Objective Calibration of COSMO-crCLIM

Silje Lund Sørland¹, Omar Bellprat¹, Katherine Osterried², Linda Schlemmer¹, Nikolina Ban¹, Marie-Estelle Demory¹ and Christoph Schär¹

Institute for Atmospheric and Climate Science, ETH Zürich
Center for Climate System Modelling, ETH Zürich

Outline

- New model version to calibrate
- Calibration framework
- Calibration results
- Open questions from the calibration results
- Ongoing work with the calibration method

New model version to calibrate

Figure: Katherine Osterried, C2SM.

New model version to calibrate

New model version to calibrate 2013 2014 2015 2016 2017 2018 2019 **COSMO** Consortium official branch ONSORTIUM FOR SMALL SCALE MODELING 5.1 5.3 5.4 5.5 5.6 5.2 5.0 **6.0** COSMO-CLM Community official branch (5.0 clmx) clm9 clm1 clm2 clm4-8 clm10 clm11-12 COSMO4.8 clmx COSMO5.0_clm6 Calibration done Calibration done COSMO-crCLIM will be used for by Bellprat et al. for the COPAT regional climate simulations at project (2015) MO-PØMPA (accelerated) branch 2012, 2016 horizontal resolution ranging from 2 to 50km 2017.1-2017.6 201 MeteoSwiss 2016.1-2016.8 OPCODE (e.g. CORDEX simulations, FPS on convection resolving climate **COSMO-crCLIM:** Including new simulations) features: A modified formulation for crCLIM branch Completed: groundwater runoff (Schlemmer et 1.0 al. 2018) Planned: COSMO-crCLIM New aerosol climatology (replace Before 5.0: New calibration the Tanrè-climatology with 2018 AroCom-climatology)

Calibration framework

Calibration method:

Model version Model domain/resolution Calibration time

Tuning parameters

Number of simulations

Performance score (PS)

Bellprat et al. (2012, 2016). The meta-model is build by using a parametric regression model.

COSMO-crCLIM (the GPU version of the COSMO-model).

EURO-CORDEX domain with the 50km horizontal resolution.

The simulations are from 2000-2009, where only the last 5 years (2005-2009) is used for the calibration.

8 tuning parameters (decided based on previous calibration done by Lüthi et al. and Bellprat et al. Coordinated with CALMO-MAX.)

8 different tuning parameters, this gives in total 128 simulations + 1 reference simulations. Additional independent runs are also performed.

Same as in Bellprat et al. E-OBS for t2m and pr. CRU for cloud-cover data.

We started with..

Acronym	Description of the parameter	Old range
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land-surface)	[0.1;1; 2]
vOsnow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]
l_g	tuning parameter for ground-water runoff (soil and vegetation)	[0.25; 1.59; 10]

Seasonal T_2M bias CALIBRATION_ref (K), 2001->2009

But it didn't help so much..

Acronym	Description of the parameter	Old range	Old OPT
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land-surface)	[0.1;1; 2]	0.45
vOsnow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]	20
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]	0.4
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]	750
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]	0.25
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]	0.55
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]	0.9
l_g	tuning parameter for ground-water runoff (soil and vegetation)	[0.25; 1.59; 10]	1.33

The distribution of the model performance

three million parameter combinations from a Latin hypercube experiment.

The distribution of the model performance

Objective calibration

Second round of the calibration...

Acronym	Description of the parameter	Old range	Old	New range
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land- surface)	[0.1;1; 2]	0.45	[0.1;1; 2]
v0snow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]	20	[10;20;30]
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]	0.4	[0.1; <mark>1; 2</mark>]
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]	750	[60;500; 1000]
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]	0.25	[0;0.8; 1.6]
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]	0.55	[0.3;0.6; 0.9]
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]	0.9	[0.5;1; 1.5]
l_g	tuning parameter for ground- water runoff (soil and vegetation)	[0.25; 1.59; 10]	1.33	[0.25; 1.59; 10]

Temperature bias with OPT parameters from the old calibration.

Acronym	Description of the parameter	Old range	Old OPT	New range
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land- surface)	[0.1;1; 2]	0.45	[0.1;1; 2]
v0snow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]	20	[10;20;30]
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]	0.4	[0.1; <mark>1; 2</mark>]
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]	750	[60;500; 1000]
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]	0.25	[0;0.8; 1.6]
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]	0.55	[0.3;0.6; 0.9]
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]	0.9	[0.5;1; 1.5]
l_g	tuning parameter for ground- water runoff (soil and vegetation)	[0.25; 1.59; 10]	1.33	[0.25; 1.59; 10]

-3 -2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 2.4 3

Temperature bias with the reference tuning parameters (before starting the second round of calibration)

