
Federal Department of Home Affairs FDHA

Federal Office of Meteorology and Climatology MeteoSwiss

Cray XT

JM. Bettems &

P. Baumann

MeteoSwiss

May 2025

fieldextra v15.2.0

2Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

bettems@tsa: fieldextra control_file

 fieldextra is the fortran program executable

 control_file contains the namelist defining the program behaviour

3Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

… HEADER …

&Process

in_file = "./support/input/cosmo-e/000/lfff<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram_precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71_dh_prec",

out_type_text1 = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints“

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY", "PAY" /

&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process out_field="TOT_PREC" /

Available in ./cookbook/meteogram_precipitation.nl

C
o

n
tr

o
l_

fi
le

4Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

&Process

in_file = "./support/input/cosmo-e/000/lfff<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram_precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71_dh_prec",

out_type_text1 = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints“

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY", "PAY" /

&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process out_field="TOT_PREC" /

Define input and output characteristics, define domain subset

5Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

&Process

in_file = "./support/input/cosmo-e/000/lfff<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram_precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71_dh_prec",

out_type_text1 = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints“

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY", "PAY" /

&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process out_field="TOT_PREC" /

Define fields to collect

6Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

&Process

in_file = "./support/input/cosmo-e/000/lfff<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram_precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71_dh_prec",

out_type_text1 = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints“

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY", "PAY" /

&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process out_field="TOT_PREC" /

Define operations to apply on collected fields

(large choice of operators available)

7Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

&Process

in_file = "./support/input/cosmo-e/000/lfff<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram_precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71_dh_prec",

out_type_text1 = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints“

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY", "PAY" /

&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" , toper_mask = "lead_time>3"/

&Process out_field="TOT_PREC" /

Define fields to compute

(refers to some fieldextra internal procedure, easily extensible)

8Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

• control_file contains the namelist defining the program behaviour

 header &RunSpecification

 &GlobalResource

 &GlobalSettings

 &ModelSpecification

 product definition &Process (repeated)

• external resources

 definition of field names dictionary in &GlobalResource

 definition of locations location_list in &GlobalResource

9Fieldextra 15.2

Commented example – Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

• program diagnostic and profiling

 standard error & output

 file fieldextra.diagnostic

 controlled by the values of verbosity and additional_diagnostic

 verbosity = ‘high’ in &RunSpecification

 additional_diagnostic = .true. in &RunSpecification

 additional_profiling = .true. in &RunSpecification

10Fieldextra 15.2

Selected topics

11Fieldextra 15.2

Design – Input & output

input 1

Output 1

Output 2

Output 3

Output 4

INCORE
input 2

input 3

input 1

input 2

input 3

First pass (INCORE)

Second pass (standard output)INCORE

• INCORE storage used to store resources for

common operations (see next slide).

• Each input is read once.

• Storage is allocated on demand for each output.

• Each input record is evaluated, and dispatched in

the corresponding output storage as required

(in memory).

→ io optimization at the cost of memory usage !

• When all data for some output have been

collected, the corresponding data is written to disk

and the memory is released.

• For output supporting append mode, data is

processed piecewise after reading each related

validation time (‚just on time‘ mode).

12Fieldextra 15.2

• INCORE global persistent storage is used e.g. to :

• associate grid points to specified locations & regions

• produce grid point height information for some ASCII output

• specify model base grid when working with staggered fields,
or fields defined on a larger domain

• specify target grid for re-gridding

• merge and compare different fields

• provide access to programmatically derived constant fields (see below)

• Programmatically derived constant fields will be available from

INCORE storage, e.g. when HSURF is present:

• RLAT, RLON (geog. latitude, longitude [deg])

• CLAT, CLON, ELAT, ELON, VLAT, VLON (geog. latitude, longitude [deg])

• SWISS_WE / SWISS_SN (swiss coord. [m])

• BOAGAW_WE / BOAGAW_SN (Gauss-Boaga coord., west sector [m])

• BOAGAE_WE / BOAGAE_SN (Gauss-Boaga coord., east sector [m])

• HHL / HFL (COSMO height of model levels [m])

• T0FL, P0FL, DP0FL (COSMO reference atmosphere)

Design – Incore storage

13Fieldextra 15.2

Design – Iterative processing (1)

input n
input 2

input 1
output

tmp1_field =

INCORE

(non volatile)

in_field =

in_field =

out_field =

...

