

A Method for the Hierarchy of CALMO_MAX Tests (Reviseted)

Euripides Avgoustoglou Hellenic National Meteorological Service CALMO_MAX Workshop, Athens, Greece January $7^{\text {th }}, 2019$

MOTIVATION

\oplus Towards the effort of model opimization and upon gauging the model sensitivity, when the number \boldsymbol{n} of considered model parameters increases, the number of their pair combinations regarding their min and max values vastly increases $\left[O(2 n)^{2}\right]$.
\oplus In CALMO_MAX project, considering an extensive period of COSMO Model testing of order 1 year over a horizontal grid of $\sim 1 \mathrm{~km}$, the number of tests becomes of $O\left[10^{2}(2 n)^{2}\right]$ and upon the accounting of intermediate parameter values regarding the use of a metamodel, the number of tests rises to $O\left[10^{3}(2 n)^{2}\right]$ or the equivalent of runs for 3 centuries for $n=5$!!
\oplus An efficient methodology to constrain the number of tests should be to indicate their impact according to some quantitative criteria and decide upon the resulting priority.
\oplus The methodology is expected to be of practical value if two goals could be accomplished:

- The tests get a priority order and are performed according to it.
- If the number of tests becomes too extensive, the method should be flexible enough to be terminated at the priority that suits the available computational resources. The recommended truncation, however, needs to be supported by some valid scientific arguments regarding the relative importance of the tests that will be included against those that will be omitted.

The proposed methodology will be presented in STEPS and in reference to the web presentation in the $17^{\text {th }}$ COSMO General Meeting in Wrocław:
"Design and Evaluation of Sensitivity Tests for CALMO Project"
available at:
http://www.cosmo-model.org/content/consortium/generalMeetings/general2015/parallel.htm and referred as EA_COSMO_GM_2015 herein.

STEPS OF THE METHOD

STEP 1
 Decide the domain where the metamodel will be used for optimization.

In the application of the method, a domain that includes Switzerland and Northern Italy areas over a horizontal grid of $\sim 1 \mathrm{Km}$ is chosen, i.e.

STEP 2
 Choose the parameters that will be optimized by the meta model.

PARAMETER	INTERPRETATION	RANGE	TEST VALUES (default)
uc1	Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation	$0.0-1.0$	$0.0,0.3,1.0$
radfac	Fraction of cloud water and ice considered by the radiation scheme	$0.3-0.9$	$0.3,0.6,0.9$
rlam_heat	Scaling factor of the laminar boundary layer for heat	$0.1-2.0$	$0.1,1.0,2.0$
tkhmin tkmmin	minimal value of diffusion coefficient for heat and momentum (kept equal)	$\mathbf{0 . 1 - 1 . 0}$	$0.1,0.4,1.0$
v0snow	factor in the terminal velocity for snow	$10.0-\mathbf{3 0 . 0}$	$\mathbf{1 0 . 0 , 2 0 . 0 , 3 0 . 0}$

But how the priority order is going to be given?

This is presented in the following steps ...

STEP 3:

\oplus Decide on the model variables that will be used and tabulate them according to their importance denoted as ranking .
\oplus At this stage of the work, this step is subjective but in my opinion, it can be done on meteorological arguments based on the internal knowledge of the model. The variables that are recommended below are as given in EA_COSMO_GM_2015 but with some rearrangement according to their subjectively estimated importance.
\oplus The subjective criteria on making this choice are not of importance for the presentation of the method and can be discussed at a later stage.

1. < TOT_PREC>: 0-24 hr period accummulated precipitation ($\mathrm{kg} \mathrm{m}^{-2}$).
2. < TMIN_2M>: Minimum 2 m temperature $0-24 \mathrm{hr}$ periods (every hr).
3. <TMAX_2M>: Maximum $2 m$ temperature for 0-24 hr periods (every hr)
4. <T_2M >: $2 m$ temperature for 0-24 hr periods.
5. < TD_2M >: Dew point temperature for 0-24 hr periods.
6. < SNOW_GSP >: 0-24 hr periods accumulated grid-scale snow ($\mathrm{kg} \mathrm{m}^{-2}$)
7. < CLCM >: Medium cloud cover (\%) average of 1 hr time steps $03-24 \mathrm{hs}$.
8. < CLCL >: Low cloud cover (\%) average of 1 hr time steps $03-24 \mathrm{hs}$.
9. < CLCH > : High cloud cover (\%) average of 1 hr time steps $03-24 \mathrm{hs}$.

