
Terra Stand Alone (TSA): Documentation

1 / 21

Documentation of Terra Stand Alone

Edited by Israel Meteorological Service

v. 5.3 – 01.06.2016

Yiftach Ziv

Summary

TERRA-ML (shortly TERRA) is the operational land surface scheme of the COSMO model and its climate

version COSMO-CLM to supply the lower boundary condition for the atmospheric model. TERRA Stand

Alone (TSA) is a decoupled version of TERRA that can be used without an atmospheric model, e.g. for

experiments concerning soil parameterizations or for an efficient soil spin-up referred to a given model

domain or to a single point (e.g. measurement site). In the Stand Alone Mode, Atmospheric data are required

for the model forcing. TSA is now up to date with latest COSMO version (v. 5.3 – 01/06/2016).

Version history

Version Date Changes Contact

Initial

version

 Initial version of the decoupled soil module TERRA Felix Ament, MeteoSwiss

v4.13 29/09/2010 - Added an external tool to convert COSMO analysis forcing files to

suitable format, see chapter 6.4

- lpar can now be used with new I/O (see ch. 6.4 and 7.4)

- corrected small bug in computation of lw-net-radiation (see ch. 6.10)

Guy de Morsier,

MeteoSwiss

v5.3 01/06/2016 - Updated COSMO modules to latest version

- Revised code according to COSMO Coding Standards

- Added features from TSA-GUF version:

• ability to divide to sub-regions for more efficient resource use

• bug fixes

Yiftach Ziv, IMS

zivy@ims.gov.il

Terra Stand Alone (TSA): Documentation

2 / 21

Contents

Chapter Content Pages

 Summary 1

 Version history 1

 Contents 2

1 Background on TERRA Stand Alone 3

2 Model and code structure 4

3 Installation and running 5

4 Technical details and changes 7

5 Namelist variables 9

6 References 14

Terra Stand Alone (TSA): Documentation

3 / 21

1. Background on TERRA Stand Alone

1.1 Role of TERRA
TERRA-ML is the operational land surface scheme of the COSMO model and its climate version COSMO-CLM. It

supplies the lower boundary condition for the atmosphere over land points by parameterizing the energy and mass

fluxes that are being exchanged at the surface. They depend on both the atmospheric condition and the land surface

state. TERRA computes the soil state as expressed by soil temperature (T_SO) and soil moisture (W_SO) at each model

time step at various model levels (depths).

1.2 Model characterization
For that purpose, TERRA solves the corresponding prognostic equations (heat diffusion equation and Richards

equation) on a one dimensional (vertical) multilayered grid. Each soil column is computed independently. Vegetation is

not considered explicitly, instead, its impact is specified by external parameters used in the flux parameterizations.

For more details concerning the physical parameterizations used in TERRA, as well as the techniques to solve the

prognostic equations, please see the scientific part of the official COSMO documentation (Doms et al. 2011).

1.3 TERRA in COSMO
TERRA is directly implemented into the COSMO code as module src_soil_multlay, where the subroutine

terra_multlay() performs the adjustment of the soil state on horizontal grid points that are classified as land. In a

COSMO model integration, it is called after the atmospheric computations. In particular, the parameterization of surface
fluxes is based on the transfer coefficients derived in the TKE scheme.

1.4 TERRA Stand Alone

For allowing soil-specific investigations, TERRA was externalized as an independent program initially by Felix Ament

(Uni Hamburg) during his PhD thesis (2006). The work was consolidated by COSMO PP COLOBOC, resulting in the

latest TSA version (TSA 4.13) available on the COSMO homepage, http://www.cosmo-model.org/ (in 2010, Guy de

Morsier, MeteoSwiss). In 2014, an off-COSMO version was developed mainly by Julian Toedter in University of

Frankfurt (GUF), from which some elements were taken to the latest version. In 2016 the main modules of TSA were

updated according to COSMO modules and a comprehensive revision of the code according to COSMO coding

standards was performed by Yiftach Ziv of Israel Meteorology Service (IMS). It is planned according to Jürgen Helmert

(DWD) to develop a new stand alone version within the ICON framework.