Fn1(Ψ) Fn1(Ψ)

Fnm(Ψ)

F11(Ψ) : 1 to 1 field operator

Fn1(Ψ) : n to 1 field operator

Fnm(Ψ) : n to m field operator

F11(Ψ)F11(Ψ) F11(Ψ) F11(Ψ)

14Fieldextra 15.2

Design – Iterative processing (2)

• For each output, define the set of associated input files

• data can only be extracted from this set

• INCORE storage can be part of this set

• First iteration: collect all necessary input fields

• all fields must be unique (condition can be relaxed with out_duplicate_infield)

• all field must be defined on a compatible grid (cropping & re-gridding are available)

• fields required in a subsequent iteration must be collected at that stage

• Next iterations (repeated up to 6 times): collect or compute fields

• only data in previous recipient are available

• if fields are not available, they must be computed:
in this case the parent fields must be available in the previous recipient

• the main parent (defined in dictionary or by the type of required operator)
defines the characteristics of the produced field

• Only the last recipient is available for output generation

• all fields available in the last recipient are written in the output file

15Fieldextra 15.2

Design – Iterative processing (3)

First iteration:

Each extracted field may be transformed by one or more operators, in the order
regridding (regrid), change meta-information (set_*),
merge (merge_with), compare (compare_with), lateral transform (hoper),

scale/offset, vertical transform (voper, voper2 … voper5),
temporal transform (toper), local transform (poper, poper2 … poper5),

spatial filter (*_filter), reset identity (new_field_id)

Next iteration(s):

Each extracted field may be transformed by one or more operators, in the order
lateral transform (hoper), scale/offset,
vertical transform (voper, voper2 … voper5), temporal transform (toper),

local transform (poper, poper2 … poper5), spatial filter (*_filter),
change meta-information (set_*) , reset identity (new_field_id)

F11(Ψ)

After last iteration:

A last set of global operations may be applied, in the order
n to m operator (out_postproc_module), regridding (out_regrid_target),
reset meta-info (set_* …), filter data (out_filter_*)

Fnm(Ψ)

F11(Ψ)

in_field =

16Fieldextra 15.2

Design – Iterative processing (4)

INCORE

...

INCORE

...

This procedure …

… can be repeated once!
• write a temporary GRIB file at the end of the first iteration

• use this temporary file as input for the second iteration

• dependencies are detected and files are processed

in the correct order

17Fieldextra 15.2

Design – Namelist : basic

Global settings

• resources files

• run specifications

• default values

Definitions for output_1

Definitions for output_2

Definitions for output_n

A single namelist file

to produce n output Definitions for output_2

out_field = outfield_1

 + associated transformations

out_field = outfield_j

 + associated transformations

Generation of fields for output_2

last iteration

Collecting fields for output_2,

from input_1

O
P
T
IO
N
A
L

in_file = input_1

 + input characteristic

out_file = output_2

 + output characteristics

 + geographical subset

 + computation mode

 + more (filter, interpolation, dictionary)

selection_mode = interpretation of in_field

in_field = infield_1,

 + associated transformations

in_field = infield_i,

 + associated transformations

C
O
M
P
U
L
S
O
R
Y

Fields to collect from input_1

Fields to collect from input_m

Fields to generate, first iteration

Fields to generate, last iteration

inp_1

inp_n

it_1

it_k

...
it_1 it_k

inp_1 inp_n...

*)

out_file information must be

repeated with each new

definition of in_file

*)

18Fieldextra 15.2

Design – Namelist : selection_mode

in_field tmp1_field out_field

in_field tmp1_field out_field

IN
C

L
U

D
E

_
O

N
L

Y
(d

e
fa

u
lt

)
IN

C
L

U
D

E
_
A

L
L

E
X

C
L

U
D

E

Input

file

Input

file

Output

file

Output

file

Product generation

Transformation of input file

Merging 2 input

Typical usage:

EXCLUDE

INCLUDE_ONLY

X

COMPULSORY OPTIONAL

in_field

tmp1_field out_field

XInput

file Output

file

19Fieldextra 15.2

Design – Namelist : time levels (1)

• A generic name may be used to loop over a set of input files

• typically to process a standard set of model output, characterized by one file per validation date

• a key is inserted in the input file name (<DDHH>, <DDHHMMSS>, <YYYYMMDDHH:initial_date> …)

• a list of times is defined explicitly (tlist) or by an implicit loop (tstart, tstop, tincr)

→ the key is replaced in turn for each time of the list, the same extraction pattern is applied on each input.

• Time operators may be applied on collected and generated fields

• all collected time levels are available, and only those

• It is possible to filter the times collected in output

• another list of times defined by an implicit loop (out_tstart, out_tstop, out_tincr) is used, when available,

to filter the list of times defined by (tlist) or (tstart, tstop, tincr)

→ the validation dates available in output are those associated with the filtered input list

• this filter does not influence the set of time levels available for the time operators

&Process

in_file="lfff<DDHH>0000“ , in_type="GRIB",

tstart=0, tstop=24, tincr=1,

out_file=“product“ , out_type="GRIB1",

 out_tstart=3, out_tincr=6 /

&Process

 in_field= “T_2m“ , toper= “mean,-3,3,1,hour“ /

Example:
centered T2m mean,

6-hourly output
← key in input file name

← implicit time loop

← filter output date, implicit time loop

← time operator

20Fieldextra 15.2

Design – Namelist : time levels (2)

• Instead of collecting all validation times in the same output, one file per validation time is

created by using a generic name for the output file

• a key is inserted in the output file name (<DDHH>, <DDHHMMSS>, <YYYYMMDDHH:initial_date> …)

• the list of times defined by (tlist) or by (tstart, tstop, tincr) is used to set the key values

• filtering defined by (out_tstart ...) is respected

• in this case, the set of input files contributing to each output must be explicitely specified!