STEP 4:

Define the sensitivities (S) of these parameters. This is also a matter of choice. The choice made in EA_COSMO_GM_2015 is followed.

$$
\begin{gathered}
S_{\langle P\rangle}(\%)=\frac{\langle P\rangle_{\text {TEST }}-\langle P\rangle_{\text {DEFAULT }}}{\langle P\rangle_{\text {DEFAULT }}} \bullet 100 \\
<P>\text { stands for }<\text { SNOWGSP }>\text { or }<\text { TOTPREC }>\text { or }<\text { CLCL }>\text { or }<\text { CLCM }>\text { or }<\text { CLCH }> \\
S_{\left[\begin{array}{c}
\text { TMIN } 2 m \\
T M A X 2 m
\end{array}\right]}=\left[\begin{array}{l}
<\text { TMIN } 2 m> \\
<T M A X 2 m>
\end{array}\right]_{\text {TEST }}-\left[\begin{array}{l}
<\text { TMIN } 2 m> \\
<\text { TMAX } 2 m>
\end{array}\right]_{\text {DEFAULT }}
\end{gathered}
$$

STEP 5:

\oplus Perform all the model runs for the dates chosen for all the default values of the parameters chosen and produce at least all the considered variables mentioned before.
\oplus Perform all the model runs for the dates chosen for all the max values of the parameters chosen and produce at least all the considered variables mentioned before.

- Perform all the model runs for the dates chosen for all the min values of all the parameters chosen and produce at least all the considered variables mentioned before.

In what follows, the results from CALMO_MAX are used for the whole 2013.

STEP 6:

Present the sensitivity of the variable of the highest ranking in a spider-type graph, i.e TOT_PREC.

Analysis of STEP 6

\oplus The red polygon refers to the zero sensitivity "axis".
\oplus The sensitivities are depicted with the green bullets 0 .
\oplus The dashed polygon line that connects the dots, although not neccessary in the present form of the method, denotes optically the overall sensitivity for the considered meteorological variable especially to the degree that it is convex/concave and mainly in reference to the zero sensitivity red polygon.

STEP 7:

\oplus Evaluate the absolute values of the pair differences for all different parameter sensitivities given in the spider-type graphs.
\oplus Sort these values and place them next to their corresponding spider graph «priority list».
\nmid A value of «+1» or «-1» is also addressed to these differences depending whether the sensitivities have the same or different signs (i.e., they are at the same or opposite side of the sensitivity axis.
\oplus The differences with the highest absolute value and sensitivities with different signs refer to the first group of combination of parameters with the highest priority.
\oplus The differences with the highest absolute value and sensitivities with the same sign refer to the second group of combination of parameters with the highest priority.
\oplus The same process is followed for all the considered meteorological fieds according to their estimated importance.

EXAMPLE OF STEP 7

TOT_PREC		
LUC1-LVOSN:	8,825	-1
LRADFAC-LVOSN	7,189	-1
HTKHM-LVOSN:	6,847	-1
LRLAM-LVOSN:	6,01	1
LTKHM-LVOSN:	5,287	1
HUC1-LVOSN:	5,287	1
HRLAM-LVOSN:	5,287	1
HRADFAC-LVOSN	4,564	1
HRADFAC-LUC1:	4,261	-1
HRADFAC-HVOSI	4,185	-1
LTKHM-LUC1:	3,538	-1
HRLAM-LUC1:	3,538	-1
LTKHM-HVOSN:	3,462	-1
HUC1-HVOSN:	3,462	-1
HRLAM-HVOSN:	3,462	-1
LRLAM-LUC1:	2,815	-1
LRLAM-HVOSN:	2,739	-1
HRADFAC-HTKHI	2,283	-1
HTKHM-LUC1:	1,978	1
LRADFAC-LTKHN	1,902	-1
LRADFAC-HUC1:	1,902	-1
LRADFAC-HRLAN	1,902	-1
HTKHM-HVOSN:	1,902	1
LRADFAC-LUC1:	1,636	1
LRADFAC-HVOSN	1,56	1
HTKHM-HUC1:	1,56	-1
HRLAM-HTKHM:	1,56	-1
HRADFAC-LRLAN	1,446	1
LRADFAC-LRLAN	1,179	-1
LRLAM-HTKHM:	0,837	-1
LRLAM-LTKHM:	0,723	1
LRLAM-HUC1:	0,723	1
HRADFAC-LTKHI	0,723	1
HRADFAC-HUC1:	0,723	1
HRADFAC-HRLAI	0,723	1
LRADFAC-HTKHI	0,342	1
LUC1-HVOSN:	0,076	1
LTKHM-HUC1:	0	1
HRLAM-LTKHM:	0	1
HRLAM-HUC1:	0	1

