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About this Documentation

This Documentation of the DACE Data Assimilation Coding Environment has two aims:

1. To provide new users an introduction to the scientific background of Data Assimila-
tion (DA) and its implementation within the Data Assimilation Coding Environment
DACE

2. To serve as a work of reference for the developers and users of the respective sub-
systems.

The documentation is organized as follows:

Part I Data Assimilation and the Cycled NWP System displays the basic ideas of
data assimilation and how it is organized at DWD. This part of the documentation
serves as an introduction to the further parts that are linked in there.

Part II Scientific Documentation describes the algorithms of the different data assimi-
lation methods.

Part III User Guide shows the user how to install and execute the system’s components.
Herein, the namelists are described and guidance is provided how to run cycled data
assimilation.

Part IV Implementation describes the codes and modules.

The sequence of these Parts is such that a continous reading of the document should be
consistently possible. The Parts contain reading guidelines for themselves.

The typical reader will probably skip back and forth through the document – in that case,
forward-links from the scientific part to the implementation and user guide are provided,
and occasionally backward-links, especially in the case of namelist variables in the user
guide that act as switches for certain algorithmic features.

It is important to acknowledge that this documentation is always work-in-progress, be-
cause the features and algorithms of the DWD DA System are always in development.

If the reader has the feeling that something is missing or badly/wrongly documented,
he/she should not hesitate to contact the authors or to actively contribute to this docu-
mentation, following the writing guidelines (Chapter 29) in the Appendix.
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Chapter 1

Introduction

1.1 The Development Process
Developing data assimilation (DA) methods for use in an operational environment needs
a mature and well-documented development process. It includes the development of par-
ticular system parts in an research environment, testing and calibration in a basic cycling
system and their integration into the operational environment. We employ the following
four levels of system development.

1. Individual Code Development. Individual developers and researchers work on
their part of the code. Initial testing is carried out for an individual module by using
well-prepared input in a test environment, usually a part of the local file system on a
development machine or a high-performance cluster (when testing parallelization).

2. Basic Cycling. The basic cycle is an environment for testing and calibrating the
whole system which consists of model runs and different data assimilation modules.
The basic cycling is described in Section 3. The basic cycling system is highly
portable and suitable for use in different computing environments. It runs based on
input files and will write the output into particular directories of a file system.

3. Preoperational Testing in NUMEX. The NUMEX system is a testing envi-
ronment of the cycled NWP system in a quasi-operational setup. It employs data
bases for storing files, such that large-scale experiments over extended periods of
time and in high-resolution can be carried out. NUMEX has all features which the
operational system has, and it is able to run any part of the system in an operational
mode, including particular cut-off times for data when the system is run under tight
time-constraints.
Full description of NUMEX somewhere?

4. Operational Assimilation and Forecasting. The operational system is run un-
der high demands on availability and fault tolerance. Forecasts need to be available
for key national customers both within Deutscher Wetterdienst (DWD) as well as
externally. Weather services in about 40 States worldwide take the global data as
boundary conditions for their regional weather forecasting models.
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Development based on the NWP system and for the NWP system takes place in very
different ways. The use of a cycled test environment is of particular importance for all of
them, as soon as the development wants to go beyond single case studies. Development
consists in:

1. developing new model components, either as part of the dynamical core or model
physics;

2. developing new components of the core data assimilation module, for example a new
bias correction or adaptive determination of system parameters;

3. integrating new observations into the system, which usually includes several devel-
opment steps:

(a) developing fast observation operators, which simulate an observation based on
the model of the atmospheric state,

(b) integrating the observation operator into either the model or the data assimi-
lation system or both (depending on which method to be used in data assimi-
lation),

(c) developing an appropriate preprocessing of the observation data, including for
example
i. remapping and conversion of data
ii. quality control
iii. bias correction
iv. gaining additional information by calculating retrievals
v. cloud detection and correction schemes

(d) calibrating the cycled system with the observations and their assimilation in-
teracting with the model dynamics;

4. developing new postprocessingmethods such as model output statistics or verification
tools, calculating various scores and norms which help to understand and improve
the use of the analysis and forecast and to guide further system development.

@Roland: You planned a figure here, but there was none (HL).

1.2 Model Hierarchy
The DWD Data Assimilation System is built to provide a flexible integrated data assim-
ilation environment to serve both the global model as well as high-resolution convective
data assimilation. Modeling takes place on different spatial and temporal scales:

1. On synoptic scales, the global ICON is being developed and operationally run by
DWD. In the past, for the global model GME the horizontal resolution has been
increased about every couple of years, reaching 20 km mesh size in 2013. The global
ICON model 13 km horizontal mesh size is envisioned in 2014.
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2. On the European scale in 2013 we have run the COSMO model in its version
COSMO-EU with a horizontal resolution of 7 km. From 2015, a nested ICON
model is planned to run, with 6 km resolution in Europe.

3. Currently, the COSMO model is run on a horizontal resolution of 2.8 km over
Germany as COSMO-DE. The plan is to move towards a 2.2 km resolution and
extended area in 2015. MeteoSwiss is working on the ensemble data assimilation
system for its 1 km COSMO NWP system over the Alpine region.

Each NWP model is linked to its particular data assimilation system, which need to be
adapted to the particular spatial and temporal scale of meteorological processes and the
particular measurements which are available on each scale.

1. On the global scale we provide a Hybrid Variational Ensemble Kalman Filter
(VarEnKF), which consists of an Ensemble Kalman Filter (EnKF) and a 3-
dimensional Variational Data Assimilation system.

2. The same system is run on the European scale for the nested part of the ICON
model system. For COSMO-EU dynamical forcing or nudging has been employed
until 2014. Boundary conditions for these methods are provided by the global model.

3. The high-resolution COSMO system COSMO-DE and COSMO-DE-EPS has used
nudging up to 2014. An EnKF with an additional deterministic analysis has been
developed and is to become operational in 2015.

Boundary conditions for the regional NWP system are provided by the global model
and its nested European version.
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Chapter 2

DA Concepts

The task of data assimilation is to determine the state of the atmosphere as a key input
for the forecasts which are obtained by running the NWP model forward in time. To this
end

• measurement data yk ∈ Rm with dimension m ∈ N of the measurement space from
the time period (tk−1, tk], k ∈ N, between the last analysis time tk−1 and the current
time tk are assimilated and

• an analysis xak ∈ Rn with dimensions n of the state space is generated,

where the superscript a refers to analysis and k ∈ N is the time index.
Data assimilation uses several different analysis modules which are taken in turns with

model runs. This is called cycling, compare Figure 2.1.

Cycling

[0] DA
assimilate

yk−1

[1] Model
run 4tfc

[0] DA
assimilate yk

[1] Model
run 4tfc

Figure 2.1: Cycling refers to the use of both the model dynamics and measurement
data to estimate the current state of the atmosphere. The forecast interval is written as
4tfc = tk − tk−1.

The basic idea is

1. to start with some previous analysis xak−1 at time tk−1,
2. to use the model to propagate the state xak−1 forward in time to time tk. We call

the propagated state the background at time tk and denote it by xbk.
3. Then, the analysis modules are run, using both the background xbk and the data yk

to calculate a new analysis xak, valid at time tk.
4. Then, this elementary cycle is repeated.

The main modules which are part of the data assimilation cycle are shown in Figure 2.2.
The situation is slightly more involved than indicated in the points 1.-4. above:

27
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Data Assimilation Basic Cycle Components

0UTC 4t, 24t, ... e.g. 3h,6h, . . . 21h UTC

0 UTC or 0,12 UTC

[0] Control
& Data Management

[1] SST
Sea Surface Temp

[2] SMA
Soil Moist. Ana.

[3]
3dVar/EnKF/VarEnKF

Core Assimilation

[4] SNOW
Snow Analysis

[5] MODEL
Model Run 24h

[0] Control
& Data Management

[3]
3dVar/EnKF/VarEnKF

Core Assimilation

[4] SNOW
Snow Analysis

[5] MODEL
Model Run 4t

[0] Control
& Data Management

[5] MODEL
Forecast 7d

Figure 2.2: We show the components of the data assimilation basic cycle. Once a day
at 0 UTC the modules shown in the left column are run. At other analysis times, only
snow analysis SNOW [4] and the core module 3dVAR/EnKF/VarEnKF [3] is carried out.
Once a day a forecast run of 24h is needed as input for the SMA [2] of the next day.

1. the analysis modules

(a) sea surface temperature SST/ICE [1] and

(b) soil moisture analysis SMA [2]

are run only once per day, while the

(a) snow analysis SNOW [4] and the

(b) DA core module 3dVAR/EnKF/VarEnKF [3]

are run in every analysis step, usually every three hours for the global model,
2. the soil moisture analysis SMA needs more forecast data than just the background

and measurement data. It needs a forecast run MODEL [5] over the past 24 hours
with appropriate field output.
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3. At all other analysis times tk 6= 0 UTC, the model MODEL [5] is run in increments
of time 4t.

In Figure 2.2 the situation is shown by the two areas which display the run of the modules
for the global data assimilation at 0 UTC and at 4t, 24t,... UTC.
Forecast runs as shown in the box at the bottom right of Figure 2.2 can be run any

time starting from an analysis.
@Roland: Maybe display operational Runclock of COSMO/GME here as an illustra-
tion?
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2.1 Module Workbench
There are several different modules running in a data assimilation cycle. Usually, assim-
ilation of soil moisture, for example, is not carried out within the core data assimilation
component, but by the separate module SMA taking into account the particular situation
of the earth system. The basic ingredients of these models can be classified as visualized
in Figure 2.3.

• We need to take into account the background BG, i.e. the state of our system as
calculated and forecasted from previous analysis steps.

• Of course, observations OBS are used, where in addition to raw observations we may
also assimilate retrievals which are calculated as analysis fields by other processing
centers, for example the SNOW analysis or SST analysis provided by NCEP.

• We need parameter files PAR ranging from climatological field to particular masks
(land-sea-mask), bias correction data, particular covariance fields (B-Matrix) or
external parameter fields as vegetation indices or physical constants.

• The control of the module takes place by control files, which usually include a
NAMELIST providing all the input parameters of the module.

DA Module Input

[0] BG
Background

[2] OBS
Observations

[3] PAR
Parameters

[4] Control
Files

[1] DA Module

x,y-formalism in this picture?

Figure 2.3: We show a classification of different types of input for the data assimilation
modules, ranging from background states BG via observations OBS and parameter files
PAR to the control files, e.g. the NAMELIST.
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2.2 Assimilation Modules
The core data assimilation module takes all atmospheric observations and the background
states to calculate the atmospheric analysis, the best estimate for the current atmospheric
state.
The core module offers different algorithms to carry out this assimilation task. In

particular, the module includes

1. a 3-dimensional Variational Data Assimilation (3dVar),

2. a Local Ensemble Transform Kalman Filter (LETKF) (often referred to as Ensemble
Kalman Filter (EnKF)),

3. a Hybrid Variational Ensemble Kalman Filter (VarEnKF).

The scientific description of these algorithms is carried out in Chapters 7, 9 and 10. Here,
it is sufficient to know that the assimilation methods calculate the analysis based on some
version of the norm difference

J b(x) := ‖x− xb‖2 (2.1)

of a state to the background as well as the difference

Jo(x) := ‖y −H(x)‖2 (2.2)

with some particular norm ‖·‖ between the observations y ∈ Rm and the model equivalent
H(x) in observation space, where the observation operator

H : Rn → Rm (2.3)

calculates simulated observations or model equivalent, respectively, based on the model
state x ∈ Rn.

2.2.1 Core Modules: 3dVar, EnKF and VarEnKF

Here, we first look at the conceptional differences between the three algorithms.

1. 3dVar is a variational algorithm, which calculates the analysis xa for one atmospheric
state, based on the background state xb via an iterative minimization approach based
on the conjugate gradient method (CG).

2. The EnKF is an ensemble data assimilation method. It needs an ensemble of states
xb(`), ` = 1, ..., L, as input, and generates an analysis ensemble xa(`), ` = 1, ..., L,
as output by a combination of an optimization method in ensemble space with an
algebraic algorithm to generate the analysis ensemble.

3. The VarEnKF is a hybrid method, which takes a background ensemble xb(`), ` =
1, ..., L, and a deterministic state xb as input and generates an analysis ensemble
{xa(`) : ` = 1, . . . , L} and a deterministic analysis xa as output. The method
couples the 3dVar with an EnKF, using information from both schemes in each of
its modules.
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When speaking about the background, this can refer either to the deterministic back-
ground xb of 3dVar or the the background ensemble {xb(`), ` = 1, . . . , L} of the EnKF or
to the joint ensemble {xb,xb(`), ` = 1, . . . , L} of a deterministic state plus an ensemble of
states.