→ use tlag (see next slide)

• These mechanisms are based on the assumption that any file whose name matches
…<key>… , key in {DDHH, DDHHMMSS…}

contains fields valid for the same date, and that the value of <key> represents this date!

&Process

in_file="lfff<DDHH>0000“ , in_type="GRIB",

tstart=0, tstop=24, tincr=1,

out_file=" product_<DDHH>“ , out_type="GRIB1",

 out_tstart=3, out_tincr=6, tlag=-3,3,1 /

&Process

 in_field= “T_2m“ , toper= “mean,-3,3,1,hour“ /

Example:
centered T2m mean,

6-hourly output,

one output per date
← key in output file name

← input/output association (for toper)

21Fieldextra 15.2

Design – Namelist : tlag

• Explicit specification of contributing input files

• for each output file, fieldextra constructs the set of contributing input files

• data can only be collected from this set

• the set of contributing input files is not univoquely defined when multiple output files are defined within the

same &Process group, which is the case when a time key is also used in the name of the output file

• in this case a one to one correspondence is assumed, meaning that each output has only access to a

single input, i.e. a single time level (see below)

• when temporal operators requiring multiple time levels are used, the set of input files contributing to each

output must be explicitly specified

• this is done by using the namelist variable tlag; tlag defines an interval of contributing input files

relative to the currently processed output (and refers to the list of times defined by tlist or tstart…)

<ddhh>

0009

<ddhh>

0010

<ddhh>

0011

<ddhh>

0009

<ddhh>

0010

<ddhh>

0011

out<DDHH>.grb

in<DDHH>.grb

tlist = 9,10,11

out<DDHH>.grb

in<DDHH>.grb

tlist = 9,10,11
<ddhh>

0009

<ddhh>

0010

<ddhh>

0011

<ddhh>

0009

<ddhh>

0010

<ddhh>

0011

Each output has only access to one time level! Use tlag → Multiple time levels are available!

, tlag = -1,0,1

22Fieldextra 15.2

Design – Computation of new fields (1)

parent 1 parent 2 parent n…

child

Meteorological operator, activated via the name of the new field [Fn1(Ψ)]

iteration k

&Process in_field = “TD_2M“ /

&Process in_field = “T_2M“ /

&Process out_field = “RELHUM_2M” /

RELHUM_2M from

T_2M and TD_2M
← parent 1

← parent 2 (main parent, defined in

field dictionary)

← new field

iteration k+1

Operators of common interest

• add new routine in fxtr_operator_generic
• extend case statement in fxtr_operator_generic:field_compute_generic

Operators of local interest
• add new routine in fxtr_operator_specific

• extend case statement in fxtr_operator_specific:field_compute_specific

parents defined

in computing
routine

Im
p

le
m

e
n

ta
ti

o
n

E
x
a
m

p
le

23Fieldextra 15.2

Design – Computation of new fields (2)

parent 1 parent 2 parent n…

child

Named operator, activated by setting “use_operator=…” [Fn1(Ψ)]

iteration k

use_operator = “operator name”

use_tag = “parent 1, …, parent n”

&Process in_field = “W_SO“ /

&Process in_field = “FR_LAND“ /

&Process in_field = “SOILTYP” /

&Process out_field = “W_SO_CST”,

use_operator = “wso_offset_v001”,

use_tag = “W_SO,FR_LAND,SOILTYP” /

W_SO_CST from

W_SO, FR_LAND,
and SOILTYP

← parent 1 (main parent)

← parent 2

← parent 3

← new field

← operator to use

← list of parents (main parent first)

iteration k+1

Operators of common interest

• add new routine in fxtr_operator_generic
• extend case statement in fxtr_operator_generic:field_compute_generic

• extend module parameter fxtr_operator_generic:allowed_generic_nm_operator

Operators of local interest

• add new routine in fxtr_operator_specific
• extend case statement in fxtr_operator_specific:field_compute_specific

• extend module parameter fxtr_operator_specific:allowed_specific_nm_operator

parents defined

in computing
routine

Im
p

le
m

e
n

ta
ti

o
n

E
x
a
m

p
le

24Fieldextra 15.2

Design – Computation of new fields (3)

parent 1 parent 2 parent n…

child 1

Post-processing operator, activated by setting “out_postproc_module=…” [Fnm(Ψ)]

final iteration

out_postproc_module

= “post-processing routine name”

&Process

in_file = “lfff<DDHH>0000”,

tstart = 0, tstop = 24, tincr = 1,

locgroup = “nat”, loclist = “GVE”,

out_file = “forecast_matrix.txt”,

out_type = “FLD_TABLE”,

out_postproc_module = “pp_forecast_matrix” /

…

&Process out_fie ld = “DD10MC_AM” /

…

&Process out_fie ld = “DRSRRG_D” /

Transform wind and

cloud cover to derive
MeteoSwiss forecast

matrix input

← operator applies to entire output

Operators of common interest

• add new post-processing routine in fxtr_operator_generic
• extend case statement in fxtr_operator_generic:data_postprocess_generic