Nevertheless ,the spider-graphs provide a fair indication of the most sensitive parameters. However, it is higly recommended to put special care on the axis scaling.

PANORAMA OF SENSITIVITIES OVER THE WHOLE 2013

PANORAMA OF SENSITIVITIES OVER THE WHOLE 2013

It can be seen that T2m, Tmax_2m, Tmin_2m, T2m_18UTC, T2m_06UTC display essentially the same sensitivity.

Practically, the most sensitive parameter combinations can be directly addressed from the spider-graphs !

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

Under the previous analysis, the resulting priority board depicts all sensitivities and further testing strategies can be developed.

PRIORITY BOARD FOR THE WHOLE 2013

T_2M			TD_2M			TOT_PREC			SNOW_GSP			CLCL			CLCM			CLCH			CLCT		
HTKHM-LUC1:	0,247		HRLAM-HUC1:	0,06	-1	LUC1-LVOSN:	8,825	-1	HRADFAC-LVOSN:	16,02		LUC1:	25,344	-1	UC	19,436		FAC-LUC1:	14,334		UC1	13,747	
HRADFAC-HTKHM:	0,227	-1	HTKHM-HUC1:	0,054	-1	LRADFAC-LVOSN	7,189	-1	LTKHM-LVOSN:	14,837	-1	HRADFAC-LUC1:	20,641	1	LUC1-LVOSN:	18,766	-1	HRADFAC-HTKHM	8,969	-1	HRADFAC-LUC1:	12,926	1
LRLAM-HTKHM:	0,167	-	LRADFAC-HRLAM:	0,053	-1	HTKHM-LVOSN:	6,847	1	LUC1-LVOSN:	14,54	-1	LRLAM-LUC1:	20,388	-1	HRADFAC-LUC1	18,208	-1	HRADFAC-HVOSN	8,496	1	LUC1-LVOSN:	11,835	
HTKHM-HVOSN:	0,159	-1	LRADFAC-LUC1:	0,047	-1	LRLAM-LVOSN:	6,01		LRLAM-LVOSN:	14,244		LUC1-LVOSN:	20,053		LRLAM-LUC1:	18,083	-1	HRADFAC-HRLAM	8,146		LRLAM-LUC1:	11,579	
LRADFAC-LUC1:	0,155	-1	LRADFAC-HTKHM:	0,047	-1	LTKHM-LVOSN:	5,287		HUC1-LVOSN:	14,244		LUC1-HVOSN:	20,053		HRLAM-LUC1:	99		HRADFAC-LRLAM:	56		LUC1-HVOSN:	11,337	
LRADFAC-LTKHM:	0,155		HRADFAC-HUC1:	0,046	-1	HUC1-LVOSN:	5,287		HRLAM-LVOSN:	13,947		HRLAM-LUC1:	19,714		LRADFAC-LUC1:	17,85		LRADFAC-LVOSN	7,97		HRLAM-LUC1:	11,297	
HRLAM-HTKHM:	0,144		RLAM-LUC1:	0,041	-1	HRLAM-LVOSN:	5,28	1	HTKHM-LVOSN:	13,057		LRADFAC-LUC1:	19,599	1	LUC1-HVOSN:	17,753	1	LUC1-LVOSN:	7,876	-1	LRADFAC-LUC1	10,371	
LTKHM-HUC1:	0,136	-1	LRLAM-HTKHM:	0,041	-1	HRADFAC-LVOSN	4,564	1	LRADFAC-LVOSN:	12,76		HTKHM-HUC1:	13,052	-1	HTKHM-LUC1:	15,553	1	LRADFAC-HUC1:	7,803	1	HTKHM-LUC1:	7,733	
LUC1-LVOSN:	0,127		HRLAM-HVOSN:	0,041		HRADFAC-LUC1:	4,261	1	LRADFAC-HVOSN:	6,825		HTKHM-LUC1:	12,151		HTKHM-HUC1:	7,233		HRADFAC-LTKHM	7,623		HTKHM-HUC1:	6,498	1
LTKHM-LVOSN:	0,12	-1	LUC1-HVOSN:	0,035	-1	HRADFAC-HVOS:	4,185	-1	HTKHM-HVOSN:	6,528		HRADFAC-HTKHM:	8,49	-1	HUC1-HVOSN:	5,03		LRADFAC-LTKHM	6,81		HRADFAC-HTKHM	5,19	1