DA Core Module Input

Output

3dVar/EnKF/VarEnKF
DA Core Module

[1] Background
GRIB Format

[2] Observations
BUFR Format

[3] Namelist
ASCII Format

[4] Blacklist
ASCII Format

[5] B-Matrix
NetCDF Format

[6] BiasStat
ASCII Format

[7] Analysis
GRIB Format

[8] Feedback Files
NetCDF Format

[9] Diagnostics
Diverse Formats

Figure 2.4: The figure displays the data processing concept of the core data assimilation
module 3dVar/EnKF/VarEnKF (specific flowcharts for the different methods are provided
in Chapter 14).

2.2.2 I/O Concept and File formats

Before we go into more details about the particular input and output, we summarize the
basic concept of observation and state I/O.

1. Atmospheric states x ∈ Rn are usually stored in GRIB file format.

2. Observations are stored in BUFR format and converted into NetCDF before used
by the data assimilation modules.

3. The model equivalents H(xb) and H(xa) are stored in the form of so-called feedback
files in NetCDF format. These files contain

(a) the original observations y,

(b) the model equivalents of these observations H(xb) and

(c) quality flags and quality information which has been derived by the analysis
module when processing the data and comparing observations to the model
equivalents.

All programs read and write files to the local file system, which are then copied into some
data base by the control module, compare Control [4] in Figure 2.3. The data base can be
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some archive, as used for the operational NWP, or it can consist of a larger file system,
where particular analysis or forecast files are stored for further use and evaluation.

The concept of data processing of the core data assimilation module is shown in Figure
2.4. The main types of input and output files are shown by [1] to [9].

1. The background [1] will be provided in the form of one or several files in GRIB
format. Fields based on different model grids may need additional information for
further processing.

@Roland: for example, the model grid information of the ICON model is ... –
Missing sentence!

2. Observations [2] yo are provided in the form of several files in BUFR format. They
are usually converted into NetCDF format, before they are read by the core module.

@Roland: I completed this list, preliminarily. Please read it. (HL).

3. FORTRAN Name lists [3] are used to communicate the user-settings to the binaries
of the DA Core Modules.

4. Certain observations can be excluded using explicit Blacklists [4].

5. In case of 3dVar, the background error covariance matrix B can be provided exter-
nally as a NetCDF file [5].

6. Information about observation biases can be communicated using text lists [6].

7. The Core DA Module produces an Analysis [7] state xa or an ensemble of analysis
states {xa(`) : ` = 1, . . . , L} in the GRIB format.

8. Observations yo and their model equivalents H(x) are written together into feedback
files [8] in the NetCDF-format in order to evaluate offline diagnostics or verifications
in observation space.

9. Some diagnostics [9] are performed online within the DA Core Modules. Their
output can be in diverse formats, including graphical plots.
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2.3 Supplemental Modules
In order to produce both synoptic and convective scale analyses, the core-modules of Sec-
tion 2.2 need external fields on the lower boundaries consisting of sea surface temperature
(SST), sea ice coverage (ICE), snow coverage (SNOW) and soil moisture (SMA) analysis.
This section gives a first glance at how these supplemental modules produce the needed
analysis fields. A full documentation is provided in Chapter 11.

2.3.1 Sea Surface Temperature (SST) and ICE Analysis

The sea surface temperature analysis SST and ice analysis ICE employs different data
sources, including

1. the NCEP SST analysis;

2. observations from ships and buoys over several days before the analysis time;

3. sea ice concentration or sea ice fraction as provided by

(a) the Federal Maritime and Hydrographic Agency of Germany (BSH)
(b) and NCEP MMAB.

4. climatological fields as derived from ECMWF climatology.

@Roland by TJ ECMWF reanalysis ERA... ?

@Roland by HL: I commented out some incomplete stuff here, please look into the
.tex-File

SST/ICE Input

Output

SST/ICE Module
Sea Surface Temperature

[1] Background
GRIB Format

[2] Observations
BUFR Format

[3] Namelist
ASCII Format

[4] Climate Fields
GRIB Format

[5] NCEP Ana
GRIB Format

[6] Masks
ASCII Format

[7] SST Analysis
GRIB Format

Figure 2.5: Input and Output of the SST/ICE module.

@Roland by HL: Also here, I commented out some incomplete stuff, please look into
the .tex-File
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2.3.2 Snow Analysis

Snow analysis is carried out by a local averaging and interpolation of observed values,
where the external analysis and a background field is used in data-poor regions. The
snow analysis is based on

1. synoptic observations (SYNOP)

2. NCEP Snow and Ice Analysis1 as displayed in Figure 2.7 (a) and Figure 2.7 (b).
NCEP uses satellite data from

(a) POES AVHRR

(b) AMSU

(c) GOES Imager

(d) GMS

(e) MSG Seviri

(f) DMSP SSM/I

We use NCEP snow height and snow cover fields (contained in a file noaasn) as
input to the DWD snow analysis module.

3. monthly snow depth climatology from ECMWF and

4. model background forecasted from previous analysis steps.

SNOW Input

Output

SNOW Module
Snow Analysis

[1] Background
GRIB Format

[2] Observations
BUFR Format

[3] Namelist
ASCII Format

[4] Climate Fields
GRIB Format

[5] NCEP Ana
GRIB Format

[6] SNOW Ana
GRIB Format

Figure 2.6: The figure displays the input and output fields of the SNOW module.

The snow analysis generates a snow depth (also called snow height). Input and output
of the SNOW module are shown in Figure 2.6.

1http://www.ospo.noaa.gov/Products/land/snow.html
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2.3.3 Soil Moisture Analysis (SMA)

Soil moisture is well-known to be an important ingredient of the atmospheric model,
with strong influence on the lower part of the atmosphere and long memory effects. Soil
moisture analysis refers to the part of the data assimilation system which adapts soil
moisture to observations.
At the current state, soil moisture analysis is carried out in its own module, using

mainly the near surface variables of two-meter temperature T2m and relative humidity
Rh2m. The soil moisture analysis consists of two main parts:

1. First, an analysis of the two-meter temperatures 2Tm Analysis is carried out. This
is a global interpolation of observations from

(a) synop stations

(b) ships

(c) drifting and stationary buoys.

@Roland: Ships and Buoys for SOIL moisture analysis?

2. Second, in the SMA Module the humidity in the different soil layers is adapted to the
two-meter temperature using the difference between model T2m and the analysed
T2m, based on surface flux distributions.

The T2m DA Module as visualized in Figure 2.10 cycles through the past 24h with
cycle 4t = 3h. It takes the background of the T2m temperature [1] and assimilates the
corresponding observations [2] of type (a) to (c) into an analysis field, the T2m Analysis
[5]. Together with the relevant external parameter fields [4], these field are collected into
a GRIB file and given as input to the SMA Module.
The SMA Module calculates increments of the soil moisture based on a 24h forecast

[2] which is calculated from the 0 UTC atmospheric analysis of the previous day. Since
the sensitivity of the 2m temperatures to soil moisture is largest around noon, the mod-
ule compares the local temperature of the forecast run with the corresponding analysis
temperature from T2m Analysis. To this end the module cycles over spherical wedges

S(ϕ1, ϕ2) :=
{
x = r(ϕ, θ) ∈ S : ϕ1 ≤ ϕ ≤ ϕ2

}
, (2.4)

with wedge size π/4 (or 30◦) calculating a local soil increment, compare Figure 2.8, where
one of the wedges is displayed.
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(a)

(b)

(c)

Figure 2.7: (a) The figure visualized the NCEP snow height given in meters. Data here
are given in the northern hemisphere. (b) NCEP snow fraction is shown in %. (c) The
figure displays the snow height h_snow as generated by the SNOW module. The fields are
from June 1st, with summer on the northern hemisphere.
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N

S

θ
[ϕ1, ϕ2]

Figure 2.8: The figure shows one of the wedges which is used by the SMA to calculate
soil moisture increments. The wedge is used for noon local time, when the sensitivity of
the atmospheric states with respect to soil moisture is largest.

Figure 2.9: The figure shows the soil moisture in the first layer of size 1cm=10mm as
generated by the SMA module, with values between 0mm and 10mm. Values above sea
are set to zero and displayed in white. Here, the figure is generated by interpolation from
the ICON model grid to a lat-long grid and display by grads.
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T2M DA Module Input

Output

T2m DA Module
2m Temperature

[1] Background
GRIB Format

[2] Observations
BUFR Format

[3] Namelist
ASCII Format

[4] ExtPar
GRIB Format

[5] T2m Analysis
GRIB Format

Figure 2.10: The T2m DA Module calculates an analysis of the 2m-temperature on the
model grid for a period of 24h, using the background of the model forecasts and surface
relevant observations.

SMA Input

Output

SMA Module
Soil Moisture Analysis

[1] Background
GRIB Format

[2] 24h Forecast
GRIB Format

[3] T2m Analysis
GRIB Format

[4] Namelist
ASCII Format

[5] ExtPar
GRIB Format

[6] SMA Analysis
GRIB Format

Figure 2.11:
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2.4 Observations

As mentioned in 2.2, observations are the key to the determination of the current at-
mospheric state. This Section shortly explains how the model is compared to the data
(Section 2.4.1), which observations are assimilated (Section 2.4.2) and how their quality
is monitored and assessed (Section 2.4.3).

2.4.1 Observation Operators

Observation operators are the important ingredient of any data assimilation system. For
some given measurements y ∈ Rm with m ∈ N, the observation operator calculates the
model equivalent or simulated measurement H(x) ∈ Rm, where x ∈ Rn is the model state.
For example, consider two extremes:

• If we have one temperature measurement only, i.e. y ∈ R in some point r, then H
interpolates the model state x from the model grid into its value H(x) at r.

• When we measure radiances, then H can include a full radiative transfer model as
implemented in the RTTOV code. It simulates the radiation coming from a column
of the atmosphere when a temperature profile, a humidity profile, cloud cover and
several further fields are provided.

Observation Operator Concept

[0] Model State
x ∈ Rn

[1] Observations
y ∈ Rm

[2] Sim Obs
H(x) ∈ Rm

[1a] Obs Type 1
y1 ∈ Rm1

[1b] Obs Type 2
y2 ∈ Rm2

[1c] Obs Type 3
y3 ∈ Rm3

[2a] Sim Obs 1
H1(x) ∈ Rm1

[2b] Sim Obs 1
H2(x) ∈ Rm2

[2c] Sim Obs 1
H3(x) ∈ Rm3

Figure 2.12: Observation operators calculate model equivalents H(x), from the given
model states x ∈ Rn.

Observation operators are used in different ways in the assimilation algorithms.
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1. The three-dimensional variational assimilation actively minimizes the functional

J(x) = ‖x− xb‖2
B−1 + ‖y −H(x)‖2

R−1 , (2.5)

where R and B are the covariance matrices reflecting the data error distribution
and the background error distribution. To carry out the minimization, we need both
the linearization H of the operator H and its adjoint H∗.

2. The EnKF uses the obs minus first guess

y −H(x) (2.6)

to calculate the analysis ensemble when a background ensemble and observation data
y are given at some point tk in time. The EnKF does not need the adjoint operator.

In all cases we need to be able to calculate the model equivalent H(x) for given ob-
servations y. A full documentation of a data assimilation system needs to describe all
observation operators which are integrated into the system.
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2.4.2 Observation Types

A short overview about the observation types used by DWD is given in the following
Sections. More details about observation operators are provided in Chapter 6.

SYNOPS, Ship and Buoy reports

SYNOP data are the classical weather measurements obtained from automated and man-
ual land stations, buoys and ships. Meteorological quantities provided by SYNOP data
are temperature, moisture, cloud state, dew point, wind speed and direction, visibility,
pressure, weather state, precipitation and snow.
DWD operationally assimilates classical SYNOP data and buoy reports in all of its

NWP systems (the global GME model, the European COSMO-EU and the central Euro-
pean COSMO-DE).

Radiosondes, Dropsondes (TEMP), PILOTs and ASAP (Ships)

Observations of upper regions of the atmosphere are made by weather balloons (TEMP)
released from surface level or dropped from planes, measuring temperature, pressure,
humidity.

Wind Observations in the Atmosphere by Satellites, Passive Methods (AMVs)

Using the displacement vectors of clouds the wind speed and wind direction is calculated.
The technique is known as AMV (Atmospheric Motion Vectors). Geostationary satellites
provide observations with high time resolution.
AMV winds are operationally assimilated at DWD within its global model GME.

Wind Observations in the Atmosphere from Satellites, Active Methods

With a launch planned for 2014, a polar orbiting satellite equipped with a Lidar system
(ADM (Atmospheric dynamics mission)-AEOLUS) will reconstruct wind information from
the Doppler shift of backscattered signals in the line of sight within the complete atmo-
sphere. DWD is represented in the Aeolus working groups and works on the assimilation
of the corresponding data in cooperation with DLR.

Aircraft Measurements (AIREPS, AMDAR, ACARS, ASDAR)

Airplanes provide measurements of temperature, pressure, wind and humidity (exper-
imental). DWD operationally assimilates all the available aircraft data into all three
models GME, COSMO-EU and COSMO-DE.