It is important to understand that even though TERRA Stand Alone is able to be applied on a whole region, the

computations within each soil column are completely independent. Furthermore, it does NOT contain any

parallelization (MPI or OpenMP).

http://www.cosmo-model.org/

Terra Stand Alone (TSA): Documentation

4 / 21

2. Model and code structure

2.1 Workflow
The main program is contained in terra.f90. It performs the following tasks:

1. Read namelist values or set standard values (via subroutine read_namelist() in terra_io.f90)

2. Allocate required fields (via subroutine allocate_fields() in terra_lmenv.f90)

3. Read fixed parameters, e.g. soil properties (subroutine init_variables() in terra_lmenv.f90)

4. Read fixed external parameters (via subroutines in terra_io.f90)

5. Read initial conditions (via subroutines in terra_io.f90)

6. Time stepping (see below)

7. Finalization and clean-up (via subroutine clean_up() in terra_lmenv.f90)

The time stepping computes the soil state at the next time level by solving the underlying equations and

paramterizations. It is splitted into the following sub-tasks:

a) Get current date (important for forcing and vegetation adaption)

b) Adapt vegetation-related parameters as LAI, PLCOV and ROOTDP (annual cycles), organized by the

routine organize_extpar() in terra_io.f90

c) Get meteorological forcing at the current time level, organized by read_metforc().

d) Compute transfer coefficients with Louis scheme, parturs() in terra_lmparam.f90

e) Run the actual soil model (subroutine terra_multlay() in src_soil_multlay.f90) to
compute the soil state at the next time level

f) Write output, if required (via subroutines in terra_io.f90)

Note that the state variables such as T_SO and W_SO have two timelevels (4th dimension of the array): The current and

the previous. In the next time step, the previous one is replaced by the next one, and so on.

2.2 Source files
A list of the source files and their tasks:

File Task

terra.f90 Main program, organization, time stepping

src_soil_multlay.f90 Module src_soil_multlay with subroutine terra_multlay to advance the state variables in time

terra_lmparam.f90 Additional parameterization routines: vegadapt (for vegetation adaption to annual cycles),

parturs (Louis transfer scheme), other utility functions e.g. calc_albedo, computation of area

indices, tools to convert lon/lat, surface parameterizations

terra_lmenv.f90 Environment routines, e.g. allocate_fields, init_variables, clean_up

terra_interpol.f90 Interpolation routines for input fields.

terra_io.f90 A collection of routines used for I/O (reading and organization).

gribio.f90 Routines to read/write GRIB1.

data_*.f90 Variable definitions. In most cases copied as is from COSMO. Except for

data_terra_standalone.f90 containing variables new in TSA and data_soil.f90 containing extra

soil data for tests.

utilities.f90 &

meteo_utilities.f90

Contains tools for standard meteorological and general computations. (copied as is from

COSMO)

support_datetime.f90 Tools for date/time extraction and manipulation

fxtr_definition.f90 Fieldextra code

environment.f90 Sets the environment for the model (copied as is from COSMO)

kind_parameters.f90 Defines precision kind of parameters (copied as is from COSMO)

Terra Stand Alone (TSA): Documentation

5 / 21

3. Installation and Running

The code package contains the source code as a set of FORTRAN90 files. The installation depends on the system, and a

Makefile is included which should facilitate the installation. The installation is not difficult, yet it may happen that

some details turn out tricky depending on your system.

3.1 Package
First, unzip the provided archive (tar xfzv), resulting in the following directory structure:

- /src: contains all source code files (*.f90) and a Makefile

- /DWD-libgrib: source code for the GRIB1 library (see below)

- /examples: test cases to run TSA.

- /docs: stuff like this documentation, as well as „old“ documents contained in the TSA 4.13 release.

- /tools: Other additional scripts: (1) run_tsa.sh to run the model with sub-regions, see chapter 6.7, (2)

merge_gribs_domains.sh to put together local outputs, see chapter 6.7.

3.2 Basic installation
The program relies on GRIB1 library to deal with I/O data. They should be installed on your system otherwise this

has to be done in advance.

The source for the GRIB1 library (DWD version) is added in the subdirectory /DWD-libgrib1

It can be installed by adjusting the Makefile. Usually, only the compilers for FORTRAN90 and C have to be chosen

along with the compiler flags. Some examples are included. Then, type „make“ to install the library. It should generate

"libgrib1.a“ (by default in the parent directory, but is can be changed). Typing „make clean“ allows to clean up
temporary compilation files.

Now, adjust the TSA Makefile found in the /src directory:

a) Specify the F90 compiler and linker and their flags
b) Link to the DWD-Grib1 library

Finally, type „make“ to compile the code. If it works, the executable „terra“ should appear.