HTKHM-LVOSN:	0,12		HTKHM-HVOSN:	0,035		LTKHM-LUC1:	3,53	-1	HRLAM-HVOSN:	5,63		LRLAM-HTKHM:	8,237	-1	LRADFAC-HUC1:	4,933	-1	LTKHM-LUC1:	6,71		HTKHM-LVOSN:	4,102	-1
HRADFAC-HUC1:	0,116	-1	HRLAM-LTKHM:	0,034		HRLAM-LUC1:	3,538	1	LRLAM-HVOSN:	341		HTKHM-LVOSN:	7,902		HRLAM-HUC1:	4,817	-1	HRADFAC-HUC1	6,631		LRADFAC-HUC1:	3,86	-1
HTKHM-HUC1:	0,111		HUC1-LVOSN:	0,033		LTKHM-HVOSN:	3,462	-1	HUC1-HVOSN:	5,341		HTKHM-HVOSN:	,902		M-HUC1:	4,703		HRADFAC-LVOSN	6,458		LAM-HTKHM:	源	1
HRADFAC-LVOSN:	0,107		HRADFAC-LRLAM:	033		HUC1-HVOSN:	3,46	-	LUC1-HVOSN:	5,045		HRLAM-HTKHM:	7,563		HRADFAC-HUC1:	4,57		LRADFAC-LRLAN	6,37		HTKHM-HVOSN:	3,604	
HRLAM-LUC1:	0,103		LTKHM-LUC1:	0,028		HRLAM-HVOSN:	3,462	-1	LTKHM-HVOSN:	4,748		LRADFAC-HTKHM:	7,448		HUC1-LVOSN:	4,02		LRADFAC-HRLAM	6,2		HRLAM-HTKHM:	3,564	
HRLAM-LTKHM:	0,103		HRLAM-LVOSN:	0,027		LRLAM-LUC1:	2,815	-1	HRADFAC-HVOSN:	3,561		LRADFAC-LTKHM:	5,745	-1	LTKHM-HUC1:	3,3		LRLAM-LUC1:	6,27		LRADFAC-LTKHM	3,37	1
LRADFAC-HTKHM:	0,092		HRADFAC-HVOSN	027	-1	LRLAM-HVOSN:	2,739	-1	HRADFAC-HTKHM:	967		HRLAM-LTKHM:	5,63	-1	-LVOSN:	3,213	-1	HRLAM-LUC1:	6,18		HRLAM-HUC1:	2,934	-1
LUC1-HVOSN:	0,088		LTKHM-HUC1:	0,026	-1	HRADFAC-HTKH	2,283	-1	LRADFAC-LTKHM:	2,077	-1	LRADFAC-HUC1:	5,604	-1	HRADFAC-HTKHM	2,655	-1	LRADFAC-HVOSN	5,938		HUC1-HVOSN:	, 894	1
LTKHM-HVOSN:	0,088		LRADFAC-LVOSN:	0,026		HTKHM-LUC1:	1,978		HRADFAC-HRLAM:	2,077		HRLAM-HUC1:	5,489	-1	LRLAM-HTKHM:	2,53		LUC1-HVOSN:	5,83		LRLAM-HUC1:	2,652	
HRADFAC-HRLAM:	0,083		LUC1-LVOSN:	0,021		LRADFAC-LTKHM	1,902	-1	LRADFAC-LUC1:	1,78		LTKHM-LVOSN:	5,291	-1	HRLAM-HTKHM:	2,416		LRADFAC-HTKH	5,465		LRADFAC-HTKHM	2,638	
LRLAM-LUC1:	0,08		HTKHM-LVOSN:	021		LRADFAC-HUC1:	1,902	-1	HRADFAC-LRLAM:	1,78		LTKHM-HVOSN:	5,291	-1	LRADFAC-HTKHM:	2,29		HTKHM-LUC1:	5,36		HRLAM-LTKHM:	2,4	1
LRLAM-LT	0,08		LRLAM-LVOSN:	0,02	L	LRADFAC-HRLA	1,902	-1	HRADFAC-HUC1:	1,78		HUC1-LVOSN:	5,15	-1	HTKHM-HVOSN:	2,2		HTKHM-LVOSN:	2,511		HVOS	2,41	1
LRADFAC-LRLAM:	0,075	-1	HRADFAC-LTKHM:	0,02		HTKHM-HVOSN:	1,902		LRADFAC-LRLAM:	1,484		HUC1-HVOSN:	5,15	-1	LTKHM-HVOSN:	1,683	-1	HTKHM-HUC1:	2,338		HUC1-LVOSN:	2,396	
HRADFAC-HVOSN:	0,068		LRADFAC-LTKHM:	0,019		LRADFAC-LUC1:	1,636		LRADFAC-HUC1:	1,484		LRLAM-LTKHM:	4,956		LRADFAC-LTKHM:	1,585		HUC1-HVOSN:	1,865		LRLAM-LTKHM:	2,168	
LRADFAC-HVOSN:	0,067	-1	HUC1-HVOSN:	0,019		LRADFAC-HVOSN	1,56		HRADFAC-LUC1:	1,48		LRLAM-HUC1:	4,815		HRLAM-LTKHM:	1,46	-1	HRLAM-LVOSN:	1,688		LTKHM-LVOSN:	1,912	