Ground-Based Radar Stations

Reflectivity measurements by ground-based radar stations provide information about pre-
cipitation and winds. This information is usually calculated from measurements with
particular products, currently precip-scans of DWD and temperature, pressure, humidity.
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The assimilation of radial winds is performed for COnsortium for Small-scale MOdelling
(COSMO)-model.

Radar Wind Profiler

Radar wind profiler are Doppler radars using lower transmit frequencies than classical
weather radars, which allows getting echo returns from both the clear and the cloudy
atmosphere. Clear air echoes are caused by the ubiquitous fluctuations of the refractive
index of air. The vertical data coverage depends on the used wavelength, for the DWD
482 MHz systems (62 cm wavelength), measurements are typically confined to a height
range between 0.5 and 16 km agl. Radar wind profiler networks are for example run by
the EUMETNET Programme E-PROFILE http://www.eumetnet.eu/e-profile.

Satellite-Based Active Radar

Using active radar (scatterometer) satellites measure the intensity of radiation scattered
back from the sea surface. It depends on the roughness of the surface, which is again a
function of wind speed close to the surface (10m). Using measurements from different
observation angles it is possible to also determine the wind direction by advanced scat-
terometer observations (ASCAT). DWD operationally assimilates ASCAT measurements
within the global model GME, tests are being run with COSMO-EU.

Radio Occultations

Radio Occultations (RO) is a remote sensing measurement technique to probe the plane-
tary atmosphere using radio signals which pass from some sender to some receiver, where
usually both sender and receiver are outside of the atmosphere under consideration. Usu-
ally one employs simplified models of ray bending for analysis. The basic physical idea
is to determine approximate values of the refractive index at the bending points, the
limb-sounding being sensitive to humidity and temperature.

Global Navigation Satellite System (GNSS)

Global navigation systems like GPS (USA), Galileo (EU), GLONASS (Russia) or COM-
PASS (China) are sending signals, which are received by ground based stations. These
signals are delayed due to atmospheric parameters; the path through the atmosphere dif-
fers from the geometrical path. The delay is determined by measuring the time difference
between sending and receiving the signal, and it is proportional to the integrated water
vapour (IWV) of the ray’s path through the atmosphere.
Within its COSMO-DE NWP system DWD is ready for assimilating this type of data

and experiments are running.

Microwave and Infrared Sounding Instruments on-board of Satellites

Satellite borne sounder instruments are not able to measure meteorological quantities
directly, rather they measure the upwelling radiation emitted by the Earth’s atmosphere



44 DWD DA System Documentation March 4, 2019

and surface in narrow spectral bands (so-called channels). The radiation measured by a
satellite instrument depends in a complex way on the vertical distribution of temperature
and the atmospheric composition, on hydrometers and on the Earth’s surface properties.
In order to assimilate such data in NWP models, the complicated relationship between
the observed radiation and the meteorological variables (the state vector of the NWP
model) is simplified and modeled numerically in an efficient way. At the moment these
measurements are the only way to obtain near-real-time information on the atmosphere
with global coverage and high horizontal resolution.

2.4.3 Quality Control

Measurements of atmospheric fields are necessarily imperfect and tainted by errors. Before
incorporating the data in the assimilation algorithms, it has to pass quality checks (a full
description is provided in Section 8.1):

• Parts of data which are known to be bad can be blacklisted.

• Data is selected by its geographical distribution (e.g land/sea).

• A first guess check is performed wherein the departure of the observation from the
model equivalent is compared with their respective prescribed standard deviation
values.

• Observations with an observation error that is too large are excluded.

• Spatially and temporally dense observation sets tend to be correlated and are there-
fore redundant. Observation thinning is performed to remove the redundant infor-
mation as far as possible.

The probability density function for observation errors (PDF) is not necessarily Normal:
outliers may exist and nonlinear observation operators such as radiances will produce
non-Gaussian estimates, making the cost function (which is to be minimized) also non-
Gaussian. In the case of the DA schemes that use a variational solving method (3dVar
and VarEnKF), it is possible to use apply a Variational quality control (Section 8.2) to
account for this issue.



Chapter 3

DA Basic Cycling

3.1 The Global Basic Cycling Environment
An introduction on how cycled data assimilation is performed with the DWD systems is
provided here. The User Guide explains it in Detail in Chapter 15.

3.1.1 The Design of Basic Cycling

The basic cycling system is a development environment for data assimilation. As described
in Section 2, data assimilation cannot determine the atmospheric state at a given point
in time from data alone.

• The process of short-range model predictions and the fusion of data with the model
first guess or background, respectively, is an indispensable tool for generating the
estimate for the state of the atmosphere and earth’s surface.

• The cycling process is of key importance for the quality and behavior of the whole
NWP system. Many parts of the data assimilation system interact with the model
dynamics, such as bias correction algorithms. Further, various parts of the model
dynamics react on the increments which are generated by the data assimilation
components, such that the calibration of the entire cycled system is more than half
of the work which is carried out to develop and run data assimilation modules.

3.1.2 Technical perspective on Cycling

The idea of the basic cycle is to have a tool for development and debugging of each of its
modules. To this end, a careful treatment of the input and output of all modules and its
file processing is realized.
Figure 3.1 examplifies the basic idea of a cycling environment. In a fixed interval ∆tfc,

the data assimilation is performed using model background files and observation files.
Then, a model forecast is started to the next assimilation time (here: 3 hours later)
where the assimilation is repeated.
The observation operator is applied differently for global and local assimilation methods:

The global 3dVar, LETKF and VarEnKF algorithms apply the operator directly onto the

45



46 DWD DA System Documentation March 4, 2019

model forecast(s) within the Core DA module. In the local Kilometre-Scale Ensemble
Data Assimilation (KENDA)-LETKF, the observations are processed by the ensemble of
COSMO members and communicated to the Core DA together with the mapped model
equivalents by using feedback files.
From certain analysis points (e.g. every 6 hours), a model forecast run is started from

which the actual forecast products are derived which are disseminated by the weather
service.
The model forecasts in between start from the analysis states of the assimilation and

make use of surface boundary data from the SMA, SST, ICE and SNOW modules – in
the local model case also lateral boundary conditions from global model forecasts.

0 UTC 3 UTC

Core DA
Module

Observations
yo0UTC

Model
forecast run

Model
run 4tfc = 3h

Boundary Data
lateral/surface

Core DA
Module

Observations
yo3UTC

Model
run 4tfc = 3h

Boundary Data
lateral/surface

hours,days

Figure 3.1: Example for a cycling system where an analysis is produced every 3 hours,
and a forecast run is started from the analysis at 0 UTC.

3.2 Ensemble data assimilation
Technically, the cycling of ensemble data assimilations like LETKF or VarEnKF is similar
to the cycling of a deterministic assimilation method as 3dVar.
The biggest difference is that instead of 1 deterministic model run, the forecast model

has to be started L times from ensemble initial conditions, producing an ensemble forecast
(eventually using ensemble boundary conditions). A detailed view on Kilometre-Scale
Ensemble Data Assimilation (KENDA) is provided in the User Guide in Section 15.3.
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Chapter 4

Overview

The simulation of the dynamics of the atmosphere is one of the key ingredients of the
art of modern weather prediction. To this end, global and regional systems have been
developed in all operational centers around the world. Besides numerical simulations of
the atmosphere, measurements give us a distinct second source of information to determine
the current state of the atmospheric system. Data assimilation is a way of combining these
two sources of information, observations and the prediction in order to obtain improved
representation of the atmosphere for the numerical model that we are using. Only with
a precise knowledge of the current atmospheric state we can hope to achieve reliable
predictions for this state in the future.
Data assimilation algorithms usually start with some knowledge about the atmospheric

state which is obtained from earlier measurements and forecasts. This state is called the
background or forecast state xb. Using measurement data y at fixed time k we change the
background state to a new improved estimate for the true state of the atmosphere. The
estimate is called the analysis xa.
Today, a variety of measurements are available, which can be used to infer knowledge

about the current atmospheric state. This includes conventional measurements of tem-
perature, atmospheric pressure, humidity and wind either by ground-based stations or
by weather balloons (radio-sondes), as well as, a variety of remote sensing data. This
includes radar measurements of precipitation or wind speed, scatterometers which can
infer knowledge about the wind speed at the ocean surface and various radiometers which
provide knowledge about temperature and humidity in the atmosphere by measurements
of infrared or near-visible radiation of atmospheric gases.
In this document we describe a class of data assimilation systems as they are are

developed and used operationally at the DWD (German Weather Service). These include
ensemble data assimilation systems, the three-dimensional variational methods as well as
hybrid variational-ensemble filter methods.
This Part II of the document is organized to provide an understanding of the different

elements that go into the assimilation algorithms and of the algorithms themselves:

1. Chapter 5 provides a description of the representation of the forecast and analysis
state xb and xa, in terms of supported atmospheric models, prognostic variables,
and grids used for discretization.
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2. As the next ingredient, the observations y and the observation operators H(x) are
described in Chapter 6. There the overview of different observing systems is pro-
vided, with measurements they produce and how the model state is projected onto
these measurements using observation operators. This includes in-situ observations
achieved from radiosondes and airplanes, surface observations from stations, ships
and buys, satellite radiances, GPS-products and radar data.

3. With xb, y and H(x) as input, xa can be computed. The first assimilation algorithm
described in this document is 3-dimensional Variational Data Assimilation (3dVar)
(Chapter 7): The key idea is to reformulate the assimilation task as a large-scale
optimization problem which is carried out independently at every analysis time step
under consideration. Section 7.1 gives a derivation of the optimization functional
J(x) starting with a Bayesian approach and searching the analysis state for a maxi-
mum likelihood estimator. The minimization of the functional J(x) is carried out by
an iterative Newton method and a conjugate gradient scheme to solve the systems
which arise within this framework. Section 7.2 is devoted to the construction of the
background error covariance matrix B used for the analysis-computation in 3dVar.

4. Chapter 8 contains the methods for the treatment of observations :

• Before entering the assimilation process, quality control and thinning of ob-
servations have to be performed. Quality control usually starts with generic
quality checks, assuming for example that measurements are not likely to be
completely different from a calculated model equivalent. Then, the reduction
of the amount of data is carried out by thinning algorithms. We describe the
methods in Section 8.1.
• Specific to 3dVar, stochastic and variational algorithms provide more advanced

tools to deal with data quality than simple quality control checks. To take
gross errors into account, we employ a non-Gaussian description of observation
errors. As a consequence less weights than in the Gaussian formulation are
employed for large distances of measurements to the analysis. This is described
in Variational Quality Control (Section 8.2).
• Specific to 3dVar, Section 8.3 summarizes details on the assimilation of humid-

ity. It summaries humidity sensitive observations, describes the treatment of
the stratosphere and of cloud liquid water and ice content, and introduces the
transformation to the generalized humidity variable used as control variable by
the background error covariance model.

5. In Chapter 9, the Ensemble Kalman Filter (EnKF) is introduced, wherein an en-
semble of the forecast model is used in a Monte Carlo approach to sample, estimate
and propagate the flow dependent background error covariances (here referred to
as the matrix Pb). The implementation of the local and highly parallel LETKF-
algorithm is documented as well as the strategies on covariance localization and
(adaptive) covariance inflation. As the solutions supported by a sampled Pb can be
non-physical, constraints like positivity, saturation adjustment and hydrostatic bal-
ancing of analysis increments are presented. To account for different characteristics
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of observations, a multistep analysis scheme and a method for adaptive localization
are derived.

6. The variational 3dVar scheme has the advantage of a well-developed background
error covariance model, but it is static. On the other hand, the EnKF provides
flow-dependent background error covariances, but these are tainted by sampling
error. The strengths of these two schemes are combined in a Hybrid Variational
Ensemble Kalman Filter (VarEnKF) (Chapter 10) that uses a mix of the static
B matrix of 3dVar and the flow-dependent Pb-estimate of the EnKF in order to
generate stable analysis that incorporate more information from the observations
than the pure 3dVar could.

7. All NWP models need lower boundary conditions of sea surface temperature, sea ice
coverage, soil moisture and snow coverage. These are provided by the supplemental
modules SST, ICE, SMA and SNOW, documented in Chapter 11.
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Chapter 5

Forecast Model State

The background and analysis states xb and xa introduced in Chapter 2 usually consists
of all prognostic variables of the atmospheric model, discretized on the respective grid.
The formulation of the 3dVar-PSAS (Physical Space Assimilation System), EnKF and
VarEnKF does not depend on a specific grid so that different models can be handled.
However, specification of the observation operators and appropriate covariances of data
assimilation system depend on the grid, and on the scales that the particular model can
resolve.

Section 5.1 gives an overview of the amount of support provided for different models.
The prognostic model variables are described in Section 5.2. The control variables needed
for implementation of the 3dVar are introduced in Section 5.3. The supported horizontal
and vertical grids are further described in Sections 5.4 and 5.5.