• extend module parameter fxtr_operator_generic:allowed_generic_pp_procedure

Operators of local interest

• add new post-processing routine in fxtr_operator_specific
• extend case statement in fxtr_operator_specific:data_postprocess_specific

• extend module parameter fxtr_operator_specific:allowed_specific_pp_procedure

child 2 child m

m ≠ n is possible,

children defined
in pp routine

…

parents defined

in pp routine

← parent 1
…

← parent n

output file

Im
p

le
m

e
n

ta
ti

o
n

E
x
a
m

p
le

25Fieldextra 15.2

Design – Shared memory parallelism (1)

• Shared memory multitasking is available and implemented with OpenMP

directives

• File import : multiple input files are read and decoded concurrently.

In addition, in the case of fields defined on the native ICON grid:

• Parallel import and processing of each ICON grid definition

• Parallel re-gridding from native ICON grid to any regular grid

• Product generation : two levels of parallelism are implemented and can be

simultaneously used

• parallel product generation, including export (outer loop parallelism)

• parallelization of algorithms used in product generation (inner loop parallelism)

• Two (exclusive) types of algorithm parallelization are available

• Grid points partitioning (horizontal grid), if possible

• Otherwise, parallel computation of multiple 2D field lateral slices, when the same
operator is applied on multiple records within the current iteration

• Only shared memory parallelism

See the example./cookbook/multiple_products.nl

26Fieldextra 15.2

Design – Shared memory parallelism (2)

Storage 1

Storage 2

Storage 3

Storage 4

input 1

input 2

input 3

Parallel production of output (outer loop parallelism, marked with below)

The following operations are applied in parallel (loop over output):

(1) For each record in turn :
 check use of current record by output, process and store record

(2) Once a complete set of records is available :
 iterative processing of fields , format and write output

Output 1

Output 2

Output 3

Output 4

 For each record of each input Once a complete set of records is available

27Fieldextra 15.2

Design – Shared memory parallelism (3)

Storage 1

Storage 2

Storage 4

input 1

Algorithm parallelization (inner loop parallelism, marked with below)

Within each processing iteration associated with each output,

for each operator in turn (hoper, poper...) :

 parallel computation using grid points partitioning in (i,j) space, when no halo required

 or
 parallel computation using fields partitioning, when the same transformation is applied

 on multiple fields

Output 1

Output 2

Output 4

input 2

input 3

Storage 3 Output 3

Derivation of new field

……

re-gridding

28Fieldextra 15.2

Code structure

29Fieldextra 15.2

Modules

PROGRAM:

Main fieldextra

MODULES (core functionality):
Parse namelist fxtr_control,

Driver for product generation fxtr_kernel,

Driver for field manipulation fxtr_operator_main,

Transform field fxtr_operator_column, fxtr_operator_regrid,

Compute new field fxtr_operator_generic, fxtr_operator_specific, fxtr_operator_probability,

Support procedures (thermo…) fxtr_operator_support,

Generate output fxtr_write_generic, fxtr_write_specific

MODULES (program specific support):
Type, symbolic constants … fxtr_definition,

External resources fxtr_resource_dictionary, fxtr_resource_gis, fxtr_resource_stat,

Storage / Meta info / Code profiling fxtr_storage, fxtr_attribute, fxtr_profiling

MODULES (generic support):
GRIB1 / GRIB2 / NetCDF support_grib1, support_grib2, support_netcdf, support_blk_table

Vert. coordinates / ICON grid support_vertical_mesh, support_icon_grid,

Storage / Code diagnostic support_storage, support_diagnostic,

OpenMP support_openmp

Date / Hor. Coordinates / … support_datetime, support_gis, support_math, support_misc

MODULES (imported from COSMO):
cosmo_data_parameters

cosmo_meteo_utilities, cosmo_pp_utilities, cosmo_utilities

30Fieldextra 15.2

Main data structure

TYPE ty_out_store (→ see fxtr_definition)

Variables of this type are used as

main repository for fields values and meta-information associated with each output.

• Field values are collected in values(:,:,:) array, where:

first dim. is for location index , second dim. is for field index , third dim. is for validation date index

A field in this context is a 2D field on a specific surface (ground, model, pressure…) and on a specific subgrid

(cell, vertex, edge) of the horizontal base grid.

A location is a grid point, but the set of active locations is not necessarily a rectangular domain.

Note that the field values are stored in a 1-dimensional section of the values array.

The number of locations for each subgrid is given by nbr_gp(:), the number of fields by

nbr_field, and the number of validation dates by nbr_vdate.