HRADFAC-LRLAM:	0,0		HRADFAC-HRLAM:	0,014		HTKHM-HUC1:	1,5	-1	HTKHM-LUC1:	1,483		HRADFAC-LTKHM:	4,703		LRLAM-LTKHM	1,35		LRLAM-LVOSN:	1,5		HRADFAC-HRLA	1,62	1
LRLAM-HUC1:	0,056	-1	LRL	013		HR	1,56	1	LRL	1,187		HRADFAC-HUC1:	4,562		HRADFAC-LTKHM	1,22		HRLAM-HUC1:	1,515		dfac-hVosn	1,589	1
LRADFAC-HRLAM:	0,052		LRLAM-HUC1:	0,013		HRADFAC-LRLAN	1,446		LRADFAC-HRLAM	1,187		HRADFAC-HRLAM:	0,927	-1	LRADFAC-LVOSN:	0,915	-1	LRLAM-HUC1:	1,425		LRADFAC-LVOSN:	1,464	1
HUC1-HVOSN:	0,04		HRADFAC-LVOSN:	0,013		LRADFAC-LRLAM	1,179	-1	HTKHM-HUC1:	1,187		LRADFAC-LRLAM:	0,789	-1	HRLAM-LVOSN:	0,79	-1	LTKHM-LVOSN:	1,16		HRADFAC-LRLAM	1,347	
LRLAM-LVOSN:	0,04	-1	LRADFAC-HVOSN:	0,012		LRLAM-HTKHM:	0,837	-1	HRADFAC-LTKHM:	1,181		HRADFAC-LVOSN:	0,588	-1	LRLAM-LVOSN:	0,68		LTKHM-HUC1:	0,992		HRADFAC-HUC1:	1,30	
HRLAM-HUC1:	0,033		HRADFAC-LUC1:	0,008		LRLAM-LTKHM:	0,723		HRLAM-LTKHM:	0,89		HRADFAC-HVOSN:	0,588	-1	LTKHM-LVOSN:	0,6		LRLAM-HTKHM:	0,913		LRADFAC-LRLAM:	1,208	1
LRADFAC-LVOSN:	028		1 HRADFAC-HTKHM	0,008		LRLAM-HUC1:	0,723		HRLAM-HTKHM:	0,89		LRADFAC-LVOSN:	0,454		HRADFAC-LVOSN:	0,55		LTKHM-HVOSN:	0,873		HRADFAC-LVOSN	1,091	
HRLAM-LVOSN:	0,024		LTKHM-LVOSN:	0,007		HRADFAC-LTKHN	0,723		LTKHM-HUC1:	0,593		LRADFAC-HVOSN:	0,454		HRADFAC-HVOSN:	0,455	-1	HRLAM-HTKHM:	0,823		LRADFAC-HVOSN:	0,966	
HRADFAC-LUC1:	0,02		1 LTKHM-HVOSN:	0,007		HRADFAC-HUC1:	,723		LRLAM-LTKHM:	0,593		HRLAM-LVOSN:	0,339		LRLAM-HVOSN:	0,33	-1	HRLAM-LTKHM:	0,523		LRADFAC-HRLAM:	0,920	
HRADFAC-LTKHM:	0,02		1 LRADFAC-HUC1:	0,007		HRADFAC-HRLAI	0,723		HRLAM-LUC1:	0,593		HRLAM-HVOSN:	0,339		HRADFAC-HRLAM:	0,23	-1	HTKHM-HVOSN:	0,473		HRADFAC-LTKHM	0,821	
LRADFAC-HUC1:	0,019		1 LRLAM-HVOSN:	0,006		LRADFAC-HTKHN	0,342		LTKHM-LUC1:	0,297		LRLAM-LVOSN:	0,335	-1	LRADFAC-LRLAM:	0,232	-1	LRLAM-HVOSN:	0,44		HRLAM-LVOSN:	0,538	1
HRLAM-HVOSN:	0,015		LRADFAC-LRLAM:	0,006		LUC1-HVOSN:	0,076	1	LRADFAC-HTKHM	0,297		LRLAM-HVOSN:	0,335	-1	HRLAM-HVOSN:	0,216		LRLAM-LTKHM:	0,433		LTKHM-HUC1:	0,484	
HUC1-LVOSN:	0,009		1 HRLAM-LUC1:	0,006		LTKHM-HUC1:	0		HRLAM-HUC1:	0,29		HRADFAC-LRLAM:	0,253	1	HRADFAC-LRLAM:	0,125		HRLAM-HVOSN:	0,35		LRLAM-LVOSN:	0,256	
LRLAM-HVOSN:	0,008		1 HRLAM-HTKHM:	0,006		HRLAM-LTKHM:	0		LRLAM-LUC1:	0,296		LTKHM-HUC1:	0,141		LRADFAC-HRLAM:	0,118		HUC1-LVOSN:	0,173		LRLAM-HVOSN:	0,242	1
LTKHM-LUC1:	0		HTKHM-LUC1:	0		HRLAM-HUC1:	0		LRLAM-HUC1:	0		LRADFAC-HRLAM:	0,115		LRADFAC-HVOSN:	0,098		LRADFAC-LUC1:	0,1		HRLAM-HVOSN:	0,04	

