COSMO-CLM Soil and Vegetation Working Group: Report on recent activities

- I. Implementation of the European Soil DataBase (JRC) in COSMO-CLM
- II. Coupling COSMO-CLM with the Community Land Model.

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

Implementation of the European Soil DataBase (JRC) in COSMO-CLM

Master thesis of Christine Kündig (advisor Sonia Seneviratne; co-advisor Edouard Davin)

Motivations

- Replace the standard Soil Map of the World (FAO) by the more recent and better resolved (1km) European Soil DataBase (JRC).
- What is the sensitivity of the simulated climate to the soil type distribution? (Anders & Rockel, 2008)

- The JRC raw dataset was converted into a form suitable for the PEP pre-processor.
- The PEP was used to produce an external parameter file containing the JRC dataset (done by G. Smiatek).
- The new external parameter file can be used as input for int2lm to create the laf boundary files.

CTL: FAO soil map EXP: JRC soil map

- Version: 2.4.11
- Resolution: 50km
- Boundary fields: ERA40 reanalysis
- Initialyzed with the same soil moisture state
- Period: 1992-2006 (last 10 years are analysed)

Soil maps

FAO

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

JRC

	1	2	3	4	5	6	7	8
soil type	ice	rock	sand	sandy	loam	loamy	clay	\mathbf{peat}
				loam		clay		
volume of voids w_{PV} [1]	-	-	0.364	0.445	0.455	0.475	0.507	0.863
field capacity w_{FC} [1]	-	-	0.196	0.260	0.340	0.370	0.463	0.763
permanent wilting point w_{PWP} [1]	-	-	0.042	0.100	0.110	0.185	0.257	0.265
air dryness point w_{ADP} [1]	-	,	0.012	0.030	0.035	0.060	0.065	0.098
minimum infiltration rate $I_{K2} [\text{kg}/(\text{m}^2 \text{ s})]$	-	-	0.0035	0.0023	0.0010	0.0006	0.0001	0.0002
hydraulic diffusivity parameter $D_0 [10^{-9} \text{ m}^2/\text{s}]$	-	-	18400	3460	3570	1180	442	106
hydraulic diffusivity parameter D_1 [1]	-	-	-8.45	-9.47	-7.44	-7.76	-6.74	-5.97
hydraulic conductivity parameter $K_0 \ [10^{-9} \text{ m/s}]$	-	-	47900	9430	5310	764	17	58
hydraulic conductivity parameter K_1 [1]	-		-19.27	-20.86	-19.66	-18.52	-16.32	-16.48
heat capacity $\rho_0 c_0$ [10 ⁶ J/(m ³ K)]	1.92	2.10	1.28	1.35	1.42	1.50	1.63	0.58
heat conductivity								
$\lambda_0 [{ m W}/({ m K} { m m})]$	2.26	2.41	0.30	0.28	0.25	0.21	0.18	0.06
$\Delta\lambda \; [W/(K m)]$	0.0	0.0	2.40	2.40	1.58	1.55	1.50	0.50
exponent B [1]	1.0	1.0	3.5	4.8	6.1	8.6	10.0	9.0

Results for summer JJA

EIGgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

T2m

T2m JJA

CTL - CRU

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

Coupling COSMO-CLM with the Community Land Model (CLM)

Persons directly involved: Edouard Davin, Reto Stockli, Sonia Seneviratne

CCLM-CLM

- Weather prediction and Climate simulations imply different needs in terms of land surface parameterization.
- At climate time scales, vegetation can not be considered as a "static system". Some examples:
 - CO2 effect on vegetation.
 - Change in phenology.
 - Change in vegetation distribution (natural vegetation dynamics or land use change).
- The closure of water and energy budget at the surface is also an issue in climate mode.

Motivations

• Land surface processes provide feedbacks that may dampen or amplify climate variations.

Example of feedback: Phenology

Community Land Model (CLM)

- The CLM is the land surface component of the NCAR CCSM climate model.
- Latest generation of LSM representing biogeophysics, hydrology, C/N cycles and vegetation dynamics.