Note: Some warnings may occur but they are not important as they concern unused routines. (should be cleaned in

future!)

You can use „make clean“ to clean up the object and module files. The executable is not deleted.

3.3 Running

In principal, TSA is run by a shell script that calls the executable „terra“ together with an appropriate definition

of namelist parameters. It typically looks like this:

cat > INPUT_TERRA << ****

&RUN_TERRA

ie=114,

je=79,

OTHER NAMELIST SETTINGS…

/END

\rm -rf YU*

touch YUCHKDAT

start terra executable:

./terra

* For offline simulation at ONE measurement point it is possible to read the forcing data (measurements) with a direct

binary access file.

Terra Stand Alone (TSA): Documentation

6 / 14

To run TSA successfully, one further has to provide externally:

- initial conditions

- external parameters

- forcing data

Of course, the files have to correspond to the namelist settings. Please see chapter 6 for a detailed description of I/O

handling.

*** Sometimes the model may crash giving an error message like: “YUCHKDAT no such file or directory”.

This can be avoided by creating an empty file YUCHKDAT in the run directory, e.g. by executing „touch YUCHKDAT“ as

in the script fragment shown above.

Terra Stand Alone (TSA): Documentation

7 / 14

4. Technical details and changes

This chapter highlights some new aspects of current TSA version as compared to COSMO TERRA and TSA 4.13.

4.1 Calculation Method
While the COSMO model, including TERRA has advanced to Block Computing, TSA remained with the old i,j method
Furthermore, COSMO now makes use of tracers, but being a stand alone version, TSA cannot. As a result, qv (specific

water vapor content) & qv_bd (qv boundary) in TSA have a 4
th
 dimension of time step (current or next) while in COSMO

TERRA they have only 3 (i,j,k).
note: when transferring from COSMO TERRA to TSA, qv & qv_bd must be changed accordingly in
data_fields.f90.

4.2 Transfer scheme
The COSMO transfer scheme developed by M. Raschendorfer (DWD) requires information about atmospheric TKE,

which is in general not available by measurements or past analysis fields. Therefore TSA uses the Louis scheme which

was used by COSMO and GME in former times. The Louis scheme is implemented in the subroutine parturs().

However, we found problems in simulations over larger regions which were connected with higher roughness lengths

caused by an additional uncommented „wind adaption“, leading to jumps in soil temperature of more than 1 degree

within one model time step (computationally not stable!).

Therefore, the implementation was revised such that it always produces realistic transfer coefficients. Now, a new and

well-commented subroutine parturs_new() is used by default.

In order to switch back to old parturs()- change the call in section 2.3 of terra.f90 to CALL parturs().

4.3 External parallelization
Motivation

Even though TSA is relatively cheap on computing resources, on a large region it can still exhibit considerable

computation time. An MPI/OpenMP parallelization was omitted, but an external parallelization procedure, which is

possible due to the independency of each vertical soil columns, was realized. It consists of running an individual

TERRA program at each core for a certain subdomain such that the full domain is covered. This domain decomposition

is similar as done internally in COSMO.

Realization

A convenient usage of this external parallelization was realized by introducing some small namelist variables. Then, the

program finds the correct input data itself (given correct preprocessing):

nsub_x,nsub_y: Number partitions in longitudinal/latitudinal direction, total number of subregions is

nsub_x*nsub_y which_subreg: An integer specifying which subregion is to be computed by TERRA when

starting this runscript. Of course, which_subreg has to be smaller or equal to nsub_x * nsub_y (otherwise

TERRA will notice and abort)

The counting of subregions is done in vertical stripes beginning at the lower-left boundary and ending at the upper-

right, e.g. for nsub_x=3 and nsub_y=4 the large grid is decomposed as:

Subregion 4 Subregion 8 Subregion 12

Subregion 3 Subregion 7 Subregion 11

Subregion 2 Subregion 6 Subregion 10

Subregion 1 Subregion 5 Subregion 9

Attention: The grid options startlon,startlat,ie,je still specify the „large“ grid ! All input files have to be

Terra Stand Alone (TSA): Documentation

8 / 14

on the full domain! In case of nsub_x*nsub_y > 1 (i.e., a domain decomposition is desired), the code now

automatically adapts startlon,startlat,ie,je for the computation so that only the sub-region specified by

which_subreg is computed.