EXTENSION OF THE METHODOLOGY:

The above analysis can be readily used to get important insight to seasonal or monthly sensitivity through modified spider graphs.

CLCH
 Monthly Sensitivities

! Different scales. The graph with the largest scale range denotes the most sensitive parameter!

CLCH (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

CLCH

Yearly and Monthly Sensitivities combined

CLCH

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

CLCM (Yearly vs Monthly Sensitivities)

LVOSN LRADFAC

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

Yearly and Monthly Sensitivities combined

CLCM

\longrightarrow JAN
——FEB
- M MAR
\times - APR
* MAY
--JUN
- JUL
- AUG
--SEP
\bigcirc OCT
--NOV
- DEC
YEAR
-REF

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

CLCL (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

CLCL

$\simeq J A N$
--FEB
\simeq MAR
$-\mathrm{APR}$

* MAY
$—$-JUN
-_JUL
——AUG
- SEP
——OCT
-- -NOV
——DEC
\longrightarrow REF

Yearly and Monthly Sensitivities combined

CLCL

$$
\begin{aligned}
& \longrightarrow \text { JAN } \\
& \text {--FEB } \\
& \text { - }- \text { MAR } \\
& \text { - APR } \\
& \text { * MAY } \\
& \rightarrow \text { JUN } \\
& \text { - - JUL } \\
& \text { - AUG } \\
& \text {-_SEP } \\
& \rightarrow \text { OCT } \\
& \text {--NOV } \\
& \text { - }- \text { DEC } \\
& \text {-TYEAR } \\
& \rightarrow \text { REF }
\end{aligned}
$$

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

CLCT (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

CLCT

$$
\backsim J A N
$$

$$
--F E B
$$

$$
\simeq \text { MAR }
$$

\simeq APR

* - MAY
——JUN
——JUL
- - AUG
- - SEP
——OCT
--NOV
——DEC
\longrightarrow REF

Yearly and Monthly Sensitivities combined

SNOW_GSP Monthly Sensitivities

SNOW_GSP (Yearly vS Monthly Sensitivities)