• The characteristics of a field are documented in

field_id(:), field_epsid(:), field_pdfid(:), field_hgrid(:), field_level(:), field_product(:), field_trange(:,:) …

(field_id(:)%name is field name, field_id(:)%tag is user defined tag)

The characteristics of a locations are documented in

gp_lat(:,:), gp_lon(:,:), gp_coord(:,:,:) …

The validation date are documented in

validation_date(:)

Other information, common to all fields of the considered output, is available in:

ofile_name, grid_hcoord, grid_vcoord, …

31Fieldextra 15.2

Main program

0. Initialization sequence, first part.

1. Read parameters defining program behaviour.

2. Initialization sequence, second part.

[input_file_group: DO] Loop through all groups of input files.
This loop is executed twice: first to collect fields for special
output (INCORE, INSPECT), then to collect fields for standard
output.

3. Generate output file
(just on time mode, all fields collected, last call).

[input_file_loop: DO] Loop through all input files in current group.

4. Skip or open input file.

4.1 Skip input when all associated input/output pairs are
inactive

4.2 Select files to process

4.3 Wait for file

4.4 Process file

4.4.1 Detect type of first record, set calling order for API
GRIB file: DWD lib (GRIB1), ECMWF lib (GRIB2)
NetCDF file: NETCDF lib
BLK_TABLE file: internal API

[loop_over_api: DO] Loop over decoding API
4.4.2 Skip record if non matching API
4.4.3 Open file

4.4.4 Get global header

[input_records_loop: DO] Loop through all records in current input file.
5. Read and decode input field.

5.1 Clone cache (input missing)
5.2 Standard input file.

5.2.1 Read next record (skip data section, data will be
read and decoded on request later on)

5.2.2 Decode meta-information

5.2.3 Process meta-information

5.2.4 Check meta-information

5.3 Pseudo input file __INCORE__ .

[output_file_loop: DO] Loop through all output files

6. Dispatch input field in output storage.

6.1 Does the current field contributes to the current output?

6.2 Unpack or generate field values

6.3 (On demand) mask & regrid field
6.3.1 Masking based on template field (in_mask)

6.3.2 Masking with frame (in_crop_size)

6.3.3 Lateral re-griding

6.4 Dispatch field in output storage.

[END DO output_file_loop, input_records_loop, loop_over_api,
input_file_loop, input_file_group]

7. Operations requiring access to special storage
(INCORE, INSPECT).

8. Diagnostic about missing fields.

9. (Repeat mode) store production diagnostic,

10. Final diagnostic, profiling and clean-up.

32Fieldextra 15.2

Calling tree : product generation

Fieldextra

fxtr_control: process_namelist fxtr_kernel: store_field fxtr_kernel: generate_output

fxtr_kernel: prepare_data fxtr_write_generic

fxtr_write_specific

fxtr_operator_main: compute_field

(sc_pcat_*, field_id%name)

fxtr_operator_generic: field_compute_generic

fxtr_operator_specific : field_compute_specific

fxtr_operator_probability : eps_derived_product, neighbourhood_probability

3 4

3

3

21 3

33Fieldextra 15.2

Iterative data processing : implementation
1. In main procedure

+ horizontal re-gridding (in_regrid_target)

2. In fxtr_kernel:store_field

+ modification of field meta-information
(set_units, set_reference_date ...)

+ merge with another field (merge_with)

+ compare with another field (compare_with)

+ horizontal reduction of field
(in advance of B2. when possible)

3. In fxtr_kernel:prepare_data
A. Processing of constant fields with respect to the time dimension

B. Iterative processing of fields

B1.1 build extended information about generated fields
B1.1.1 look for field in previous set
B1.1.2 look for main parent in previous set
B1.1.3 derive relationship between child and parent
B1.1.4 build full list of fields to generate/extract

B1.2 calculate new fields or copy fields from previous iteration

B2. horizontal operator (hoper) and
horizontal reduction of field

B3. linear transformation (scale, offset)

B4. transformation in a column (voper)

B5. apply time operator (toper)

B6. apply point operator (poper)

B7. apply spatial filter (in_filter …)

B8. reset field identity (new_field_id)

B9. purge data from dates with inhibited print out

C. Non iterative field transformations

C1. Reset field meta-information with user specified values
(set_units, set_reference_date …)

C2. Programmatic setting of some local meta-information

C3. Check consistency of meta-information

C4. Post-processing operator (out_postproc_module)

C5. Re-gridding (out_regrid_target) or

create rectangular 2d field or

project on user specified domain (slice …)

D. Prepare data for print out

D1. filter out undefined fields

D2. filter out constant fields when requested

D3. purge data from dates with inhibited print out

D4. derive information common to all fields

D5. update additional elements of data storage

c
o

ll
e

c
t
_
fi

e
ld

...

TYPE(ty_out_store) ::

34Fieldextra 15.2

Some typical applications

See commented exampes in ./cookbook

See standard regression cases in ./test_*

35Fieldextra 15.2

Some typical applications
Pre-processing

• Interpolate Swiss radar composite from kilometric grid onto the COSMO-2 grid for feeding
the latent heat nudging process.

• Merge surface temperature from ERA5 over sea and from ICON-CH over land to produce
a single field suited for initial conditions to start ICON-CH re-analysis.

• Rebuild IFS ensemble used as LBC by adding IFS EPS perturbation to a more recent
determinist IFS forecast.

• Interpolate and process pollen fields from the ICON-DE model to produce lateral
boundary conditions for the ICON-CH model.