5.1 Supported Models
GME

GME is the operational global forecast model of DWD. It is a hydrostatic grid-point
model formulated on an icosahedral horizontal Arakawa-A grid and a vertical hybrid
pressure coordinate system. The GME is fully supported by the 3dVar, EnKF and
VarEnKF (under development).

HRM
The HRM is the former mesoscale forecast model of DWD. It is a hydrostatic grid-
point model formulated on a rotated regular Arakawa-C grid and a vertical hybrid
pressure coordinate system. The HRM is fully supported by the 3dVar.

COnsortium for Small-scale MOdelling (COSMO)
COSMO is the operational regional forecast model of DWD and the COSMO con-
sortium. At DWD it is used in two different configurations, covering the European
(COSMO-EU) and the German (COSMO-DE) area. COSMO is a non-hydrostatic
grid-point model formulated on a rotated regular Arakawa-C grid in vertical z-
coordinates. COSMO is supported by the EnKF (Chapter 9).

ICON
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ICON is the future non-hydrostatic global forecast model of DWD. It is formulated
on an horizontal icosahedral staggered grid with an option for local refinments.
ICON is the prospective successor of the GME and COSMO-EU. The adaption of the
3dVar to ICON and the formulation of a hybrid 3dVar/EnKF is under development.

IFS
The IFS is the operational global forecast model of ECMWF. It is a hydrostatic
spectral model formulated on a vertical hybrid pressure coordinate system. The
transformation from IFS model grid to the horizontal Gaussian grid is handled
within 3dVar algorithm. This capability is used for diagnostic purposes, i.e. for
running the 3dVar observation operators on IFS analyses or forecasts.

Further information may be found in the model documentation for GME, COSMO,
HRM, or IFS.

5.2 Prognostic Model Variables

Prognostic variables uniquely define the state of the forecast model and, based on the
model equations, its future state. The initial values of these variables have to be provided
as for the integration of the dynamical model by the assimilation system.
The result of 3dVar, EnKF and VarEnkf is the analysis of the atmospheric tempera-

ture, wind and humidity fields. Other components of the NWP model are analysed by
separate components of the analysis system, introduced in Chapter 11 i.e. the sea surface
temperature (SST) and sea ice analysis, the snow analysis, and the soil moisture analysis.
The number and kind of prognostic variables depends on the formulation of the model

dynamics (hydrostatic or non-hydrostatic) and the vertical coordinate used (pressure or
geometrical height). Below we describe the set of variables used by the 3dVar for GME,
HRM, and IFS and by the ensemble Kalman filter for COSMO and ICON.

GME, HRM, IFS
These models are based on the hydrostatic equations in a vertical pressure coordi-
nate system. Prognostic variables analysed by the 3dVar are surface pressure ps,
temperature T , and horizontal wind components u and v. The vertical wind com-
ponent (ω in pressure coordinates) is a diagnostic quantity which is derived by the
continuity equation. Furthermore water vapour content, i.e. specific humidity q is
analysed.

The moisture variables cloud liquid water content qcl, cloud ice content qci, prognos-
tic rain qr, and snow qs are not analysed in the 3dVar-algorithm as their relationships
to the other dynamical quantities are strongly nonlinear and the time scale of their
dynamical evolution is much shorter. However, they are used in the hydrostatic
equation to derive geopotential height. Merely cloud water content is set to zero if
analysed relative humidity falls below 90% in order to keep these prognostic quan-
tities consistent.
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In addition the diagnostic variables surface temperature Ts and sea ice coverage are
required by the 3dVar as certain observation operators (satellite radiances) depend
on the surface characteristics.

COSMO
The additional degrees of freedom of the non-hydrostatic COSMO model are re-
flected by further prognostic variables: vertical velocity w and pressure p. Inter-
nally, p is described by the perbation pressure p′ with respect to a reference pressure
p0: p = p0 + p′.

COSMO contains the moisture variables specific humidity q, cloud liquid water
content qcl, cloud ice content qci, prognostic rain qr, snow qs and graupel qg.

ICON

Missing: ICON prognostic variables

5.3 Control Variables in 3dVar

Specific to the 3dVar algorithm (the EnKF does not use control variables), the internal
representation of the deviations from the background atmospheric state δx = x−xb differs
from that of the dynamical model because i) correlations between the variables in this
representation are small so that they may be approximated as zero entries in the matrix
Pb and ii) background error distributions are more Gaussian so that the assumption of
a quadratic cost functional Jb is more appropriate. Specifically the representation is as
follows:

Wind field
Instead of the horizontal wind components u and v the velocity potential χ and
stream function ψ are used for internal representation. The wind components are
derived from these integral quantities by differentiation in the horizontal direction:

u = d/dxχ − d/dy ψ
v = d/dy χ + d/dxψ

(5.1)

Mass field
Instead of surface pressure ps and temperature T geopotential height h is used. This
quantity is related to the density of the air ρ by the hydrostatic equation:

∂p

∂h
= −gρ (5.2)

taking a constant value for gravity acceleration g. Air density relates to temperature
by the equation of state:

ρ =
p

R tv
(5.3)
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For moist air, virtual temperature Tv differs from T and is given by

tv = (1 + (Rv/R− 1) q − qx) t (5.4)

depending on temperature T , specific humidity q and the liquid and ice content of
clouds and precipitation qx = qcl + qci + qr + qs. R and Rv denote the gas constants
of dry air and water vapour.

Humidity
Instead of specific humidity q relative humidity over water rhw, or more specifically
generalised humidity gh is used. The transformation to generalised humidity is made
because relative humidity is restricted to values rhw≥0 (and, if no super-saturation
is allowed, to rhw ≤ 1 as well). A Gaussian error distribution cannot be assumed
in this case. Generalised humidity is chosen to be identical to relative humidity for
rhw > 3%. Below this value a nonlinear relationship is used so that rhw remains
positive for any value of gh.

The background error covariances are either prescribed analytically, or represented in
discretized form. In the latter case the underlying grid may differ from the model grid.
More details on the representation of the background error covariances in terms of gh, h,
ψ, and χ are given in Chapter 7.2.
In addition to the model state variables additional control variables are used in the

3dVar:

Dummy sink variables η
The purpose of these control variables is to account for errors of representativeness
which cannot be taken into consideration by an increase of the observational error.
In this case the observation operator also depends on these additional control vari-
ables: H(x, η). Dummy sink variables are currently used by the satellite radiance
observation operator to model the uncertainties of surface temperature as well as
atmospheric temperature and humidity profiles above model top.

Persistent external parameters
The purpose of these control variables is to estimate external parameters within
the variational scheme, which account for a persistent bias of the observations or
model. They will be used for the bias correction coefficients of the satellite radiance
observations and of individual stations or platforms (SYNOP surface pressure and
aircraft temperatures).

5.4 Horizontal Grid
A variety of horizontal grids is supported by the assimilation algorithms:

Icosahedral Grid

The grid-points of the GME are located at the vertices of triangles. In general each grid-
point has 6 neighbours (but only 5 for 20 exceptional ones). Every point on the sphere is
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surrounded by 3 model grid-points which enter the horizontal interpolation. For details
refer to the GME documentation.
Reference to GME-Doku

Reduced Gaussian Grid

The native grid-point representation of the spectral IFS is a Gaussian grid, i.e. a latitude-
longitude grid with non-equidistant spacing in the meridional direction. The specific non-
equidistant spacing has advantages for the Legendre transformation used in the spectral
formulation of the dynamical core. The IFS furthermore uses a reduced grid with less
zonal points near the poles than at the equator. Fields on a reduced grid are interpolated
on input and hold on a regular grid within the 3dVar.

Rotated Regular Grid

The regional COSMO and HRM models are formulated on a regular latitude-longitude
grid. Their model grid may be rotated with respect to the geographical coordinates so
that the model domain is located near the equator of the model grid, so that deviations
from a Cartesian coordinate system are small.

Arakawa-C grid

In the COSMO and HRM model the grid-points of the wind components are shifted
by half a grid cell in zonal direction for u and in meridional direction for v. This has
advantages for the numerical representation of certain operators (advection, continuity
equation). This kind of model grid is called Arakawa-C grid. Within the EnKF, all fields
are interpolated to the same grid-points (Arakawa-A grid) on input. Analysis increments
are then derived on the A-grid and re-interpolated to the C-grid. The final analysis is
calculated on the model C-grid.

5.5 Vertical Grid

Hybrid Pressure Coordinates

GME, HRM, and IFS use hybrid pressure coordinates. In the upper troposphere pressure
p is the vertical coordinate, whereas near the surface coordinate lines follow the orography.
The pressure values of a vertical grid point k are calculated as pk = ak + bk ps for given
surface pressure ps and fixed constants ak, bk with ak = 0 and bk = 1 at the surface and
bk=0 at model top.
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Chapter 6

Observation Operators

The observation operator H(x) derives the equivalents to the observations yo from the
model state x.
In the algorithm for the global models in the DWD DA system (3dVar, global Local

Ensemble Transform Kalman Filter (LETKF), VarEnKF),H is applied directly before the
assimilation on the background fields. The respective observation operators are described
in Section 6.1.
Furthermore, the variational 3dVar-algorithm (Chapter 7) uses the tangent linear op-

erator which calculates the product of the Jacobian of H with a vector (H · x′), and the
adjoint operator which calculates the product of the transposed Jacobian (HT · y′, or
y′ ·H) (see Section 6.1.6).
In the cycling of the EnKF for the local models (Chapter 9), the observation operators

are applied within the ensemble members of the COSMO model itself at model runtime.
A description of the COSMO-Operators is provided in Section 6.2.

6.1 Observation operators for global models

In this section we describe the different observation types used within the algorithms
for global models (3dVar, global LETKF, VarEnKF) and give a short description of the
observation operators.
For point-observations, these operators perform bi-linear horizontal interpolation from

the model grid to the location of the observation.
In Section 6.1.2 and 6.1.3 we describe in-situ observations and surface observations,

which require comparatively easy observation operators. The more complex observations
from satellite radiances and radio occultation are described in section 6.1.4 and 6.1.5.

6.1.1 Physical quantities used within the 3dVar

Check whether this section is relevant for the application of global observation opera-
tors or only for 3dVar

During observation processing different representations of atmospheric state variables
are used (cf. table 6.1):
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Prognostic Control Interpolated Assimilated Reported
variables variables quantities variables data

(GME, HRM)
humidity q gh rhw rhw rh, q, m, td
wind (u, v) (ψ, χ) (u, v) (u, v) (ff, dd), (u, v)
mass (t, ps) h h, tv (t, hs) (t, ps)

Table 6.1: Physical values within GME, 3dVar and observations.

Prognostic model variables
The state variables temperature t, surface pressure ps, specific humidity q, and wind
components u, v of the atmospheric forecast model were described in section 5.2.

Control variables of the 3dVar
The representation of the state variables in terms of generalised humidity gh, geopo-
tential height h, streamfunction ψ and velocity potential χ used by the background
error covariance model of the 3dVar was briefly introduced in section 5.3. More
details will be given in chapter 7.2.

Variables used by the interpolation operators
The observation operators consist of two parts:

1. The interpolation operator HI which interpolates the model quantities to the
location of the observation.

2. Tte actual observation operator HO which derived the observed quantities.

All Observation operators use a common set of interpolation operators HI . Inter-
polation is performed in terms of virtual temperature tv or geopotential height h,
wind components u, v, and relative humidity over water rhw.

Reported quantities
The reported quantities, i.e. the quantities given in the input (BUFR) files, are
not necesarily identical to the raw observations. For in-situ observations frequently
reported quantities are: wind components u and v or wind speed ff and direction
dd, and relative humidity rh, specific humidity q, mixing ratio m, or dew point
temperature td.

Assimilated quantities
In general the set of assimilated quantities yo which appears in the observational
cost function Jo (7.11),(7.12) should be the same as the observed set. In that case
the variables are most likely uncorrelated so that the specification of observational
errors is simplified. Nevertheless for in-situ observations we use a common set of
variables independently from the observed one, namely temperature t, geopotential
height hs (for a given pressure), wind components u, v, and relative humidity rhw.
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6.1.2 In-situ Observations

In-situ observations directly measure the atmospheric quantities temperature t, pressure p,
wind components u and v (or alternatively wind speed ff and direction dd) and humidity q
within the atmosphere. Furthermore some products (AMV, SATEM) derived from remote
sensing satellite observations (provided by the data providers) are handled similarly by
the data assimilation system. The native or pre-processed in-situ observations used are
listed below.

In-situ Observation Types

The mnemonics TEMP, PILOT, AIREP, SATOP, SATEM are used within the 3dVar
to distinguish different observation types. They are borrowed from the World Meteo-
rological Organisation (WMO) alpha-numerical codes used for reporting the respective
observations. The mnemonics AIREP and SATOB are used here in a more general way
to denote all aircraft and all AMV observations, and not only that specified by the original
code.

