Status of Task 3.1 – Verification of forecasts of intense convective phenomena

Andrzej Mazur, Joanna Linkowska Institute of Meteorology and Water Management – National Research Institute

1. Introduction

2. Done

3. Examples

4. Conclusions (?)

"Discrete" (1, 2) vs. "Continuous" (3) verification

1. SAL (Structure-Amplitude-Location) approach

- S structure compare the volume of the normalized objects.
- A- amplitude corresponds to the normalized difference of the domain-averaged values
- L- location –Combinations of a difference of mass centers of fields and averaged distance between the total mass center and individual objects
- The perfect forecast S = A = L = 0

Wernli H, Paulat M, Hagen M, Frei C. 2008. SAL – a novel quality measure for the verification of quantitative precipitation forecasts. Monthly Weather Review 136: 4470–4487.

2. Fraction Skill Scores (FSS) assessment

Direct comparison of the forecast and of observed fractional coverage of grid-box events in spatial windows of increasing size. Most sensitive to rare events.

- FSS = 0 no correspondence between observations and forecasts
- FSS = 1 perfect match
- FSS >= FSS uniform "useful" forecast.
- 2. MAE, RMSE which metric is better?
 - RMSE has the benefit of penalizing large errors more so can be more appropriate in some cases
 - RMSE does not describe average error alone as MAE does
 - Distinct advantage of RMSE over MAE RMSE doesn't use the absolute value
 - which is good in many mathematical calculations

Verification of forecasts of intense convective phenomena **Done (1)**

Observations: lightnings (C2G, C2C) from the Polish lightning detection network PERUN, covering Poland + parts of neighbouring countries

Forecast: CAPE-based FLR (Flash Rates) as follows:

$$W = 0.3 \cdot \sqrt{2 \cdot CAPE}$$

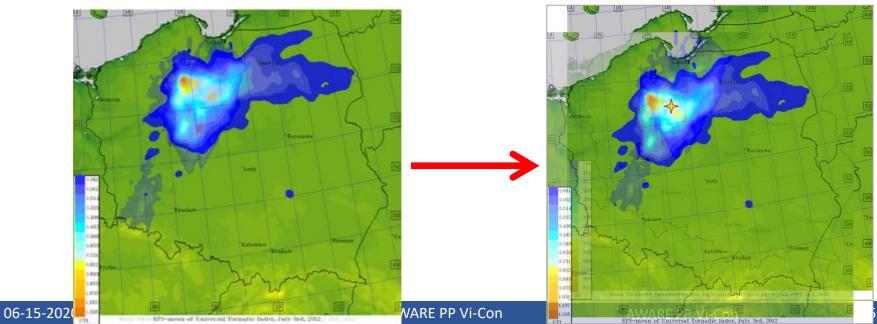
$$FR = \left(\frac{W}{14.66}\right)^{4.54}$$

$$if \quad CTT > -15^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{-CTT}{15}, 0.01\right)\right]$$

$$if \quad CBT < -5^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{CBT + 15}{10}, 0.01\right)\right]$$

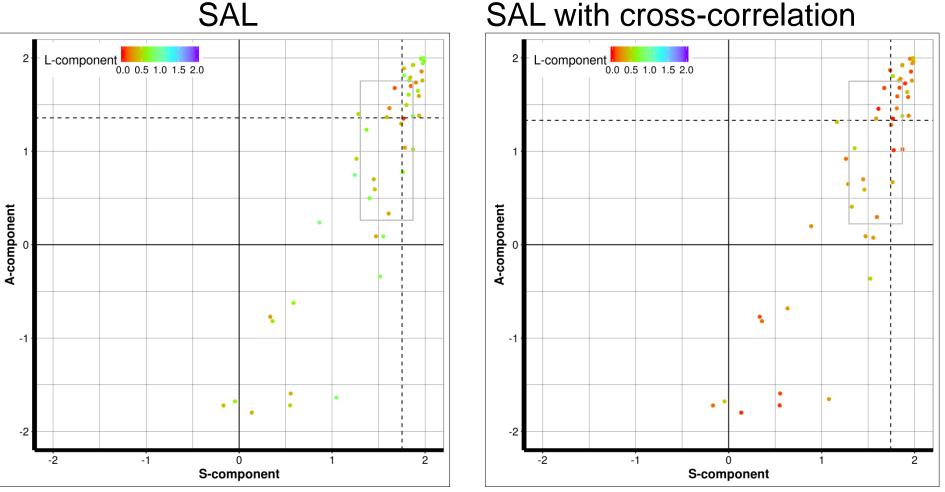
Archive observations vs. forecasts (2011-2015)