Monthly Sensitivities combined

SNOW_GSP

Yearly and Monthly Sensitivities combined

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

TOT_PREC (Yearly vs Monthly Sensitivities)

Monthly Sensitivities combined

TOT_PREC

$$
\longleftarrow J A N
$$

$$
-F E B
$$

$$
\doteqdot \text { MAR }
$$

$$
\varkappa \mathrm{APR}
$$

$$
\text { * } \operatorname{MAY}
$$

$$
\backsim J U N
$$

——JUL
——AUG
——SEP
$\boxed{-}$ OCT
--NOV
——DEC
\longrightarrow REF

Yearly and Monthly Sensitivities combined

\simeq JAN
——FEB

- - MAR
- APR
* - MAY
\multimap-JUN
-_JUL
- - AUG
——SEP
——OCT
--NOV
——DEC
- YEAR
\longrightarrow REF

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

T2m (Yearly vs Monthly Sensitivities)

Monthly Sensitivities combined

T2m

Yearly and Monthly Sensitivities combined

Tmin2m Monthly Sensitivities

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Tmin2m (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

Yearly and Monthly Sensitivities combined

T2m06UTC Monthly Sensitivities

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

T2m06UTC (Yearly vs Monthly Sensitivities)

Monthly Sensitivities combined

Yearly and Monthly Sensitivities combined

Tmax 2 m Monthly Sensitivities

Tmax2m (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

Yearly and Monthly Sensitivities combined

T2m18UTC Monthly Sensitivities

T2m18UTC (Yearly vs Monthly Sensitivities)

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Monthly Sensitivities combined

T2m18UTC

Yearly and Monthly Sensitivities combined

Td
 Monthly Sensitivities

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

Td (Yearly vs Monthly Sensitivities)

Monthly Sensitivities combined

Td

Yearly and Monthly Sensitivities combined

PANORAMA OF MONTHLY SENSITIVITIES FOR 2013

JANUARY

FEBRUARY

CLCH

MARCH

APRIL

MAY

JUNE

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January $7^{\text {th }} 2019$

JULY

AUGUST

SEPTEMBER

OCTOBER

NOVEMBER

DECEMBER

APPLICATION OF THE METHODOLOGY TO OBSERVATIONS A TENTATIVE DRAFT

Mean values for 350days out of 365 days in 2013 over observation «positions» (provided by IMS)

	Obs	Simulation										
	Obs	Default	LTKHM	HTKHM	LRLAM	HRLAM	LVOSN	HVOSN	LRADFAC	HRADFAC	LUC1	HUC1
Daily 2 m Tmax [c]	9,5554236	8,3071742	8,1881924	8,439952	5,1267706	8,3117172	8,3126452	8,2809631	8,4094556	8,1257207	8,3634544	8,2612675
Daily 2 m Tmin [c]	2,0136913	2,9899176	2,8452023	3,1372939	0,076456602	2,9119855	2,9971762	2,9640281	3,0291088	2,8938131	2,8072147	3,002064
Daily mean of Tdew	5,2250654	5,2899909	5,2708491	5,2671631	2,079497	5,2376039	5,2816001	5,2983604	5,3134511	5,2599145	5,2474442	5,2993684
Daily 2m Tdew maximum [c]	7,7133257	7,7132891	7,691788	7,6972453	4,5032609	7,6814525	7,7065516	7,7252926	7,7544267	7,6638358	7,7154519	7,7156607
Daily 2 m Tdew minimum [c]	2,4219839	2,6729404	2,6597769	2,646109	-0,53189374	2,5949414	2,6647681	2,6785359	2,678983	2,6648828	2,6042513	2,6878347
SunDuration [\%]	42,843983	46,861793	46,323687	48,263598	43,846275	47,126855	46,814391	46,903763	48,340386	44,880147	50,88742	45,90906
Daily Precipiation [mm/day]	1,9256762	3,4840112	3,4556055	3,5157493	0,6542512	3,4541211	3,3635686	3,5232342	3,5296541	3,4212351	3,5457649	3,4625179