→ To compute all sub-regions, you need to start nsub_x*nsub_y runscripts which ONLY differ by the

namelist parameter which_subreg

Summary

The trick is that on a cluster one can simply run the independent regions in parallel, using almost the same runscript

(except the which_subregion parameter) and the same input files (external parameters, initial conditions, forcing)

as the input routines automatically look which part of the input files they have to extract (using the startlon,

startlat values of TERRA and comparing them with the corresponding values in the input files). A shell script

run_tsa.sh is supplied, which creates the runscript for each sub-region.

Output

Each subdomain produces its own output file. The only post-processing currently necessary is to gather all local output

files afterwards. For that purpose, a shell script merge_gribs_domains.sh is supplied, which performs this task.

This script requires fieldextra and some other modules. For long periods, a script that creates external parallelization for

the merging process is available as well (main_merge.sh).

4.4 Bug fixes and minor changes
A list of some smaller changes made in the code that are not mentioned before:

- subroutine vegadapt

Here latitute is needed, but the code used rlat → changed to rlat_geo , i.e., the actual geographical latitude
instead of rotated one.

- final simulation time

Instead of specifying ntstep_max (together with ydate_ini), one can now also specify the end date ydate_end in

same format as ydate_ini. ntstep_max will be computed from it automatically (overridden) and is not needed

anymore in the namelist. In order to use ntstep_max, set ydate_end to "0000000000" (or any date prior to

ydate_ini).

- forecast of snow temperature

In section II.6 & II.7 of src_soil_multlay.f90, the explicit step forward uses (wrongly) zdt*2 (from old

leapfrog). Removed this *2 to make it correct.

 ztsnown(i,j) = ztsnow(i,j) + zdt*2._wp *(zfor_snow - zgsb(i,j)) &

 /zrocs(i,j) - (ztsn(i,j) - zts(i,j))

Terra Stand Alone (TSA): Documentation

9 / 14

5. Namelist variables

Numerous variables and options can be read in at run-time via the namelist, usually done in the runscript. Some of them

have default values if not supplied, while others are mandatory to be specified in the runscript.

In the following, we go through the different namelist groups and comment on the settings. In particular, recommended

settings are given where necessary so that the code can be used properly.

5.1 RUN_TERRA
These variables concern all settings about model setup in space and time as well as the choice between different

parameterizations and options within the land surface model.

Variable Type Default Description Comments

dt real 60 Model time step in seconds

ydate_ini character Start date/time in format YYYYMMDDHH.

ydate_end character End date/time in format YYYYMMDDHH.

ntstep_max integer 0 Number of model time steps to simulate optional. automatically

computed from ydate_int &

ydate_end.

ie integer 1 Number of grid points in x direction

je integer 1 Number of grid points in y direction

pollon real -170 Longitude of rotated pole

pollat real 32.5 Latitude of rotated pole

polgam real 0.0 Angle between north poles Usually 0.0 with a rotated grid,

90 for a regular grid.

startlon integer 1 Longitude of lower left corner of domain

startlat integer 1 Latitude of lower left corner of domain

dlon integer 1 Grid distance in x-direction in degree

dlat integer 1 Grid distance in y-direction in degree

nsub_x integer 1 Number of grid partitions in x-direction See chapter 4.3

nsub_y integer 1 Number of grid partitions in y-direction See chapter 4.3

which_subreg integer 1 Which subdomain is to be computed See chapter 4.3

ke_soil integer 7 Number of active soil layers The total number of soil layers

is ke_soil+1 !

czhls_const real Depths of bottoms of each layer These have to be ke_soil+1

values!

itype_heatcond integer 1 Type of soil heat conductivity. 1 = fixed value based on

mean soil moisture, 2 = depends on soil moisture

See Schulz et al. 2014

itype_hydbound integer 1 Type of lower hydrological boundary condition (1 = free

drainage; 2 = rigid lid (non-standard); 3 = constant

ground water (non-standard))

itype_hydparam integer 1 Type of soil moisture drainage and diffusion

parameterization(1= standard; 3 = Brooks and Coorey +

DWD soil type; 5 = Brooks and Coorey + USDA soil

types)

itype_evsl integer 2 Type of bare soil evaporation (1 = bucket; 2 = BATS; 3 =

Noilhan and Planton (non-standard))