Cases selection:

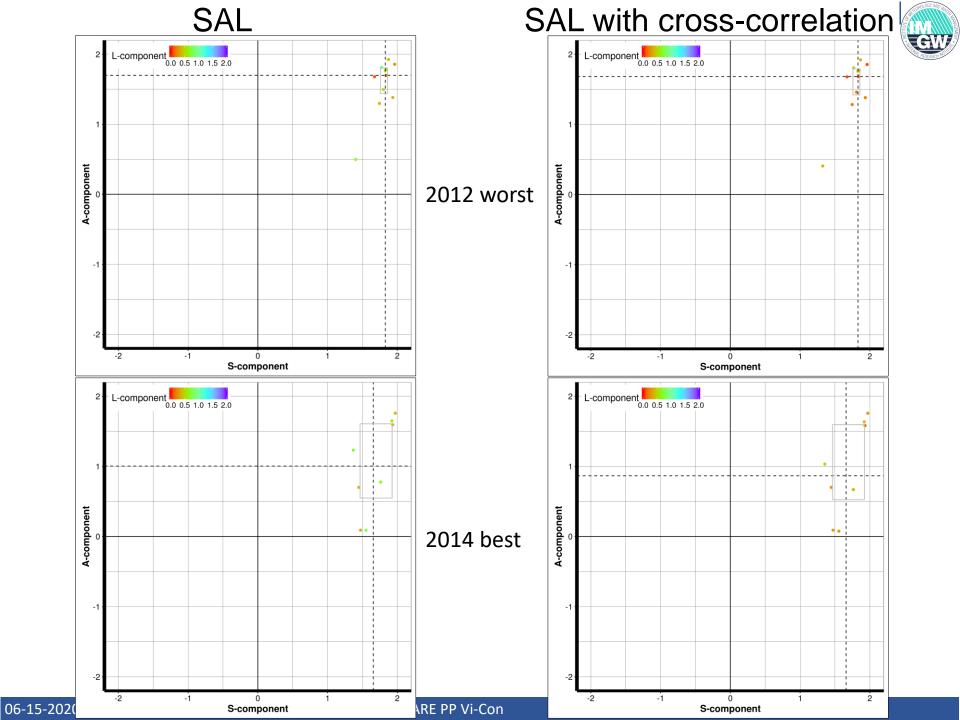

- For both observations and forecasts – FLR max_value> 20 strikes/hour
- The duration of the storm must be not less than 6 hours
- For the period 2011-2015 approx. 10 cases per year.

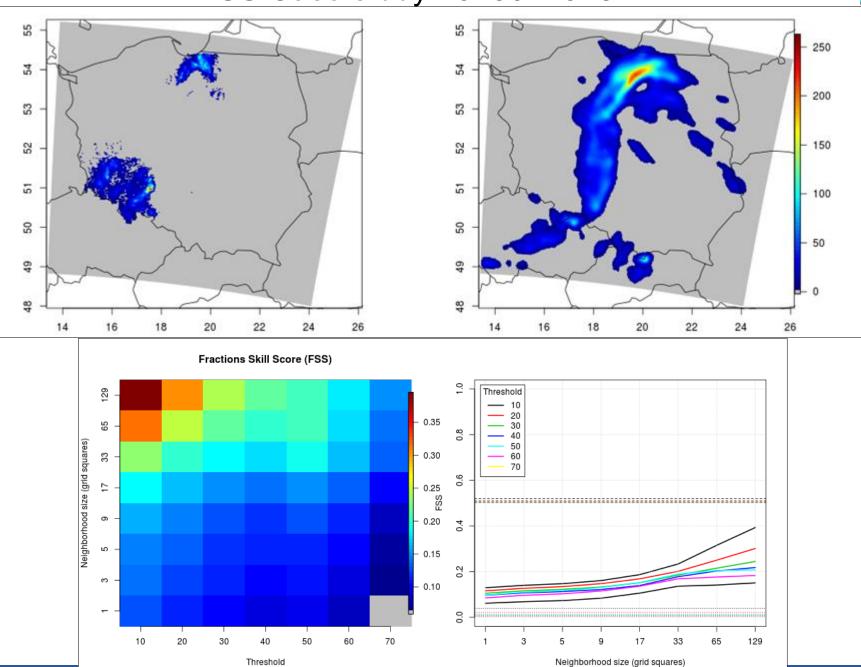
Additional approach: space-lag correlation.