Acronym	Description of the parameter	Old range	Old OPT	New range
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land- surface)	[0.1;1; 2]	0.45	[0.1;1; 2]
v0snow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]	20	[10;20;30]
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]	0.4	[0.1; <mark>1; 2</mark>]
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]	750	[60;500; 1000]
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]	0.25	[0;0.8; 1.6]
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]	0.55	[0.3;0.6; 0.9]
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]	0.9	[0.5;1; 1.5]
l_g	tuning parameter for ground- water runoff (soil and vegetation)	[0.25; 1.59; 10]	1.33	[0.25; 1.59; 10]

Seasonal T_2M bias reference (K), 2001->2009

-3 -2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 2.4 3

Temperature bias with the new set of OPT parameters

Acronym	Description of the parameter	Old range	Old OPT	New range	OPT
rlam_heat	Scalar resistance for sensible and latent heat fluxes in the laminar surface layer (Land- surface)	[0.1;1; 2]	0.45	[0.1;1; 2]	0.72
v0snow	Factor in the terminal velocity for snow (Microphysics)	[10;20;30]	20	[10;20;30]	25.6
tkhmin (and tkmmin)	Minimal vertical turbulent diffusion rate [m ² s ⁻¹] (Turbulence)	[0.1;0.4; 1]	0.4	[0.1; <mark>1; 2</mark>]	1.37
tur_len	Maximal turbulent length scale (m) (Turbulence)	[60;500; 1000]	750	[60;500; 1000]	563
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation (radiation)	[0;0.3; 0.6]	0.25	[0;0.8; 1.6]	0.75
radfac	Fraction of cloud water and ice considered by radiation scheme (radiation)	[0.3;0.6; 0.9]	0.55	[0.3;0.6; 0.9]	0.59
fac_rootdp2	Uniform factor for root depth field (Soil and vegetation)	[0.5;1; 1.5]	0.9	[0.5;1; 1.5]	0.96
l_g	tuning parameter for ground- water runoff (soil and vegetation)	[0.25; 1.59; 10]	1.33	[0.25; 1.59; 10]	3.57

The distribution of the model performance

Objective calibration

Calibration range estimated with the metamodel (MM) when computing three million parameter combinations from a Latin hypercube experiment.

The distribution of the model performance

Objective calibration

Calibration range estimated with the metamodel (MM) when computing three million parameter combinations from a Latin hypercube experiment.

Comparing with the results from older calibration

Open questions

- The objective calibration on EUR44 with the COSMO-crCLIM version gave a set of OPT parameters that had a performance almost as good as the best estimate from the metamodel.
- However, the skill of the metamodel is not as good as previously (the maximum PS score has been up to 0.9 previously from the meta model, compared to 0.75 now).
- Why is the metamodel not so good as previously?
 - the set of tuning parameters not the best choice
 - the range too wide/narrow
 - using different observations to calibrate the model with
 - the time period when the calibration is done affecting the results?

Ongoing activities with the calibration method

- Ongoing work: objective calibration on the Central Asia domain (done by Emmanuele Russo at Uni Bern/Freie Universität Berlin)
- Goal:
 - Find the most sensitive parameters for the region
 - Compare the most sensitive parameters with the ones of other regions: is the model sensitivity similar for different regions?

TURBULENCE	
tkhmin	(0, 0.4 ,1,2)
tkmmin	(0, 0.4 ,1,2)
tur_len	(100, 500 ,1000)
d_heat	(12, 10.1 ,15)
d_mom	(12,15, 16.6)
c_diff	(0.01, 0.2 ,10)
Soil-model	
soilhyd	(1,1.62,6)
fac_rootdp2	(0.5, 1 ,1.5)
Radiation	

Radiation	
uc1	(0.2,0.5,0.625, 0.8)
q_crit	(1, 4 ,7,10)
clc_diag	0.2, 0.5 ,0.8)
hincrad	(0.5,0.75, 1)
radfac	(0.3, 0.5 ,0.9)

Land-surface	
rlam_heat	(0.1, 1 ,3,5,10)
rat_sea	(1,10, 20 ,50,100)
rat_can	(0,1,10)
rat_lam	(0.1, 1 ,10)
c_sea	(1, 1.5 ,5,10)
c_Ind	(1, 2 ,10)
z0m_dia	(0.001, 0.2 ,10)
pat_len	(10,100, 500 ,1000)
e_surf	(0.1, 1 ,10)
Microphysics	
cloud_num	(5e+7, 5e+8, 1e+9)
qi0	(0 ,0.00001,0.0001, 0.001,0.01)
v0snow	(10,15, 25)
Convection	
entr_sc	(5e-5, 1e-4, 3e-4 , 1e-3, 2e-3)

Indicating the different tuning parameters in the model and doing sensitivity runs for one year.

Sensitivity of the different parameters when simulating the reference (red) and perturbed runs for one year over the central Asian domain.