Terra Stand Alone (TSA): Documentation

10 / 14

lvegadapt logical .TRUE. Adaption of LAI and PLCOV according to sinusoidal

annual cycle of COSMO

Needs LAI_MN and LAI_MX

values in external parameters and

same for PLCOV

lrootadapt logical .TRUE. Adaption of ROOTDP according to sinusoidal annual

cycle of COSMO

Needs only ROOTDP value in

external parameters

itype_root integer 1 2 = non-uniform root depth distribution (experimental)

lmelt logical .FALSE.. soil model with melting process Makes W_SO_ICE prognostic

lmelt_var logical .FALSE.. freezing temperature dependent on water content Should be .TRUE. if

lmelt=.TRUE.

lmulti_snow logical . TRUE. use multi-layer snow model implemented by E. Machulskaya

ke_snow integer 2 Number of snow layers in multi-layer snow model

linfil_revised logial .FALSE.. Revised parameterization of infiltration (allows higher

infiltration than standard version)

lconstvegalb logical .TRUE. NO spatially varying plant albedo (vegalb ee=213,

tab=201)

implemented by J. Helmert

lstomata logical .TRUE. spatially varying stomata resistance (rsmin2d ee=212,

tab=201)

Is currently set to .FALSE. by

init_variables() subroutine

lz0local logical .FALSE.. GRIB only: reads local roughness length (ee=82,

tab=250) without contribution due to subgrid-scale

orography

nrecmax integer -1 Special option to allow equilibrium runs by repeating a

certain periods many times (experimental)

implemented by Guy de Morsier

lcheck logical .TRUE. print additional output on the screen to check input data

lcalc logical .TRUE. debug option: lcalc=false ==> terra and parturs are not

invoked. if true, computation as usual

Should be true.

itype_hydcond integer 0 type of soil hydraulic conductivity 0: standard

1: exponential profile of saturated

hydraulic conductivity by J.

Helmert

kexpdec real 2.0 1/m Exponential Ksat-profile decay parameter for

itype_hydcond=1

See Decharme et al. (2006)

crsmin real 150.0 Minimum stomatal resistence

Terra Stand Alone (TSA): Documentation

11 / 14

5.2 EXTPARA
These variables are concerned with all setting about external parameters and their processing, in particular, vegetation

properties.

Variable Type Default Description Comments

constfilename character Name of GRIB file containing constant surface

parameters (external parameters)

lext_monthly logical .FALSE.. Monthly values of LAI,PLCOV,Z0 Requires LAI12,

PLCOV12,Z012 in ext.para.file

lgettcl logical .FALSE.. Get T_CL for lowest soil temperature layer from

external parameters.

Usually it is taken from initial

condition file. Not used if

itype_heatbound=2!

lhomosoil logical .TRUE. Use homogeneous (same) parameters for all gridpoints,

as specified by following namelist variables:

This requires to give all

parameters in the namelist! With

input, all of these not needed.

soiltyp_const real Constant COSMO soil type

plcov_const real Constant plant cover (used only if lvegadapt=.FALSE..)

rootdp_const real Constant root depth (used only if lvegadapt=.FALSE..)

lai_const real Constant leaf area index (used only if

lvegadapt=.FALSE..)

lai_min_const real Minimal leaf area index during winter season (used

only if lvegadapt=.TRUE.)

lai_max_const real Maximum leaf area index during summer season (used

only if lvegadapt=.TRUE.)

plcov_min_const real (Used only if lvegadapt=.TRUE.)

plcov_max_const real (Used only if lvegadapt=.TRUE.)

rstom_mn_const real Minimal stomatal resistance (s/m) (only if

lstomata=.FALSE..)

rstom_mx_const real Maximum of stomatal resistance (s/m) (only if

lstomata=.FALSE..)

vegalb_const real Albedo of vegetation (only if lconstvegalb=.TRUE.)

z0_const real Constant roughness length (m)

lat real 52.0 Latitude (relevant only in case of single grid point

integrations)

hsurface real 0.0 Height above sea level (relevant only in case of single

grid point integrations)

Terra Stand Alone (TSA): Documentation

12 / 14

5.3 SOILINIT
These variables define the reading and treatment of the soil initial conditions.

Variable Type Default Description Comments

lmulti_in logical .TRUE. Initial conditions on same multi-layer vertical grid?