TERRA-ML versus CLM

	TERRA-ML	CLM
Soil water	Multi-layer scheme	Multi-layer with prognostic ground water
Snow cover	1 layer	Multi-layer including compaction and melt- freeze cycle
Radiation	Not included	Radiative transfer within the canopy (SW, LW, direct, diffuse)
Transpiration	Does not account for CO_2 effect	Accounts for CO ₂ effect
Vegetation phenology (LAI)	Prescribed	Prescribed or prognostic scheme
Biogeochemistry	Not included	Prognostic C/N cycle (optional)
Vegetation dynamic	Not included	Included (optional)

ETH

stitute of Technology Zurich

Coupling strategy

• The coupling strategy is meant to minimize changes made in both CCLM and CLM (facilitate version updates).

• A coupling interface enables the communication between CCLM and CLM.

• A switch controlling the use of TERRA versus CLM has been introduced in CCLM.

Coupling strategy

- TERRA-ML calculates the surface state (surface temperature, humidity...) not surface fluxes.

- Transfer coefficients for sensible and latent heat (C_h and C_q) and then surface fluxes are calculated as part of the boundary layer scheme.

$$H = C_{h} |v_{h}| (T_{a} - T_{s})$$
$$LE = C_{q} |v_{h}| (q_{a} - q_{s})$$

Problem provides directly surface fluxes to the atmosphere!

Solution:

- 1) Surface fluxes are first calculated by CLM.
- 2) Fluxes are passed to the coupling interface and are inverted to retrieve the transfer coefficients which are then passed to the atmospheric model.
- 3) Surface fluxes are finally recalculated in the atmospheric part (ideally the fluxes calculated in the atmospheric part should be similar to CLM fluxes).

- Since last September CCLM-CLM is running on the Cray XT cluster at the Swiss National Supercomputing Centre (CSCS).
- It is also currently tested on a NEC platform at ECMWF (A. Dossio).

Performance on the Cray XT3 (palu.cscs)

	CCLM	CCLM-CLM
4 processors	486 s/day	561 s/day (+15%)

First test

Comparison of CCLM-CLM versus CCLM (1 year run without spinup)

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

ETH

genössische Technische Hochschule Zürich iss Federal Institute of Technology Zurich

Comparison with flux measurements at Tharandt (Germany)

- March 2009: First frozen version of CCLM-CLM.
- End of summer 2009: Evaluation of present day climate simulated by CCLM-CLM and comparison with standard CCLM.
- End 2009-2010: Simulations with CCLM-CLM over the 20th and 21st centuries (driven by GCM scenarios).

The makefile is configured dynamically depending on OS/compiler which allows for portability on different platforms (OSX/Darwin, PC/Linux, Cray).

Performances on the Cray XT3 (palu.cscs)

	CCLM	CCLM-CLM
4 processors	486 s/day	561 s/day (+15%)

Institute for Atmospheric and Climate Science

ETH

nstitute of Technology Zurich

Motivations

- Land surface processes are influencing the climate mean state.
- Common biases in current RCMs are still due to the representation of land surface processes.

Summer temperatures compared to CRU

Summer precipitations compared to CRU CLM-44

(Jaeger et al., 2008)

TERRA_ML

- TERRA_ML is the land surface component of CCLM.
- It is meant to represent hydrological and thermal processes.
- It provides the lower boundary conditions for the atmospheric part: i.e: the temperature and the specific humidity at the ground.

- "Technical" limitations:
 - TERRA_ML provides only the surface state (temperature and humidity) and not surface fluxes to the atmosphere.
 - TERRA_ML is not a separate component from the atmospheric part, thus it can not be used in a stand-alone mode (i.e, uncoupled from the atmospheric part and forced with meteorological data).
 - Not possible to evaluate the land surface processes independently of the atmospheric model (e.g., comparison with FLUXNET data).

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