• Upscale ICON-CH1-EPS analysis from a 1.1km to a 2.2.km ICON grid to produce initial
conditions for ICON-CH2-EPS.

36Fieldextra 15.2

Some typical applications
Post-processing

• Meteograms (as text) at specified locations

• Cropping and regridding for user specific grids

• Data thinning of model output for verification purposes

• Computation of geostrophic wind and related quantities

• Interpolation of wind field on specified theta and PV surfaces

• Split file with multiple EPS members or validation dates in pieces

• Fill holes in a 2-dimensional field not defined everywhere (e.g HZEROCL)

• Mix multiple model output in a single XML file for seamless forecast

• Convert GRIB1 to GRIB2, incl. the specification of generalized height based vertical coord.

• Kalman correction at selected locations

• MOS based estimation of fields (including fields not part of model output!)

• Fieldextra expects the coefficients of the statistical model as external resource

• Statistical filter computation is done outside of fieldextra!

• Generation of EPS products

• Generate lagged ensemble from COSMO-2 rapid update cycle

• Clone missing member in ICON output by changing member id

• Real time production: wait for model output, produce partial output every Δh hours

37Fieldextra 15.2

Some typical applications
More complex products

• Generate a soil type dependent field offset and apply it to correct W_SO

• Find 3D location of points where some conditions are fulfilled
(e.g. over-saturation over ice and temperature above -20C)

• Compute spatially upscaled EPS probability

• Create a bitmap for the condition

‘probability of 6h sum of total precipitation exceeding 25mm is larger than 0’

• Warn product : compute region based quantiles of some fields under side conditions

(e.g. 50% quantile of wind gust for all points below 800m where T_2m below 0C)

• Freezing rain: compute the integral of the temperature between the two lowest 0C
isotherm in case of an inversion over a cold air pool

• CAT for aviation: compute indicators, find the height-surface of maximum CAT, compute
the CAT category (low, medium, high) on this surface

• FABEC product : compute air density on a set of pressure and height above ground

levels, interpolated on a geographical lat/lon grid, in GRIB 2

• Monitoring of model output : field values statistics, when values are outside of pre-
defined validity range

38Fieldextra 15.2

Access, installation and usage

See ./README.md ,

also available from https://github.com/COSMO-ORG/fieldextra

https://github.com/COSMO-ORG/fieldextra
https://github.com/COSMO-ORG/fieldextra
https://github.com/COSMO-ORG/fieldextra

39Fieldextra 15.2

Access

• Licenced software

• free to all COSMO members.

• free licences for the R&D community, but without support.

• The COSMO Steering Committee decided in 2024 to offer this software

under an open-source license, but this is not yet in force.

• Access

• Master code repository on GitHub

https://github.com/COSMO-ORG/fieldextra (private repository)

• Package on COSMO web site

http://www.cosmo-model.org/content/support/software/default.htm

• Full installation at ECMWF on atos (UNIX group cfxtra)

/ec/res4/hpcperm/chcosmo/projects/fieldextra

• Full installation at CSCS on balfrin (UNIX group s83c)

/scratch/mch/jenkins/fieldextra/balfrin

https://github.com/MeteoSwiss-APN/fieldextra
https://github.com/MeteoSwiss-APN/fieldextra
https://github.com/MeteoSwiss-APN/fieldextra
http://www.cosmo-model.org/content/support/software/default.htm
http://www.cosmo-model.org/content/support/software/default.htm
http://www.cosmo-model.org/content/support/software/default.htm

40Fieldextra 15.2

Access
Package on COSMO web site

• Only latest major release!

• Tar file on COSMO web site, password protected

http://www.cosmo-model.org/content/support/software/default.htm

• Source code for libraries (incl. config. script)

• Source code for fieldextra

• All necessary Makefiles (for gfortran, ifortran …)

• All necessary resources (dictionary, location list ...)

• Documentation (admin, compatibility, documentation)

• Cookbook (used to validate installation)

• Tools (including fx tools)

Fieldextra is only validated against the libraries and the

associated resources included in the distribution package !

41Fieldextra 15.2

Installation

• Follow steps in ./documentation/INSTALLATION

• New features are documented in ./documentation/HISTORY

• Backward compatibility issues are documented in section

COMPATIBILITY ISSUES of ./documentation/HISTORY

42Fieldextra 15.2

Things never work as planned …

• Problem by installation ?

• carefully read and follow ./documentation/INSTALLATION

• look at ./documentation/usr/FAQ

• Namelist not working with newer release?

• consider compatibility issues decribed in ./documentation/HISTORY

• Problem by usage ?

• set verbosity to high (or debug) and additional_diagnostic to true

• consider ./documentation/READE.user

• consider ./documentation/usr/FAQ

• Do not know how to write the namelist for some application?