Radiosondes, Dropsondes, Ships 1 Observations of upper regions of the atmosphere
are made by weather balloons released from surface level or dropped from planes.
A weather balloon carries instruments to send information back to the ground sta-
tions, usually temperature, pressure, humidity. To obtain wind information, they
can be tracked by radar or GPS navigation signals. Measurements of radiosondes
launched from ships are managed by the Automated Shipboard Aerological Pro-
gramme (ASAP) of Eumetnet.

TEMP : Observed quantities provided and used within the assimilation are tem-
perature t, wind components u, v and humidity q as a function of the vertical
pressure coordinate p. In addition to temperature radiosondes report geopo-
tential height h, which is not assimilated as it is a redundant quantity derived
by the hydrostatic equation from the observed air density ρ (t, q, p).

PILOT : Similar to TEMP, but only wind (ff, dd) is reported.

Aircrafts 2 Observations from an in-flight aircraft. These reports describe weather con-
ditions at flight level in the upper layers of the atmosphere or profiles measured in
the starting or landing phase.

1Radiosondes, Dropsondes, Ships:

1. WMO station list

2. EUMETNET Automated Shipboard Aerological Programme (ASAP)

2Aircrafts:

1. WMO AMDAR

2. EUMETNET Aircraft Meteorological Data Relay (AMDAR)

http://www.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm
 http://www.eucos.net/cln_015/nn_133388/EN/Home/networks/easap/easap__node.html?_ _nnn=true
 http://www.wmo.int/amdar/Publications/Final%20Production%20AMDAR%20Flyer.pdf
 http://www.eucos.net/cln_015/nn_133520/EN/Home/networks/eamdar/eamdar__node.html ?__nnn=true
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AIREP : Meteorological observations are wind, air temperature, cloud amount,
cloud cover, cloud height (cloud base and cloud top), and special phenomena.
Temperature (t) and wind (u, v) observations are currently assimilated. Usage
of humidity (q) is investigated.
Airplane measurements are transmitted by AIREP messages for particular de-
grees of longitude or continuously by AMDAR (Aircraft Meteorological Data
Relay) transmission. There are two ways of data communication used here,
standard VHF radio signal (ACARS, Aircraft Communications Addressing and
Reporting System) and satellites (ASDAR, Aircraft to Satellite Data Relay).
The AMDAR transmission provides information about vertical profiles close
to airports, since it is also available from starting and landing airplanes.

Atmospheric Motion Vectors (AMV) 3 Using the displacement vectors of clouds the
wind speed and wind direction is calculated. The technique is known as AMV (At-
mospheric Motion Vectors). Geostationary satellites provide observations with high
time resolution between +/-60 degrees latitude, polar orbiting satellites provide sim-
ilar data for the polar regions. The use of different spectral channels leads to wind
speed reconstructions in different heights. AMV wind vectors are operationally as-
similated at DWD from the geostationary satellites GOES-11, GOES-12, Meteosat-
7, Meteosat-9, MTSAT-1R, MTSAT-2R, as well as polar orbiting satellites from
Metop, the NOAA series, AQUA and TERRA. The geostationary satellite FY-2D
is currently being monitored for possible future operational use. Spectral channels
in the visible, infrared and microwave range are employed. Particular instruments
or products are SEVIRI (Meteosat), AVHRR (Metop, NOAA) and MODIS (Aqua,
Terra).

SATOB : Wind vectors (u, v) derived from drift of clouds or humidity patterns
in satellite observations. These products are provided by the data providers
(EUMETSAT, NESDIS).

Atmospheric thickness Satellite temperature and humidity soundings that are con-
verted to atmospheric thickness. Assimilation of SATEM reports is implemented
only for test purposes as direct assimilation of radiance data is preferred in varia-
tional data assimilation schemes.

SATEM : Atmospheric thickness 4h (i.e. geopotential height difference between
two pressure levels provided by EUMETSAT or NESDIS.

3 AMVs:

1. KENNETH HOLMLUND, The Utilization of Statistical Properties of Satellite-Derived Atmo-
spheric Motion Vectors to Derive Quality Indicators, Weather and Forecasting 1998

2. NIELS BORMANN, SAMI SAARINEN, GRAEME KELLY, AND JEAN-NOEL THEPAUT: The
Spatial Structure of Observation Errors in Atmospheric Motion Vectors from Geostationary Satellite
Data, Monthly weather review, Vol. 131, 2003.

3. “What is AVHRR?“

http://www.nationalatlas.gov/articles/mapping/a_avhrr.html
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In-situ Observation Operators

The operation operator for in-situ data consists of:

1. Vertical interpolation Hv to the pressure level of the observation.
Interpolation is performed in terms of temperature t, generalised humidity gh and
wind components u, v. Linear interpolation is used in case of humidity, spline
interpolation in case of the other quantities.

2. Horizontal interpolation Hh to the location of the observation.
Bi-linear interpolation is used for all quantities.

3. Calculation of the observed quantity (Ho).
This is the identity operator in case of temperature and wind. gh is converted to
relative humidity rh (over water). If other moisture variables are reported (in general
dew point temperature td), they are converted to rhw before assimilation.

6.1.3 Surface Observations

Surface observations are observations from weather stations or or satellites close to the
surface, e.g. at 2 or 10 meter height. Contrary to in-situ observations surface observations
are horizontally interpolated only. Some quantities (surface pressure) require additional
reduction or extrapolation to account for the heigt difference between model orography
and observation.

Surface Observation Types

SYNOPs, Ship and Buoy reports 4 SYNOP data are the classical weather measure-
ments obtained from automated and manual land stations and ships. They are
provided by public and private measurement networks worldwide. Synoptic mea-
surements are compiled using the particular SYNOP format for transmission. Me-
teorological quantities provided by SYNOP data are temperature, moisture, cloud
state, dew point, wind speed and direction, visibility, pressure, weather state, pre-
cipitation and snow state and dynamics. Buoys provide measurements of pressure,
wind and sea surface temperature (SST), transmitted by satellite.

SYNOP : Reports by manned and unmanned weather stations or ships, containing
temperature t2m and humidity td2m (usually at 2 m height) wind u10m, v10m (at
10m height) and surface pressure ps.

DRIBU : Drifting buoys, measuring temperature t2m, wind u, v, humidity q2m,
and surface pressure ps.

Pseudo Pressure Observations 5 The term "PAOB" is an abbreviation derived from
"paid observation" which was pointing to sea level pressure values derived by manual

4 SYNOPs, Ship and Buoy reports:
Federal Meteorological Handbook, Synoptic Codes

5 PAOBs:
The history of PAOBs in the Australian Bureau of Meteorology

http://www.ofcm.gov/fmh2/pdf/FCM-H2-1988.pdf
http://www.bom.gov.au/amm/docs/2003/seaman_hres.pdf
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analysis (later by fitting algorithms employed by numerical systems) to provide data
for areas in the southern hemisphere which were not covered otherwise. Today
PAOBs are automatically extracted from digital output of onscreen analysis.

PAOB : Pseudo surface pressure ps derived from satellite data. Disemination of
PAOB reports was stopped at 2010/08/18 .

Satellite-Based active radar 6 Using active radar (scatterometer) satellites measure
the intensity of radiation scattered back from the sea surface. Backscattered radar
intensity depends on the roughness of the surface, which is again a function of wind
speed close to the surface (10m). Using measurements from different observation
angles it is possible to also determine the wind direction (with some ambiguities)
by advanced scatterometer observations (ASCAT).

SCATT : Scatterometer winds: 10m wind vectors over sea, u10m, v10m. As wind
direction may be ambiguous, 2 or 4 wind vectors are reported. Currently we
use the vector flagged as the most probable choice by the data provider.

Surface Observation Operators

The different quantities are derived as follows:

t2m : Near surface temperature is not assimilated because it strongly depends on the sur-
face characteristics and is not representative for the temperature in the atmosphere.

u10m, v10m : Ten meter wind is horizontally interpolated from the values of the lowest
model level (which is located at 10m height). Near surface winds are used over sea
only (and from land observations below 150m height in the tropics).

rh2m : Relative humidity currently is horizontally interpolated from the respective values
at the lowest model level.

ps : Surface pressure is reported either at station height, or as mean sea level pressure,
or reduced to standard geopotential height levels. Model surface pressure is inter-
polated or extrapolated to the respective height. Technically, not pressure (at given
height) is assimilated, but geopotential height at the respective pressure level.

6.1.4 Satellite Radiances - Passive Sounding Instruments on-
board of Satellites (RAD)

Satellite borne sounder instruments7 are not able to measure meteorological quantities
directly, rather they measure the upwelling radiation emitted by the Earth’s atmosphere
and surface in narrow spectral bands (so-called channels). The radiation measured by a

6 Scatterometer:
http://www.esa.int/esaLP/SEMBWEG23IE_LPmetop_0.html

7 Satellite Radiances:
http://www.eumetsat.int/Home/Main/Satellites/Metop/Instruments/index.htm

http://www.esa.int/esaLP/SEMBWEG23IE_LPmetop_0.html
http://www.eumetsat.int/Home/Main/Satellites/Metop/Instruments/index.htm
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satellite instrument depends in a complex way on the vertical distribution of temperature
and the atmospheric composition, on hydrometeors and on the Earth’s surface properties.
In order to assimilate such data in NWP models, the complicated relationship between
the observed radiation and the meteorological variables (the state vector of the NWP
model) is simplified and modeled numerically in an efficient way. At the moment these
measurements are the only way to obtain near-realtime information on the atmosphere
with global coverage and high horizontal resolution. In the variational scheme, satellite
observed radiances (reported as brightness temperature tb) are assimilated directly.

Passive Sounding Instruments

AMSU-A, HIRS The HIRS (High-resolution Infra-Red Sounder) and AMSU-A (Ad-
vanced Microwave Sounding Unit A) instruments mainly measure the emission in
channels that are dominated by well mixed gases with a known mixing ratio (car-
bon dioxide and oxygen). Therefore, these measurements contain information on
the vertical temperature distribution. Currently only the AMSU-A microwave in-
strument on the polar orbiting satellites is used operationally for cloud-free pixels
located over sea. Assimilation of HIRS data is under preparation.

AMSU-B, MHS The AMSU-B (Advanced Microwave Sounding Unit B) and MHS (Mi-
crowave Humidity Sounder) channels are chosen in water vapour emission spectral
lines, such that these measurements contain information on the vertical distribution
of water vapour in the higher layers of the atmosphere. Assimilation of the moisture
sensitive AMSU-B and MHS instruments is under preparation.

IASI Due to the small number of channels the vertical resolution of these classical
sounders is quite small. The IASI (Infrared Atmospheric Sounding Interferometer)
instrument has several thousands of channels, and therefore provides information
on the atmospheric temperature and atmospheric composition with a much better
vertical resolution and accuracy. The assimilation of IASI data is under preparation.

Observation Operator for Satellite Radiances

Missing: Assignment of nominal height for satellite observations (radiances!) as done
in code.
The observation operator H(x) is the radiative transfer model which calculates the

outgoing radiation at the top of the atmosphere in the observed spectral interval from
the atmospheric temperature and humidity profile as well as surface temperature. We use
the RTTOV package, a fast radiative transfer model for passive infrared and microwave
satellite radiometers, spectrometers and interferometers, which has been developed to fit
the time constraints for repeated application of the observation operator in iterative data
assimilation algorithms. The tangent linear and adjoint operator is provided as well. The
RTTOV package has been developed within the EUMETSAT NWP SAF8 and is licensed

8EUMETSAT NWP SAF: Activity that exists to co-ordinate research and development efforts among
the SAF (Satellite Application Facility) partners to improve the interface between satellite data and NWP
for the benefit of EUMETSAT member states.
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by the Met Office. We use Version 7 of the RTTOV code, but will switch to Version 9 in
the near future.
Before entering the 3dVar scheme the data are pre-processed as follows:

1. The field of views (FOVs) of the AMSU-A and AMSU-B instrument are aggregated
(interpolated) to the location of the HIRS instrument FOV.

2. Only cloud free pixels located over sea are selected.

3. Bias correction is applied.

4. A 1D-Var retrieval is performed.

This preprocessing package was designed to be used with the OI scheme (Optimum
Interpolation, the predecessor of the 3dVar). Some functionalities are obsolete now. The
retrieval of the 1D-Var is not used but radiances are assimilated directly. The prepro-
cessing package is currently under revision and will be tailored to the requirements of the
3dVar.
Within the 3dVar satellite radiance data is processed as follows:

1. Interpolation from the model grid to the fixed pressure levels used by the RTTOV
operator is performed by the same algorithms as used for the in-situ data (i.e.
TEMPs, cf. section 6.1.2).

2. The operational GME30L60 (60 level version) reaches up to 5 hPa. As the RTTOV
operator requires input at even higher levels, forecasts from the IFS model are used
as the background on top of the GME model.

3. Some of the input variables passed to the RTTOV operator (sea surface temperature,
IFS profile above GME top) are not derived from the GME prognostic variables and
therefore not fitted to the observations by adjusting the GME background field in
the variational scheme. However these data are uncertain and should be allowed to
vary as well. For this reason additional control variables (dummy sink variables)
are introduced to model the uncertainties. An error of 1K for SST and 4.5K for
temperature derived from the IFS data is assumed. No correlations are considered
for these data.