Short reminder:


- 1. Calculate coordinates of "centres of mass" for both distribution patterns (obs. vs. fcst)
- 2. Compute vector of displacement of fcst to obs. as a difference of the two above
- 3. Displace linearly every value of fcst by the vector of displacement

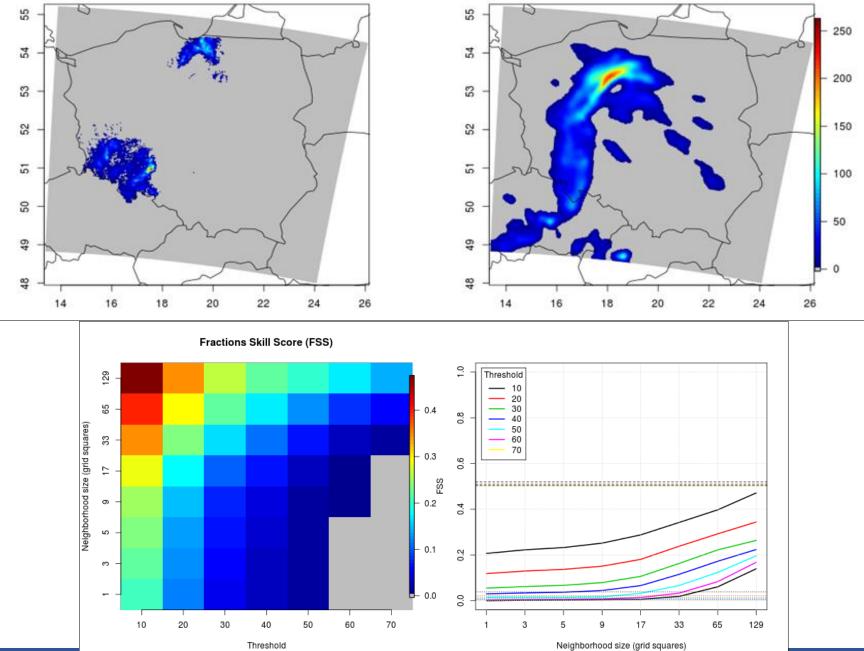
Verification of forecasts of intense convective phenomena


Examples (1)