• get inspired by the cookbook examples

• Get community support at fieldextra@cosmo-model.org

mailto:cosmo-fieldextra@cosmo-model.org
mailto:cosmo-fieldextra@cosmo-model.org
mailto:cosmo-fieldextra@cosmo-model.org

43Fieldextra 15.2

Roadmap

44Fieldextra 15.2

What shall I expect next?
Release x.x

See https://github.com/COSMO-ORG/fieldextra/milestones

… but planning is very dynamic and may change on short term notice!

https://github.com/COSMO-ORG/fieldextra/milestones
https://github.com/COSMO-ORG/fieldextra/milestones
https://github.com/COSMO-ORG/fieldextra/milestones

45Fieldextra 15.2

Final discussion

46Fieldextra 15.2

Final discussion

Topics to be defined…

47Fieldextra 15.2

!+**
SUBROUTINE generate_output(multi_pass_mode, just_on_time, last_cal l, &

datacache, data_origin, tot_nbr_input, &

out_paths, out_types, out_modes, &
out_grib_keys, out_spatial_fil ters, &

out_subset_size, out_subdomain, out_gplist , out_locl ist, &
out_data_reduction, out_postproc_modules, &

nbr_gfield_spec, gen_spec, ierr, errmsg)

!===
!

! Root procedure to generate output files
!

!--

! Dummy arguments
LOGICAL, INTENT(IN) :: multi_pass_mode ! Mult iple pass mode?

LOGICAL, DIMENSION(:), INTENT(IN) :: just_on_time ! True if prod. now
LOGICAL, INTENT(IN) :: last_call ! True if last call

CHARACTER(LEN=*), INTENT(IN) :: datacache ! Data cache fi le

TYPE(ty_fld_orig), INTENT(IN) :: data_origin ! Data origin
INTEGER, DIMENSION(:), INTENT(IN) :: tot_nbr_input ! Expected nbr. input

CHARACTER(LEN=*), DIMENSION(:), INTENT(IN) :: out_paths ! Output files names
TYPE(ty_out_spec), DIMENSION(:), INTENT(IN) :: out_types ! types

TYPE(ty_out_mode), DIMENSION(:), INTENT(IN) :: out_modes ! modes

INTEGER, DIMENSION(:,:), INTENT(IN) :: out_grib_keys ! grib specs
INTEGER, DIMENSION(:), INTENT(IN) :: out_subset_size ! subset size

INTEGER, DIMENSION(:,:), INTENT(IN) :: out_subdomain ! subdomain definit ion
INTEGER, DIMENSION(:,:,:), INTENT(IN) :: out_gplist ! gp definition

CHARACTER(LEN=*), DIMENSION(:,:), INTENT(IN) : : out_loclist ! locations definition

CHARACTER(LEN=*), DIMENSION(:,:), INTENT(IN) : : out_spatial_fil ters ! Condition defining filter
TYPE(ty_out_dred), DIMENSION(:), INTENT(IN) :: out_data_reduction ! Data reduction spec

CHARACTER(LEN=*), DIMENSION(:), INTENT(IN) :: out_postproc_modules ! Specific postprocessing
INTEGER, DIMENSION(:,:), INTENT(IN) :: nbr_gfield_spec !+ Specifications of

TYPE(ty_fld_spec_root), DIMENSION(:), INTENT(IN) :: gen_spec !+ fields to generate

INTEGER, INTENT(OUT) :: ierr ! Error status
CHARACTER(LEN=*), INTENT(OUT) :: errmsg ! error message

! Local parameters

CHARACTER(LEN=*), PARAMETER : : nm='generate_output: ' ! Tag

! Local variables

LOGICAL :: exception_detected, exception, use_postfix
LOGICAL :: unique_ftype, multiple_grid, exis t

LOGICAL, DIMENSION(3*mx_iteration+1) :: tmp_fddata_alloc, tmp_gpdata_alloc

LOGICAL, DIMENSION(3*mx_iteration+1) :: tmp_value_alloc, tmp_flag_alloc
INTEGER :: i1, i2, i3, i_fd, i_vd

INTEGER :: nbr_input
INTEGER :: out_idx, ios, idx_vd_defined

CHARACTER(LEN=strlen) :: messg, temporal_res, out_path

TYPE(ty_fld_type) :: out_ftype

! Initial ize variables

!---------------------
ierr = 0 ; errmsg = ' '

exception_detected = .FALSE.
tmp_fddata_alloc(:) = .FALSE. ; tmp_gpdata_alloc(:) = .FALSE.

tmp_value_alloc(:) = .FALSE. ; tmp_flag_alloc(:) = .FALSE.

! Create/update data cache file

!---
! The cache file must reflect the state of data(:) after the last call to

! collect_output (i.e. before any field manipulation done in prepare_pout)

! Loop over each output file
!---------------------------

output_file_loop: &

DO i1 = 1, nbr_ofile
out_idx = data(i1)%ofile_idx

nbr_input = COUNT(data(i1)%ifile_used)

! Skip bogus output

IF (data(i1)%ofile_bogus) CYCLE output_file_loop
! Skip completed output

IF (data(i1)%ofile_complete) CYCLE output_file_loop
! Skip empty data array

IF (ALL(.NOT. data(i1)%defined)) CYCLE output_file_loop

! Only prepare output when all possible associated data have been collected
! or when 'jus t on time' production is active

IF (.NOT. last_cal l .AND. &
nbr_input < tot_nbr_input(out_idx) .AND. &

.NOT. just_on_time(out_idx)) CYCLE output_file_loop

! At this point the corresponding output file will be produced

! Keep track of completed output file
IF (nbr_input >= tot_nbr_input(out_idx)) data(i1)%ofile_complete = .TRUE.