4. Thinning is performed to account for horizontal correlations in the radiance obser-
vations which are not explicitly modelled (cf. section 8.1.2). Currently a thinning
radius of 240 km is used.

6.1.5 GNSS Radio Occultations (GPSRO)

Radio Occultations (RO)9 is a remote sensing measurement technique to probe the plane-
tary atmosphere using radio signals which pass from some sender to some receiver, where

9 Radio Occultations:

1. E. R. Kursinski et al., “Observing Earth’s atmosphere with radio occultation measurements using
the Global Positioning System”, J. Geophys. Res., 102, D19, 23,429-23,465, 1997

http://www.agu.org/pubs/crossref/1997/97JD01569.shtml
http://www.agu.org/pubs/crossref/1997/97JD01569.shtml
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usually both sender and receiver are outside of the atmosphere under consideration. In
the case of GNSS radio occultations the sender is a GNSS satellite (e.g. GPS) in a high
orbit, the receiver is a satellite in a Low-Earth-Orbit (LEO) at an altitude of typically
700-800 km.
One usually employs simplified models of ray bending for analysis. The basic physical

idea is to determine approximate values of the refractive index at the bending points.
In the Earth’s atmosphere we obtain a sensitivity of the refractive index with respect to
humidity and temperature.
Near Real-Time data of GPS Radio Occultations used at DWD are GRACE-

A, GRACE-B, TerraSAR-X and TanDEM-X as processed by the GFZ at Potsdam,
FORMOSAT-3/COSMIC processed by UCAR, and data from the GRAS instrument on
EUMETSAT’s polar orbiting satellites (Metop-A and Metop-B).

Observed Quantities

From the point of view of a Low-Earth-Orbit satellite the GNSS satellites will ceaselessly
rise above, or set behind, the horizon of the Earth. During these so-called “radio occul-
tations”, where the GNSS and the LEO satellite are just able to “see” each other through
the atmosphere, the GNSS signals will be slightly delayed and their ray path slightly
bent on the way through the ionosphere (twice) and the atmosphere. On the LEO this
is observed as differences in the phase and amplitude of the received signals. From this
phase differences a vertical profile of the ray bending angle α in a single point on the
earth’s surface can be derived. The refractive index, which depends on temperature and
humidity can be calculated from the bending angle.

Observation Operator for Radio Occultations

The observation operator transforms the model variables to the observations in the fol-
lowing way:

1. Calculate the refractive index in each point of the model grid from temperature and
humidity

2. Perform a vertical interpolation of the refractive index

3. Use a numerical integration method on a fine grid to obtain the bending angle α
(Abel transform)

The signal has to pass the ionospere, which has the largest impact on the ray bending.
This impact is estimated in a seperate model and has the largest effect on the measurement
error.
——————————————————————————

2. Eumetsat GRAS-SAF, “The Radio Occultation Method”

3. GRACE Radio Occultation Survey

4. UCAR Radio Occultation Survey

http://www.grassaf.org/radio_occultation.php
http://www-app2.gfz-potsdam.de/pb1/GASP/GASP2/GRACE/index_grace.html
http://www.cosmic.ucar.edu/launch/status.html
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6.1.6 Tangent-linear and adjoint operators

Missing: Description of tangent-linear and adjoint operators of 3dVar!

Definition of the adjoint

Automatic or algorithmic differentiation

——————————————————————————-

6.1.7 GNSS Slant Total Delay Operator

Ground based GNSS10 makes use of GNSS data collected by large GNSS networks. GNSS
processing algorithms provide the optical path length for each individual satellite-receiver
link, i. e. information about the atmospheric state integrated along the signal path. The
slant total delay (STD) is the atmospheric contribution to the optical path length. These
quantities are called delays or execess path lengths as the atmosphere delays the signal
as compared to undisturbed propagation in vacuum. Zenith total delays (ZTDs) are
the correspondig delays in zenith direction and are equivalent to STDs with elevations
of 90◦. However, ZTDs are usually processed in a different way involving all available
observations within a given period which are combined to a hypothetical observation in
zenith direction.
ZTD data can be obtained from several network providers or GNSS processing centers

in the world. The data are usually available in near real-time or as real-time stream.
Near real-time data are processed in temporal batches, e. g. one hour, and provided
with a certain delay, e. g. 75 minutes. ZTD data for Europe can be obtained from E-
GVAP which is an association of several European GNSS processing centers and weather
services. Operational STD data can currently11 obtained only from the GFZ in Potsdam.
The GFZ provides near real-time STD data with a delay of about 75 minutes and a focus
on Germany.
The observed STD is an integral of the atmospheric refractive index along the signal

path from the GNSS satellite to the GNSS receiver at the ground. The refractive index is
related to the pressure, temperature and humidity fields and the length of the signal path
inside the model ranges from the vertical extension of the model (ZTD, 90◦ elevation)
up to several hundred km or even more than 1000 km, depending on the elevation and
the height of the model top layer. STD observations are therefore neither localized nor
related to one specific meteorological quantity.
An other issue is the signal path inside the atmosphre which is not known in advance

but must be estimated from the background model using a raytracer. GNSS data sets
provide the coordinates of the GNSS satellite and of the GNSS station, the signal path in
between depends on the specific atmospheric state in the vicinity of the connecting line
and can be estimated by solving Fermat’s principile for a given model state. The resulting

10The generic term GNSS (Global Navigation Satellite Systems) refers to all existing navigation satellite
systems, i. e. GPS, GLONASS, Compass, Galileo, ...

11Summer 2014
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bended signal path has a considerable effect on the path delay and cannot be neglected
for observations with elevations smaller than ∼ 30◦.

Observation Operator

The STD observation operator consits of two parts. In the first part a connecting line
between the station and the satellite is defined and a set of supporting points along
this line is chosen. Using the coordinates of these supporting points the interface to the
assimilation system collects the required meteorological data and provides them to the
second part of the operator. As the GNSS signal can propagate through large parts of
the model access to grid nodes with quite large distances to the station is often required.
The second part of the STD operator calls a raytracer in order to estimate the bended
signal path and integrates along this path to obtain the STD.
The basic steps of the STD operator are:

1. Define a connecting line between the GNSS station and the GNSS satellite and a set
of supporting points on this line which will later be used for numerical integration.
The point density is scaled with the pressure profile in order to obtain point distances
which decrease with increasing height.

2. Collect the temperature, pressure and humidity data on the grid nodes surrounding
the supporting poins.

3. Compute the atmospheric refractivity on these nodes using the Smith & Weintraub
formula.

4. Interpolate the refractivities at the supporting points.

5. Call the raytracer to estimate the signal path in the atmosphere, i.e. the devia-
tions from the connecting line. The raytracer is implemented as a iterative Newton
algorithm which minimizes the optical path length in the atmosphere (Fermat’s
principle). The iteration is started with the connecting line and makes small mod-
ifications in order to approximate the “true” bended signal path. Within this step
the refractivities need to be interpolated on the latest approximation of the signal
path.

6. The STD is the line integral through the refractivity field along the signal path.
This is obtained by numerical integration.

7. Ionospheric effects are neglected.

The STD operater can also be used to assimilate ZTD data as the ZTD is a specific case
of a STD with an elevation of 90◦. However, due to different GNSS procesing strategies
the ZTD errors should be smaller than the corresponding STD errors. The same STD
operator code is used in GME/ICON and COSMO, only the interfaces are different.
Incomplete: GNSS Slant Total Delay operator
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6.2 Observation Operators in COSMO

COSMO-DE is only used within the EnKF in Kilometre-Scale Ensemble Data Assimilation
(KENDA), so most aspects of this section are closely linked to the LETKF-algorithm
described in Chapter 9.

When running KENDA, the computation of the model equivalents H(x`) to the obser-
vations yo is performed within the single model instances {x` : ` = 1, . . . , L} during the
forecast step wherein the COSMO-members are forecasting in parallel (Figure 9.2). This
is a relict from the deterministic approach of single COSMO-forecasts wherein nudging
was used to incorporate informations from observations, and it motivates the use of this
separate section that deals only with the aspects of the COSMO operators.

The following subsections first explain the spatial and temporal assignments, followed
by the observation types used for COSMO. A description of the observation errors is
provided in Section 9.3.

6.2.1 Spatial assignment

COSMO-DE (2013) is run at a resolution of ∆x = 2.8 km – therefore it is not considered
necessary to interpolate the model values horizontally to the exact location. Using the
nearest-neighbour technique for assigmnent, a horizontal shift of 1 to 2 grid lengths ∆x
appears to be acceptable, as grid point models cannot resolve wavelengths ≤ 2∆x.
It is considered more important that the vertical of assignment the observations onto

the model grid is appropriate: especially near the surface the badly resolved orography
of the model will give representativity errors for surface pressure observations, and the
boundary layer in the model can be misrepresented with respect to vertical sounding
observations.

Upper air reports

Upper-air reports such as single-level aircraft reports are assigned to the nearest model
grid point.

Sea surface reports

Sea surface reports are those which are surrounded by sea grid points or which are specifi-
cally labeled, such as drifting buoys or shop. The observations are assigned to the nearest
sea grid point.

Land surface reports

Land reports are assigned to the nearest land grid point only if the (geometrical) distance
to it is less than or hafl of the latitudinal mesh width ∆ in the horizontal and less than
40 m in the vertical. Otherwise, the land point with the minimum vertical distance ∆z
to the station is selected out of the points within a horizontal radius of

√
2∆y from the

observation location.
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6.2.2 Temporal assignment

The length of the EnKF forecast window ∆tfc can be in the order of one hour down to a
few minutes, depending of the frequent availability of observation reports. During ∆tfc,
the single reports of yo(t) are assigned to the closest timestep t within COSMO and their
equivalents H(x(t)) is computed.
In the actual assimilation of KENDA (Chapter 9), all pairs of

[yoj , H(x)j] : j = 1, . . . ,m

are currently regarded to be valid at the specific point-in-time when the analysis com-
putation takes place (cf. Figure 9.1 with the naive LETKF recursion and Figure 9.2 with
the special LETKF of COSMO-KENDA).

6.2.3 Observation types

The observation types used by COSMO are similar to those used in the observation
operators of 3dVar.

In-situ observations

Conventional in-situ observations (cf. Section 6.1.2) include TEMP, PILOT, AIREP, AM-
DAR, ACARS, SYNOP, SHIP and DRIBU. These, with the addition of wind profilers,
directly observe model variables such as horizontal wind, humidity and pressure – there-
fore, these parts of yo only need to be assigned (or interpolated) to a model grid point to
obtain H(x).

Remote sensing observations

Current remote sensing observations supported by COSMO contain reflectivity and
Doppler wind speed from ground-based radars, satellite radiances (Section 6.1.4) with
the addition of visible radiances observed by geostationary satellites, GNSS Radio Oc-
cultations (Section 6.1.5) and integrated water vapor (IWV) derived from ground based
GPS total zenith delay.
For these types, H consists of algorithms that simulate the observing instruments and

systems to compute a model equivalent H(x). These computations usually use the com-
plete 3D model field x, instead of the point-wise assignment in the case of in-situ obser-
vations.
Various other observation types (such as lightning observations) could be used, as long

as it is possible to construct a senseful observation operator and as long as the observed
information is not already redundantly provided by other observation systems.
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Chapter 7

Variational Data Assimilation 3dVar

As formulated in Section 2, the goal of data assimilation is to determine the most likely
state of the atmosphere using observations and a model background, weighted by the
observation error covariances and the background error covariances.
Variational data assimilation is a well-known approach to employ measurement data to

control the simulation of atmospheric dynamical systems, compare for example Kalnay
[18]. The key idea is to reformulate the assimilation task into a minimization problem
either for basic time-steps separately (3dVar) or for the trajectories of the system state in
time (4dVar) when the assimilation of measurements within a time window is combined
into a large minimization problem. In this Chapter, the 3dVar scheme is documented:

• Section 7.1 sets up the minimization problem of 3dVar and how it is solved here

• Section 7.2 describes the background error covariance model Pb
OI taken over from

the former OI scheme. This scheme is superseeded in the meantime by the NMC
derived formulation. However the description of horizontal covariances is still used
for preconditioning in the CG scheme.

• Section 7.3 describes the background error covariance Pb
NMC model using vertical

covariances derived by the NMC method. This formulation is currently used to
construct the B-matrix of 3dVar.

• A further option to derive the background error covariance model Pb
EnKF uses lo-

calised covariances derived from an short range ensemble forecast. A combination of
P b
NMC and Pb

EnKF will be used in the upcoming Veriational ensemble Kalman Filter.
This method is described seperatly in Section 10.

Note that the 3dVar-scheme is only applied to the hydrostatic global model GME and
the nonhydrostatic ICON model in its global configuration which is close to hydrostatic
balance.
For the local COSMO model, the LETKF-scheme is used (Chapter 9) because it is

impractical (and maybe even impossible) to construct a proper analytic background error
covariance model for nonhydrostatic phenomena.