(false corresponds to old 2-layer model)

Strongly recommended to use

new version

soilinitdir character Directory where initial fields file is

soilinitprefix character Initial fields file name (without .nc)

lvol_in logical .FALSE.. Initial soil moisture as volumetric soil water content (m

H2O / m soil)

lrel_in logical .FALSE.. Initial soil moisture contents as given as fraction of pore

volume occupied by water

Not really supported anymore

lhomoinit logical .TRUE. Use homogeneous (same) initial conditions for all

gridpoints, as specified by following namelist variables:

This requires to give all values

in the namelist! With input, all

of these not needed.

t_soil0 real Profile of initial soil temperature of ke_soil layers ke_soil+1 values

t_cl0 real Soil temperature of lowest climatological soil layer Not used if lgettcl=.FALSE.

w_snow0 real Initial snow water content Often 0.0

w_g0 real Profile of initial soil moisture content of all layers ke_soil+1 values

w_i0 real Initial water content of the interception store Usually 0.0

w_cl0 real Initial soil moisture content of lowest layer Not used actually

Terra Stand Alone (TSA): Documentation

13 / 14

5.4 METFORCING
These variables specifies properties about the external forcing and its treatment, e.g., interpolation.

Variable Type Default Description Comments

ntype_atminput integer 1 Data source of atmospheric forcing

ntype_raininput integer 1 Data source of precipitation forcing

ntype_radinput integer 1 Data source of radiative forcing

metfiledir character Directory of files containing atmospheric forcing

metfileprefix character Prefix of files containing atmospheric forcing (without
.nc)

lpar logical .FALSE. Read also PAR (photosynthetic active radiation) from

forcing data. If false (default!), PAR is set to 50% of the

net sw radiation at surface.

radofiledir Directory containing RADOLAN rain data

rain_fac Factor to scale precipitation data to m/s

dz real 2.0 Height of T and qv observations (m)

dz_u real 10.0 Height of wind measurements (m)

ke_model integer -1 Specify lowest model level (useful, if input files contain

several levels and are unordered)

lhourly_data logical .FALSE.. GRIB / NetCDF input contains hourly data (precip,

radiation)

tincr_max integer 0 Max. gap in input data, expressed in hours

ldestaggeruv logical .FALSE.. Destagger velocities on input from external GRIB /

NetCDF file

5.5 OUTPUT
These variables control how the model output is to be performed.

Variable Type Default Description Comments

ntype_output Integer 1 Type of output

outdir Character Directory to store the output

outprefix Character Prefix of outputfiles (in case of ntype_output=4:

filename)

nout_interval Integer 60 Output interval in units of time steps(!). e.g., with

dt=60sec, nout_interval=360 is output every 6 hours.

Take care to adapt it in case dt

changes

lconstout Logical .TRUE. Include (time constant) surface parameters in the output

file

Old, not possible currently

Terra Stand Alone (TSA): Documentation

14 / 14

6. References

Ament, F. (2006). Energy and moisture exchange processes over heterogeneous land-surfaces in a weather prediction model. PhD thesis, Bonn.

Baldauf, M., Seifert, A., Förster, J., Majewski, D., Raschendorfer, M. (2011). Operational Convective-Scale Numerical Weather Prediction with the

COSMO Model: Description and Sensitivities. Mon.Wea.Rev. 139, 3887-3905.

G. Doms, J. Förstner, E. Heise, H.-J. Herzog, D. Mironov, M. Raschendorfer, T. Reinhardt, B. Ritter, R. Schrodin, J.-P. Schulz and G. Vogel (2011). A
Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization. Technical Report. Available from

http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf

Kalinka, F., B. Ahrens (2011). A modication of the mixed form of Richards equation and its application in vertically inhomogeneous soils. Adv. in Sci.

and Res. 6, 123-127. doi:10.5194/asr-6-123-2011

Schulz, J.-P., G. Vogel,C. Becker, S. Kothe, U. Rummel, and B. Ahrens (2016). Evaluation oft he ground heat flux simulated by a multi-

layernland surface scheme using high-quality observations at grassland and bare soil. Met.Z. In revision in press.

SRNWP Data Exchange Programme. Cosmo hosted Observation Data Exchange Among European Meteorological Services.

http://www.cosmo-model.org/srnwp/content/default.htm

Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and Viterbo, P., 2014. The WFDEI meteorological forcing data set: WATCH Forcing
Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.

See also http://www.eu-watch.org/gfx_content/documents/README-WFDEI(1).pdf

http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf
http://www.cosmo-model.org/srnwp/content/default.htm
http://www.eu-watch.org/gfx_content/documents/README-WFDEI(1).pdf