! Build name of output , considering a poss ible temporary postfix
use_postfix = .FALSE.

IF (LEN_TRIM(out_postfix) /= 0 .AND. data(i1)%ofile_usepostfix .AND. &
.NOT. (data(i1)%ofile_firstwri te .AND. data(i1)%ofile_complete)) &

use_postfix = .TRUE.

out_path = out_paths(out_idx)
IF (use_postfix) out_path = TRIM(out_path) // out_postfix

! Release memory al located in previous call to prepare_pout (if any)

DO i2 = 1, 3*mx_iteration+1

IF (tmp_value_alloc(i2)) DEALLOCATE(data_tmp(i2)%values, data_tmp(i2)%defined)
IF (tmp_flag_alloc(i2)) DEALLOCATE(data_tmp(i2)%flag)

IF (tmp_fddata_alloc(i2)) THEN
DEALLOCATE(data_tmp(i2)%field_type, data_tmp(i2)%field_origin, &

data_tmp(i2)%field_name, data_tmp(i2)%field_grbkey, &

data_tmp(i2)%field_trange, &
data_tmp(i2)%field_level , data_tmp(i2)%field_ltype, &

data_tmp(i2)%field_prob, data_tmp(i2)%field_epsid, &
data_tmp(i2)%field_vref, data_tmp(i2)%field_ngrid, &

data_tmp(i2)%field_scale, data_tmp(i2)%field_offset, &

data_tmp(i2)%field_vop, data_tmp(i2)%field_vop_usetag, &
data_tmp(i2)%field_vop_nlev, data_tmp(i2)%field_vop_lev, &

data_tmp(i2)%field_pop, data_tmp(i2)%field_hop, &
data_tmp(i2)%field_top, data_tmp(i2)%nbr_level, &

data_tmp(i2)%level_idx, data_tmp(i2)%nbr_eps_member, &

data_tmp(i2)%eps_member_idx, data_tmp(i2)%field_idx)
ENDIF

IF (tmp_gpdata_alloc(i2)) THEN
DEALLOCATE(data_tmp(i2)%gp_coord, data_tmp(i2)%gp_idx, &

data_tmp(i2)%gp_lat , data_tmp(i2)%gp_lon, data_tmp(i2)%gp_h)

ENDIF
END DO

! Prepare data for print out (calculate new fields, ... ; populate data_pout)

! * Info message

IF (just_on_time(out_idx)) THEN
messg = ' (just on time output)'

ELSE IF (nbr_input >= tot_nbr_input(out_idx)) THEN
messg = ' (all associated input collected)'

ELSE

messg = ''
ENDIF

Thank you for your attention!

	Slide 1
	Slide 2: Commented example – Meteogram
	Slide 3: Commented example – Meteogram
	Slide 4: Commented example – Meteogram
	Slide 5: Commented example – Meteogram
	Slide 6: Commented example – Meteogram
	Slide 7: Commented example – Meteogram
	Slide 8: Commented example – Meteogram
	Slide 9: Commented example – Meteogram
	Slide 10: Selected topics
	Slide 11: Design – Input & output
	Slide 12: Design – Incore storage
	Slide 13: Design – Iterative processing (1)
	Slide 14: Design – Iterative processing (2)
	Slide 15: Design – Iterative processing (3)
	Slide 16: Design – Iterative processing (4)
	Slide 17: Design – Namelist : basic
	Slide 18: Design – Namelist : selection_mode
	Slide 19: Design – Namelist : time levels (1)
	Slide 20: Design – Namelist : time levels (2)
	Slide 21: Design – Namelist : tlag
	Slide 22: Design – Computation of new fields (1)
	Slide 23: Design – Computation of new fields (2)
	Slide 24: Design – Computation of new fields (3)
	Slide 25: Design – Shared memory parallelism (1)
	Slide 26: Design – Shared memory parallelism (2)
	Slide 27: Design – Shared memory parallelism (3)
	Slide 28: Code structure
	Slide 29: Modules
	Slide 30: Main data structure
	Slide 31: Main program
	Slide 32: Calling tree : product generation
	Slide 33: Iterative data processing : implementation
	Slide 34: Some typical applications
	Slide 35: Some typical applications Pre-processing
	Slide 36: Some typical applications Post-processing
	Slide 37: Some typical applications More complex products
	Slide 38: Access, installation and usage
	Slide 39: Access
	Slide 40: Access Package on COSMO web site
	Slide 41: Installation
	Slide 42: Things never work as planned …
	Slide 43: Roadmap
	Slide 44: What shall I expect next? Release x.x
	Slide 45: Final discussion
	Slide 46: Final discussion
	Slide 47