73
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7.1 3dVar: Formulation of the minimization problem
and its solution

In this section, we will first summarize the main stochastic approach based on Bayes
formula in Section 7.1.1. We show how maximum-likelihood estimators for the posteriori
density distribution of states lead to a general minimization problem. Then, we use
an iterative Newton-Method involving a linearization of the observation operators and
a quadratic approximation to the non-quadratic error functionals to minimize the given
functional. This method requires the solution of large linear systems as a part of the
iterative procedure. We will employ a congugate gradient method to iteratively solve the
linear system. The derivation of this scheme is worked out in Section 7.1.2

7.1.1 Stochastic Background of the Minimization Problem

The goal of data assimilation is to use measurements yo to determine an improved estimate
xa (called the analysis) for the state of a dynamical system on the basis of some calculated
background state xb which is derived from previous measurements and simulations. The
new analysis xa is then used as initial condition for calculating further forecasts.
Often, the analysis is calculated as the maximum likelihood estimate on the a posteriori

Bayesian distribution of the system states. This means, the analysis xa is the most
probable solution (or the most likely state of the dynamical system, e.g. atmosphere),
given the background xb as prior distribution and the observations yo:

xa = arg max
x

(
ppost (x|yo)

)
(7.1)

It is convenient to define a cost function

J(x) = − log
(
ppost (x|yo)

)
+ const. (7.2)

Since the logarithm is a monotonic function, this cost function is minimized by the
same xa that maximizes the likelihood ppost (x|yo)

xa = arg min
x

(J(x)) (7.3)

Applying Bayes’ theorem (compare [17]) gives

ppost (x|yo) =
pobs (yo|x) pprior(x)

p (yo)
. (7.4)

The probability p (yo) acts as a normalization constant. Since the minimum of (7.3)
is not influenced by this constant, it is not needed to calculate the analysis xa. The
probability pprior(x) is given by the a priori knowledge, e.g. the background state xb and a
covariance matrix or in general by more complex non-Gaussian distributions. This leads
to

ppost (x|yo) ∝ pobs (yo|x) pprior (x) . (7.5)

and
J (x) = − log

(
pobs (yo|x)

)
− log

(
pprior (x)

)
+ const. (7.6)
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The maximum likelihood approach is carried out by minimization of the functional J(x)
defined in (7.6). It is applicable to any probability density functions pobs (yo|x) and
pprior (x).

Often, the special case of Gaussian probability density functions is used as basic stan-
dard model. In this case we have

pprior (x) =
1

(2π)N/2 |Pb|1/2
exp

(
−1

2

(
xb − x

)T
Pb−1 (

xb − x
))
, (7.7)

pobs (yo|x) =
1

(2π)M/2 |R|1/2
exp

(
−1

2
(yo −H(x))T R−1 (yo −H(x))

)
, (7.8)

where Pb and R are the covariance matrices for the prior distribution and the error
distribution. In this special case the cost function, given by equation (7.6), with an
appropriate choice of the constant const is

J(x) = 1
2
[xb − x]TPb−1

[xb − x] + 1
2
[yo −H(x)]TR−1[yo −H(x)]

= Jb(x) + Jo(y),
(7.9)

with

Jb(x) :=
1

2
[xb − x]TPb−1

[xb − x] (7.10)

Jo(y) :=
1

2
[y]TR−1[y] (7.11)

y := yo −H(x) (7.12)

We call Jb(x) the background cost function and Jo(y) the observation cost function. The
observation operator H calculates the model predictions for the observed quantities. H
may be simply an interpolation to the location of the observation (in case of in situ
measurements) or a complex operator (in case of remote sensing observations). In general,
the operator H will be a nonlinear operator. For linear operators the cost function (7.9)
is a quadratic cost function. We will discuss its minimization in the next Section 7.1.2.
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Figure 7.1: Flowchart of the iterative Newton scheme.

7.1.2 Minimization by a Newton Scheme with Local Quadratic
Approximation

The minimum of (7.6) or (7.9) is sought by an iterative Newton method with quadratic
approximations of the cost functionals and a conjugate-gradient (CG) algorithm for the
linear solution step.
We first consider the case (7.9) of Gaussian distributions (with quadratic cost functions

except for the nonlinearity of the observation operator). We employ first order optimality
conditions, i.e. we study the gradient ∂J/∂x of the cost function J with respect to the
control variables x

∂J

∂x
= Hx

TR−1[H(x)− yo] + Pb−1
[x− xb] (7.13)

Hx is the Jacobi matrix ∂H/∂x to H, linearised at the location x. The product of H
with a vector to the right is usually called the tangent linear operator1.
At the minimum of J its gradient is zero. For linear observation operators (H x =

H(x) ) setting (7.13) to zero immediately leads to a set of linear equations(
HTR−1H + Pb

)
x =

(
HTR−1yo + Pbxb

)
(7.14)

which can be solved for the analysis state xa2. In general, H is non-linear and we will use
a non-quadratic observational cost function Jo in the framework of Variational Quality
Control (cf. Section 8.2). In this case, the first order optimality condition leads to

0 =
∂J

∂x
(x) = HT

x

∂Jo
∂y

(H(x)− yo) + Pb−1
[x− xb] (7.15)

We solve this nonlinear set of equations by the iterative Newton’s scheme. Newton’s
method implies a linearization of equation (7.15) at the current estimate xi. This is done
by linearizing the observation operator at xi and approximating the observational cost
function quadratically at yi = H(xi) − yo. The linearized equation then is solved to
obtain an updated estimate xi+1.
Linearising H at xi and denoting the resulting Jacobian by Hi yields:

∂J

∂x
≈ HT

x

∂Jo
∂y

(Hi(x− xi) +H(xi)− yo) + Pb−1
[x− xb] (7.16)

Defining yi = H(xi)−yo and using the Taylor expansion

Jo(y) = Jo(yi) + [y − yi]
T ∂Jo
∂y

∣∣∣∣
yi

+
1

2
[y − yi]

T ∂2Jo
∂y2

∣∣∣∣
yi

[y − yi] (7.17)

1These operators are either programmed explicitly or can be derived from the program code of H by
automatic or algorithmic differentiation.

2In the inverse problems literature this is known as Tikhonov regularization, compare [9]



DWD DA System Documentation March 4, 2019 77

we obtain a quadratic approximation of the observation cost function . We denote the
gradient by joi and the Hessian matrix by R−1

i :

joi :=
∂Jo
∂y

∣∣∣∣
yi

, R−1
i :=

∂2Jo
∂y2

∣∣∣∣
yi

. (7.18)

With approximation (7.17) and notation (7.18), the gradient of Jo can be written as:

∂Jo
∂y
≈ joi + R−1

i [y − yi] . (7.19)

Substitution in Equation (7.16) yields:

∂J

∂x
≈ HT

x R−1
i [ Hi(x− xi) + Ri joi ] + Pb−1

[x− xb] (7.20)

Finally we replace Hx by Hi and split (x− xi) into (x− xb) + (xb − xi):

∂J

∂x
≈ HT

i R−1
i Hi[x− xb] + HT

i R−1
i [Hi(x

b − xi) + Ri joi ] + Pb−1
[x− xb] (7.21)

Setting (7.21) to zero and solving for x yields the preliminary improved estimate x̃i+1:

x̃i+1 − xb = [HT
i R−1

i Hi + Pb−1
]−1 HT

i R−1
i [ Hi(xi − xb)−Ri joi ] (7.22)

The matrix Pb is of size n2
m where nm ≈ 107 is the number of model variables. It is

thus much too large to be represented explicitely. For that reason we do not perform
the minimization in this form. Algebraic manipulation of equation (7.22) leads to a
transformation from model to observation space. We obtain an equation that is easier to
solve:

x̃i+1 − xb = PbHT
i [HiP

bHT
i + Ri]

−1 [ Hi(xi − xb)−Ri joi ]. (7.23)

We split this equation in two parts, using zi+1 =
(
PbHT

i

)−1 (
x̃i+1 − xb

)
:(

HiP
bHT

i + Ri

)
zi+1 = Hi

(
xi − xb

)
−Rijoi (7.24)

x̃i+1 = xb + PbHT
i zi+1, (7.25)

and obtain a preliminary improved estimate x̃i+1. We solve equation (7.24) with a pre-
conditioned conjugate gradient method.

To ensure convergence and to further improve this preliminary estimate a line search
in the direction (x̃i+1 − xi) is performed by minimizing the equation

Jls (α) := J (α(x̃i+1−xi) + xi) (7.26)

for α. The final updated estimate is

xi+1 = α (x̃i+1 − xi) + xi. (7.27)

The complete sequence (cf. figure 7.1) of the Newton scheme with embedded conjugent
gradient minimisation and line search is as follows:
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(S1) The background xb is chosen as the first guess x0 of the iteration process.

(S2) For the current estimate xi the terms required for the linearisation (7.18) are calcu-
lated: Hi, Ri, joi.

(S3) For preconditioning of the conjugate gradient scheme we have to calculate an ap-
proximation to the inverse of

(
HiP

bHT
i + Ri

)
.

Preconditioning is a very important step to get a fast algorithm: With the conjugate
gradient method a n-dimensional linear system can be solved exactly in n steps.
However, in case of a well conditioned problem a good approximation to the exact
solution can be obtained after a few steps already. As the matrix

(
HiP

bHT
i

)
is

usually ill-conditioned, we will use a preconditioning method for solving (7.24).

We approximate H̃iPbHT
i :≈ HiP

bHT
i , with H̃iPbHT

i consisting of the block diag-
onal of HiP

bHT
i only, with an approximate size of 1000 x 1000 each. The precondi-

tioning matrix (H̃iPbHT
i + R)−1 is calculated using a Cholesky decomposition.

(S4) Equation (7.24) is solved by the preconditioned conjugate gradient scheme.

(S5) The preliminary improved estimate x̃i+1 is calculated from equation (7.25).

(S6) The updated estimate xi+1 is calculated by minimizing equation (7.26) for α (line
search).

(S7) Finally the convergence of the Newton scheme is checked and, if required, the loop
is continued with step (S2).
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7.2 OI Background error covariance model
This section describes the separable formulation of background error covariances by means
of analytical functions, taken over from the former OI scheme. This scheme is superseeded
in the meantime by the NMC derived formulation.
In the preceding Sections we explained all parts of the 3dVar cost function except the

background error covariance matrix which describes the correlations between quantities
used within the analysis. The independent state variables on which the analysis is based
and for which covariances need to be known are given by

1. the geopotential height h

2. vectorial wind, expressed by

the velocity potential χ

the stream function ψ

3. and the relative humidity rh.

This means we consider four scalar functions which are defined on the global or local
grids under consideration. Grid points are refered to by the indices i or j in the index set
J = {1, 2, 3, ..., N} when N grid points are given. Here, we use the notation employed
by ECMWF, where standard deviation for a quantity y is denoted by Ey. Correlation
between y and y′ are written as < y, y′ >.
The following approach is based on both extensive statistical evaluations which have

been carried out at DWD and other centers and on the modelling of particular relations
between the variables. Let By,y′ denote the matrix of covariances between yi and y′j where
i, j runs over the grid points under consideration, i.e.

By,y′ :=
(
< yi − yi, y′j − y′j >

)
i,j∈J , (7.28)

where yi denotes the expectation value of yi. Clearly, the matrices By,y′ need to be
symmetric and By,y′ = By′,y. We assume that h, χ and rh are uncorrelated, i.e. Bh,χ = 0,
Bh,rh = 0 and Bχ,rh = 0. Further, we will approximate the correlations between ψ and
χ and ψ and rh by zero, i.e. Bψ,χ = 0 and Bψ,rh = 0. Then, for the complete covariance
matrix B we obtain the form

B =


Bh,h Bh,ψ 0 0
Bψ,h Bψ,ψ 0 0

0 0 Bχ,χ 0
0 0 0 Brh,rh

 (7.29)

In the following parts, we describe the setup of the matrices Bh,h, Bh,ψ, Bψ,ψ, Bχ,χ and
Brh,rh. There are several options how to carry out the setup of these matrices, depending
on the error statistics which are used and the particular approximation which is chosen.
A part of the documentation is based on the approach which is in detail documented
by ECMWF [8]. However, DWD today is using an new version of this based on error
statistics which have been evaluated with the GME model.
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7.2.1 A Separable Formulation for Bh,h

A separable Ansatz is chosen for the height error correlations

< hi, hj >= Ehi,λ(zi)Ehj ,λ(zj)chi,hj(zi, zj, ah)Fh(ri,j, Lh), (7.30)

depending on the distance on the sphere ri,j and the vertical coordinate z = ln(p) (with p
given in hPa). Here, height covariances are fully determined by specifying the horizontal
correlation function Fh(ri,j, Lh), and the vertical correlation function chi,hj(zi, zj, ah). The
horizontal and vertical length scales Lh and ah are prescribed as functions of geographical
latitude λ. Standard deviations are specified as polynomials in z = ln p:

Ehi(z) =
6∑

n=0

eh,n z
n, (7.31)

where the coefficients eh,n are prescribed in dependence of latitude.