Next step: perform the calibration over Central Asia with a set of selected parameters (based on the sensitivity runs)

Summary

- Objective calibration on the EURO-CORDEX domain (50km resolution) with the COSMO-crCLIM:
 - With the OPT set of parameters, the PS score was improved from ~0.7 to ~0.74 (max PS score estimated by the metamodel is ~0.75)
 - The metamodel is not as good as previously (the maximum PS score has been up to 0.9 previously from the meta model, compared to 0.75 now).
- There is a large interest in using the objective calibration method from the CLM-Community.
- Now the code is on github (C2SM-RCM), will move the code to the COSMO-ORG repository (need to be coordinated with Katherine Osterried)

Extra slides

Performance of the metamodel to predict the independent simulations

Selecting the tuning parameters and the range

- The first round of calibration was not giving the best results probably due to not starting from a very good model state (we had to make some changes in the dynamic namelist settings) and also due too a too narrow range for some of the tuning parameters.
- The second round of the calibration gave better results, but some of the tuning parameters didn't change so much, suggesting that we could only have done the calibration on 5 tuning parameters.

Selecting the tuning parameters and the range

Acronym	Description of the parameter	Old range	Old	New range	OPT]	rlam_heat		v0snow		tkhmin		uc1	
			OPT			300		300		300		300]
lam_heat	Scalar resistance for sensible	[0.1;1; 2]	0.45	[0.1;1; 2]	0.72	it v				000	1.1	000		
	and latent heat fluxes in the							200		200		200	dia di	1
	laminar surface layer					1 00		100	- i. i.	100		100		
	(TURBULENCE - scheme)					0		L _o L				₀		
Osnow	Factor in the terminal velocity	[10;20;30]	20	[10;20;30]	25.6	0	1 2	2 10	20 30	0	1	2 0	0.5 1 1.5	
	for snow. Microphysics - scheme						radfac	\setminus /	roodtp	\backslash	l_g		tur_len	
khmin (and	Minimal vertical turbulent	[0.1;0.4; 1]	0.4	[0.1;1; 2]	1.37	300					· · · · ·		1]
kmmin)	diffusion rate [m ² s ⁻¹]										- I I	500	1	
	(TURBULENCE – scheme)		\frown	(\bigcirc	200		200	- AL 1	200	1.10	200	- 16 L	1
ur_len	Maximal turbulent length scale	[60;500;	750	[60;500;	563	100		100		100		100	- 1 11 - 1	
	(m) (TURBULENCE - scheme)	1000]		1000]	\smile									
ic1	Parameter controlling the	[0;0.3; 0.6]	0.25	[0;0.8; 1.6]	0.75		0.4 0.6 0.8	0.5	1 1.	5 -	1 0 1 2	2 0	500 100	Ø
	vertical variation of critical						<							
	relative humidity for sub-grid													
	cloud formation (RADIATION -													
	scheme)													
adfac	Fraction of cloud water and ice	[0.3;0.6; 0.9]	0.55	[0.3;0.6; 0.9]	0.59									
	considered by radiation scheme		\mathbf{N}		\backslash									
	(RADIATION - scheme)	(\frown		\square									
ac_rootdp2	Uniform factor for root depth	[0.5;1; 1.5]	0.9	[0.5;1; 1.5]	0.96)								
	field (Soil-model)		\smile											
_g	tuning parameter for ground-	[0.25; 1.59;	1.33	[0.25; 1.59;	3.57									
	water runoff (Soil-model)	10]		10]										

Comparing the different ways to build the meta model

0 75

neelin_e

	a					E	3				_
tur_len	0.55		0.58	0.54	0.78	0.56	0.51	0.51	0.47	0.8	3
l_g	0.34		0.51	0.49	0.51	0.47	0.45	0.48	0.58		
roodtp	0.4		0.48	0.49	0.48	0.55	0.5	0.64			
radfac	0.37		0.55	0.49	0.5	0.46	0.65				
uc1	0.67		0.52	0.47	0.51	0.61					
tkhmin	0.88		0.61	0.52	0.73						
v0snow	0.38		0.53	0.65							
rlam_heat	0.91		0.74								
			neat of	row th	Inin	JC1 12	diac to	odiR	1.9. NI	Jer	
		1/31	1	·			·		v		а
										roodtp	0.3
										uc1	0.6

	а					
tur_len	0.42		1.23	1.23	1.57	1
l_g	0.1		1.01	0.98	1.03	0
roodtp	0.2		1.12	1.57	1.22	21
radfac	0.21		1.29	1.55	1.18	1
uc1	0.54		1.08	1.19	1.08	0
tkhmin	0.75		1.23	1.21	0.33	
v0snow	0.12		1.25	0.34		
rlam_heat	0.74		0.4			
			neat of	row it	min	v
		yar.	1	·		
1 0.5 0.56	3					

	1.23	1.23	1.57	1.13	1.21	1.2	0.95	0.59
	1.01	0.98	1.03	0.96	0.92	0.98	0.32	1
	1.12	1.57	1.22	1.23	1.54	0.34		
	1.29	1.55	1.18	1.13	0.35			
	1.08	1.19	1.08	0.35				
	1.23	1.21	0.33					
	1.25	0.34						
	0.4							
, ~	neat of	ron **	min	ven ve	diac ro	odiR	19. M	len
	10	V.		•	``		\sim	

В