Differences in reference to observations

	Obs	Default-Obs	LTKHM-Obs	HTKHM-Obs	LRLAM-Obs	HRLAM-Obs	LVOSN-Obs	HVOSN-Obs	LRADFAC-Obs	HRADFAC-Ob	HUC1-Obs	LUC1-Obs
Daily 2 m Tmax [c]	9,5554236	-1,2482494	-1,3672312	-1,1154716	-4,428653	-1,2437064	-1,2427784	-1,2744605	-1,145968	-1,4297029	-1,1919692	-1,2941561
Daily 2 m Tmin [c]	2,0136913	0,9762263	0,831511	1,1236026	-1,937234698	0,8982942	0,9834849	0,9503368	1,0154175	0,8801218	0,7935234	0,9883727
Daily mean of Tdew	5,2250654	0,0649255	0,0457837	0,0420977	-3,1455684	0,0125385	0,0565347	0,073295	0,0883857	0,0348491	0,0223788	0,074303
Daily 2m Tdew maximum [c]	7,7133257	-3,66E-05	-0,0215377	-0,0160804	-3,2100648	-0,0318732	-0,0067741	0,0119669	0,041101	-0,0494899	0,0021262	0,002335
Daily 2m Tdew minimum [c]	2,4219839	0,2509565	0,237793	0,2241251	-2,95387764	0,1729575	0,2427842	0,256552	0,2569991	0,2428989	0,1822674	0,2658508
SunDuration [\%]	42,843983	4,01781	3,479704	5,419615	1,002292	4,282872	3,970408	4,05978	5,496403	2,036164	8,043437	3,065077
Daily Precipiation [mm/day]	1,9256762	1,558335	1,5299293	1,5900731	-1,271425	1,5284449	1,4378924	1,597558	1,6039779	1,4955589	1,6200887	1,5368417

Sensitivities in reference to observations

	Obs	Default	LTKHM	HTKHM	LRLAM	HRLAM	LVOSN-Obs	HVOSN-Obs	LRADFAC	HRADFAC	HUC1	LUC1
Daily 2m Tmax [c]	0	-1,2482494	-1,3672312	-1,1154716	-4,428653	-1,2437064	-1,2427784	-1,2744605	-1,145968	-1,4297029	-1,1919692	-1,2941561
Daily 2 m Tmin [c]	0	0,9762263	0,831511	1,1236026	-1,937234698	0,8982942	0,9834849	0,9503368	1,0154175	0,8801218	0,7935234	0,9883727
Daily mean of Tdew	0	0,0649255	0,0457837	0,0420977	-3,1455684	0,0125385	0,0565347	0,073295	0,0883857	0,0348491	0,0223788	0,074303
Daily 2 m Tdew maximum [c]	0	-3,66E-05	-0,0215377	-0,0160804	-3,2100648	-0,0318732	-0,0067741	0,0119669	0,041101	-0,0494899	0,0021262	0,002335
Daily 2 m Tdew minimum [c]	0	0,2509565	0,237793	0,2241251	-2,95387764	0,1729575	0,2427842	0,256552	0,2569991	0,2428989	0,1822674	0,2658508
SunDuration [\%]	0	0,093777696	0,081218032	0,126496526	0,023393997	0,099964375	0,092671309	0,094757296	0,128288796	0,04752509	0,18773784	0,071540431
Daily Precipiation [mm/day]	0	0,809240411	0,794489385	0,825721946	-0,660248592	0,793718539	0,746694797	0,829608841	0,832942683	0,7766409	0,84130899	0,798078981
REFERENCE		0	0	0	0	0	0	0	0	0	0	0

Sensitivity graphs

Tdew_max sensitivity vs obs Default

Euripides Avgoustoglou HNMS, CALMO_MAX Workshop, January 7th 2019

CONCLUSIONS

\oplus The spider graphs with the largest parameter range can potentially denote the most sensitive parameter for a particular field.
\oplus The relative sensitivity ot the other considered parameters can be estlmated by employing the scale with the largest parameter range for the remaining spider-graphs.
† Yearly versus monthly spider graphs can provide a relatively transparent seasonal dependence of the parameters chosen.
\oplus Overall, a relatively systematic, consistent, objective and robust methodology regarding the evaluation of model parameters priority for testing purposes has been presented that can facilitate the formidable task of the model optimization proccess.
\oplus In principle, the use of spider graphs can be used to select objectively the model parameters needed to be optimized.
\oplus However a first tentative application of the methodology in reference to observations displays a framework for substantial considerations.