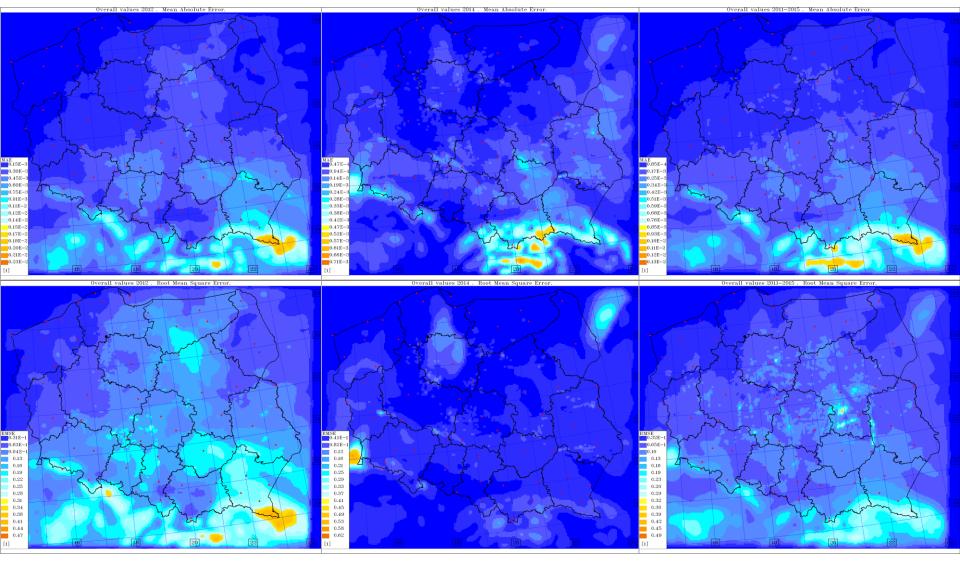


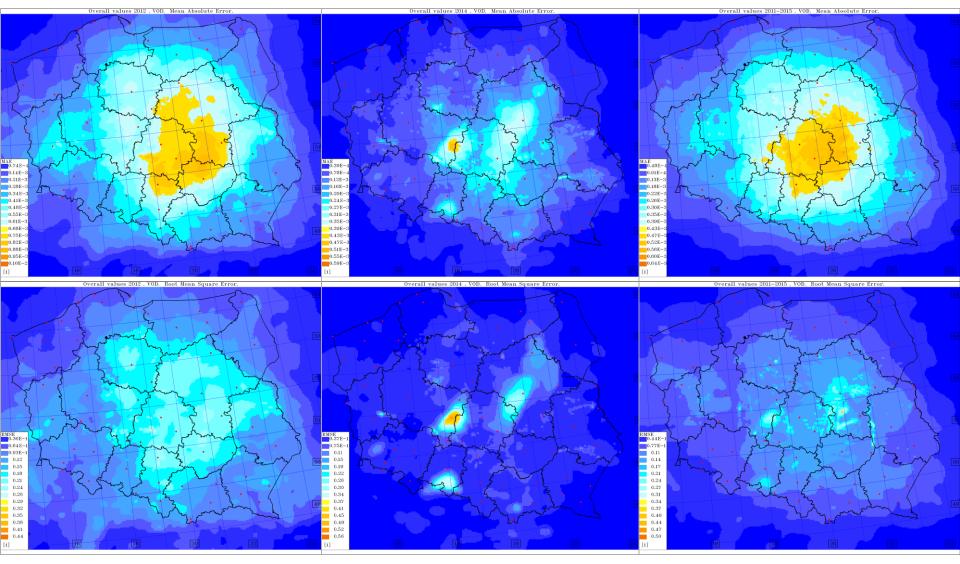
All selected cases (2011-2015)

Dotted lines denote the median Structure- and Amplitude-component scores, resp. The box corresponds to the 25 and 75 quartiles of S (*x*-axis) and A (*y*-axis) components.


FSS Case study 2013072918

06-15-2020


FSS Case study 2013072918 with cross-correlation


Verification of forecasts of intense convective phenomena Examples (5) MAE/RMSE

2011-2015

Verification of forecasts of intense convective phenomena Examples (6) MAE/RMSE with cross-correlation

2011-2015

Verification of forecasts of intense convective phenomena Examples (7)

MAE/RMSE with vs. w/out cross-correlation

Raw results				VOD			
Selected cases		All year		Selected cases		All year	
MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
18.628	51.695	4.712	18.904	16.744	49.429	4.213	18.051
10.214	28.531	5.913	18.866	9.604	27.773	5.027	17.482
4.973	17.386	2.184	10.556	4.741	16.997	1.949	9.970
2.833	9.769	1.516	9.186	2.553	9.346	1.374	8.960
2.758	13.987	2.025	11.871	2.435	13.384	1.819	11.391
8.255	29.623	3.360	14.695	7.550	24.467	2.950	13.904
	Selected MAE 18.628 10.214 4.973 2.833 2.758	Selected casesMAERMSE18.62851.69510.21428.5314.97317.3862.8339.7692.75813.987	Selected cases All y MAE RMSE MAE 18.628 51.695 4.712 10.214 28.531 5.913 4.973 17.386 2.184 2.833 9.769 1.516 2.758 13.987 2.025	Selected casesAll yearMAERMSEMAERMSE18.628 51.695 4.712 18.904 10.214 28.531 5.913 18.866 4.973 17.386 2.184 10.556 2.833 9.769 1.516 9.186 2.758 13.987 2.025 11.871	Selected casesAll $year$ SelectedMAERMSEMAERMSEMAE18.62851.6954.71218.90416.74410.21428.5315.91318.8669.6044.97317.3862.18410.5564.7412.8339.7691.5169.1862.5532.75813.9872.02511.8712.435	Selected casesAll \checkmark erSelected casesMAERMSEMAERMSEMAERMSE18.62851.6954.71218.90416.74449.42910.21428.5315.91318.8669.60427.7734.97317.3862.18410.5564.74116.9972.8339.7691.5169.1862.5539.3462.75813.9872.02511.8712.43513.384	Selected casesAll yearSelected casesAllMAERMSEMAERMSEMAERMSEMAE18.628 51.695 4.712 18.904 16.744 49.429 4.213 10.214 28.531 5.913 18.866 9.604 27.773 5.027 4.973 17.386 2.184 10.556 4.741 16.997 1.949 2.833 9.769 1.516 9.186 2.553 9.346 1.374 2.758 13.987 2.025 11.871 2.435 13.384 1.819

- SAL VOD forces some improvement in L-component and (to some extent) in A-component. S-component to a large extent remains unchanged.
- 2. In the future work choose smaller domain (SAL is more effective) and more cases to study.
- 3. FSS results are not very impressive. VOD not necessarily improves it (though these are preliminary tests...)
- 4. Possible reason (?) FSS is most sensitive to rare events
- 5. MAE/RMSE (direct comparison) The worst values in mountainous regions hard(er) to predict thunderstorms?
- MAE/RMSE w. cross-correlation slight improvement compared to direct verification, maxima moved towards domain centre.
- 7. Discrete vs. continuous verification?

