2. **Upper soil layer thickness** of 0.01 m is adequate for most applications
- 3. **Soil depth** required depends on the time scale of the simulation and a 20 m deep soil is suficient for most applications.
- 4. **Grid stretching** between 2 and 3 is a compromise. An optimal configuration requires a stretching between 1.2 and 1.5. A variable grid stretching would be even more appropriate. Grid stretching of 1.5 is recommended for the global and the regional model.
- 5. **Simulation Results** of coarse grid climate simulations (50 km, 15 y) show at 0.11m depth for 1.5 in comparison with 2.0 grid stretching factor
 - 1. no significant effect on the mean values
 - 2. no systematic significant effects on monthly precipitation and 2m temperature.
 - 3. significantly higher spatial and temporal mean wave aplitudes:
 - 1. 0.4 K for the annual cycle
 - 2. 0.5 to 1 K for the daily cycle

Grid stretching seems to be not relevant for the near surface atmospheric variability. However, the soil temperature dynamics might have a stronger influence at more realistic variability in the soil and at smaller space scales.

Future Plans

- 1. **TERRA configuration**
 - 1. High resolution simulations for 18km, 9km
 - 2. New TERRA version at 50km/18km: lambda (w_so)
 - 3. New TERRA version with vertical texture -> Stronger daily cycle
- 2. Evaluation of the New TERRA version -> see 1.2
 - 1. Series of 50km simulations
 - 2. One 18km simulation
- 3. Land Use Change (already started)
 - 1. Preparation of Flake parameters for the 2.8km grid of Brandenburg
 - 2. Simulations
 - 1. 7km and 2.8 km
 - 2. Relevance of the Flake model for the regional climate