7.2.2 The Matrices Bψ,ψ and Bχ,χ (Wind)

As a consequence of the well-known Helmholtz decomposition applied to a vector field on
the sphere, the wind field v consists of a divergent and non-divergent part, described by
velocity potential χ and stream-function ψ:

v =
→
5 χ+ k×

→
5 ψ (7.32)

The covariances of the wind field v are derived from the covariances of stream-function
ψ and velocity potential χ which are modeled in the same way as the height covariances
(7.30):

< ψi, ψj >= EψiEψjcψi,ψjFψ(ri,j, Lψ) (7.33)

< χi, χj >= EχiEχjcχi,χjFχ(ri,j, Lχ) (7.34)

As mentiones above, we assume that cross covariances between stream-function and ve-
locity potential Bψ,χ or between velocity potential and height Bh,χ are zero.
For the total wind prediction error Ev we calculate from its divergent and non-divergent

part
E2
v = E2

vψ
+ E2

vχ +Bψ,χ︸︷︷︸
=0

= E2
vψ

+ E2
vχ . (7.35)

The contribution from each component is prescribed by specifying the parameter ν:

E2
vχ = νE2

v or E2
vψ

= (1− ν)E2
v (7.36)

Correlations for the wind components ul longitudinal and ut transverse to the line between
the observations under consideration are derived from the correlations of velocity potential
and stream-function:

< uli, u
l
j >= −cψi,j

1

ri,j

∂

∂ri,j
Fψ(ri,j)− cχi,j

∂2

∂r2
i,j

Fχ(ri,j) (7.37)
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< uti, u
t
j >= −cψi,j

∂2

∂r2
i,j

Fψ(ri,j)− cχi,j
1

ri,j

∂

∂ri,j
Fχ(ri,j) (7.38)

< uli, u
t
j >=< uti, u

l
j >= 0 (7.39)

7.2.3 Horizontal Height - Wind Correlations: Bψ,h

If the geostrophic relationship were fulfilled exactly, the following relationships would
hold:

ψi =
g

f
hi, (7.40)

with the standard gravity g = 9.80665m
s2

and XXX f , consequently:

cψi,j = chi,j , Fψ(ri,j) = Fh(ri,j), Eψi =
g

f
Ehi . (7.41)

The geostrophic relationship only holds approximately and is only valid in the extratrop-
ics. Thus we demand:

< Φi, ψj >= µEΦiEψjcΦi,ψjF (ri,j) (7.42)

The correlation between the transverse wind component and height then is:

< uti, zj >= −µ
√

1− νcΦi,ψj

∂F (ri,j)

∂ri,j
(7.43)

7.2.4 Horizontal Correlations: Bessel function expansion

The horizontal correlation functions Fh are described by a Bessel function expansion:

Fh(ri,j) =
8∑

n=0

An J0(kn ri,j/D) (7.44)

The coefficients An in the Physical Space Assimilation System (PSAS)-scheme take similar
values as in the OI-scheme (denoted by Ãn). The wave numbers kn are defined by zero
derivative boundary conditions ∂J0(kn x)/∂x = 0|x=ri,j/D=1. The value of Ã0 is adjusted,
so that Fh(ri,j) = 0 for rij = D. Finally the coefficients are rescaled so that Fh(0) = 1.
Table 7.1 shows the coefficients (An) used here in comparison to the Ãn used in the OI
scheme.

In the OI a horizontally constant mode (with different large scale vertical correlation
matrix MLS) was used. This is not the case in the PSAS scheme because for reasons of
efficiency the correlations shall be zero for large separations ri,j > D
The horizontal length scale Lh is defined as

L2
h = −

(
Fh
52Fh

)
r=0

. (7.45)

It is related to D by

L2
h = D2

∑
An∑
k2
nAn

(7.46)
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n Ãn An kn
0 0.15 0.062
1 0.30 0.309 3.832
2 0.28 0.289 7.016
3 0.14 0.144 10.173
4 0.08 0.082 13.324
5 0.05 0.052 16.471
6 0.03 0.031 19.616
7 0.02 0.021 22.760
8 0.01 0.010 25.904

Table 7.1: Bessel function coefficients

For the actual coefficients we get Lh = 0.10439D or D = 9.5793Lh.
The horizontal correlation function and its derivatives (required for the height-wind

and wind-wind correlations) is shown in Figure 7.2.

Figure 7.2: Horizontal correlation function and its derivatives.

...
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7.2.5 Horizontal Correlations: Polynomial expansion

As an alternative to the Bessel function expansion, the compact polynomial expansion of
Gaspari and Cohn is implemented [11].

F (ri,j) =


−1

4
r5
i,j + 1

2
r4
i,j + 5

8
r3
i,j − 5

3
r2
i,j + 1 if 0 ≤ ri,j ≤ 1,

+ 1
12
r5
i,j − 1

2
r4
i,j + 5

8
r3
i,j + 5

3
r2
i,j − 5ri,j + 4− 2

3
1
ri,j

if 1 < ri,j ≤ 2,

0 if ri,j > 2.

(7.47)

7.2.6 Height - Height Covariances : Vertical Correlations

The vertical correlation matrices are specified as functional relationships chi,hj(xi−xj) in
dependence on a transformed coordinates x:

chi,hj(xi − xj) =
1

e− 1
exp

ah
ah + (xi − xj)2

− 1

e− 1
(7.48)

depending on the transformed coordinate x defined as a polynomial in z = ln(p):

x(z) =
6∑

n=0

xh,n z
n (7.49)

The coefficients xh,n and vertical length scale ah are prescribed as a function of latitude.

7.2.7 Thickness - Height Covariances

To derive the covariances for thickness, the equation 5h1,2 = h1 − h2 must be obeyed.
Thus the covariance between thickness and any other variable a can be calculated from
the height covariances:

< 5h1,2, a >=< h1, a > − < h2, a > . (7.50)

h1 and h2 are background values of height at two levels z1 and z2 separated by a small
difference dz.
The height - height covariances are:

< hi, hj >= Ehi(zi)Ehj(zj)chihj(zi, zj)Fh(ri,j) (7.51)

Thus the thickness - height covariances are:

<
∂hi
∂zi

, hj > =
∂

∂zi
< hi, hj > =

[
E ′hi(zi)Ehj(zj)chihj(zi, zj) + Ehi(zi)Ehj(zj)c

′
hihj

(xi(zi), xj(zj))x
′
i(zi)

]
Fh(ri,j) (7.52)
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with the derivatives

c′(xi, xj) = −c′(xj, xi) =
∂chihj
∂xi

= −2

(
ah(xi − xj)

(ah + (xi − xj)2)2

)[
1

e− 1
exp

ah
ah + (xi − xj)2

]
(7.53)

x′(z) =
∂x

∂z
=

6∑
n=1

nxh,n z
n−1 (7.54)

E ′hi(z) =
∂Ehi
∂z

=
6∑

n=1

n eh,n z
n−1 (7.55)

7.2.8 Thickness - Thickness Covariances

Taking the derivative of (7.53) with respect to xj we get:

c′′ =
∂2c

∂xi ∂xj
=

∂c′

∂xj

=

[
2

ah
(ah + (xi − xj)2)2

− 4
a2
h(xi − xj)2

(ah + (xi − xj)2)4
− 8

ah(xi − xj)2

(ah + (xi − xj)2)3

]
(7.56)[

1

e− 1
exp

ah
ah + (xi − xj)2

]
Thus the thickness-thickness covariance is:

<
∂hi
∂zi

,
∂hj
∂zj

> =
[
E ′hi(zi)E

′
hj(zj)chihj(xi, xj)

+E ′hi(zi)Ehj(zj)c
′(xj, xi)x

′(zj) + Ehi(zi)E
′
hj

(zj)c
′(xi, xj)x

′(zi)(7.57)

+ Ehi(zi)Ehj(zj)c
′′(xi, xj)x

′(zi)x
′(zj)

]
for i = j we get c = 1, c′ = 0 and c′′ = 2e/(ah(e − 1)). Consequently the thickness
variance is:

<
∂hi
∂zi

,
∂hi
∂zi

>=

[
E ′hi(zi)E

′
hi(zi) +

2e

ah(e− 1)
Ehi(zi)Ehi(zi)x

′(zi)x
′(zi)

]
(7.58)

and the error (standard deviation) is:

E ∂hi
∂zi

=

[
E ′2hi(zi) +

2e

ah(e− 1)
E2
hi

(zi)x
′2(zi)

]1/2

(7.59)

Temperature correlations are equivalent to thickness correlations and temperature er-
rors are related to thickness errors by

ET =
g

R
E ∂hi

∂zi

(7.60)
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Figure 7.3: Vertical background error correlations of height-height, temperature-
temperature and height-temperature (top), and errors for temperature (bottom) . These
temperature-temperature correlations and variances are used in the 1DVAR routine for
the RTTOVS operator.

with gravity acceleration g and gas constant R. The correlations of height-height,
temperature-temperature and height-temperature, as well as the errors for temperature
are shown in Figure 7.3.
In the PSAS radio-soundings are currently treated as observations of geopotential

height, making use of the height-height correlations specified, although the derived
thickness-thickness (temperature-temperature) covariances allow a direct use of the tem-
perature observations. The thickness-thickness covariances are required for the RTTOVS
operator for satellite observed radiances and for the post multiplication step.

7.2.9 Implementation of Covariance Calculations

For each location, depending on the observed quantities, the following terms are
calculated:

observation term, equation
Eh E ′h xh x′h Ev xv Erh xrh

(7.31) (7.55) (7.49) (7.54)
height h X X
thickness 5h X X X X
wind u, v X X X X
humidity rh X X
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7.2.10 Horizontal variation of covariance parameters

The following parameters of the covariance model are prescribed as a function of latitude
(Table 7.2, Figure 7.4.

variable source file values parameter
climatological values

Lh clerr 1000 km length scale for height and wind.
Lq clerr 300 km length scale for humidity.
µ clerr -0.950 . . . 0.950 geostrophic factor.
ah clerr 1.089 . . . 1.233 height vertical transformation coefficient.
av clerr 0.969 . . . 1.331 wind vertical correlation coefficient.
aq clerr 0.974 . . . 0.975 relative humidity vertical correlation coefficient.

forecast values
Lh fgerr 400 . . . 600 km length scale for height and wind.
Lq fgerr 300 km length scale for humidity.
µ fgerr -0.900 . . . 0.900 geostrophic factor.
ah fgerr 0.953 . . . 1.062 height vertical transformation coefficient.
av fgerr 0.887 . . . 1.063 wind vertical correlation coefficient.
aq fgerr 0.887 . . . 0.894 relative humidity vertical correlation coefficient.

constant parameters
ν hardcoded 0.1

Table 7.2: Latitude dependent covariance model parameters.

7.2.11 Vertical variation of covariance parameters
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Figure 7.4: Latitude dependent covariance model parameters.

Height background error —- Wind background error

transformed coordinate x —- ∂x
∂ln(p)

Figure 7.5: Height dependent covariance model parameters.
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7.3 NMC Background Error Covariance Model
This section describes the formulation of the background error covariances model capable
to represent NMC derived covariances. The current implementation still follows the sep-
arability assumption and is able to handle both analytical and NMC derived background
correlations as well as a mixture of vertical NMC and horizontal analytic covariances.
Technically the advantage of this approach is that it scales linearly with the number of
observations or grid-points, not quadratically.

7.3.1 Wavelet Transformed Background Error Covariance Matri-
ces

The wavelet transformed background error covariance matrix in wavelet transformed space
P̃b is a sparse matrix as long as small and insignificant matrix elements are neglected.
The goal of this approach is to store matrices derived by the NMC method in a suitable
sparse representation.
We have:

Pb = W P̃b WT (7.61)

with W being the 3-dimensional wavelet transformation (synthesis). We represent the
wavelet transformed covariance matrix by a factorization P̃b = L LT so that positive-
definiteness of the matrix is ensured.
In our approach P̃b is represented in coordinates λ, φ and log p. This regular horizontal

grid facilitates deriving zonally averaged climatological covariances. In order to calculate
covariances between arbitrary locations of observations or model grid-points respective
interpolation operators I will be used. In addition to interpolation from the above grid
to the desired locations these operators provide vertical or horizontal differentiation to
derive physical quantities (temperature from geopotential height or wind components from
stream function and velocity potential). Then the representation of Pb between arbitrary
locations is:

Pb = I W L D LT WT IT (7.62)

In order to represent multivariate correlations L separates in matrix blocks:

L =


Lh

Lhψ Lψu

. . Lχ

. . . Lq

 (7.63)

In this representation Lh describes the covariances of geopotential height, Lχ covariances
of velocity potential and Lq that of moisture. Lhψ represents cross-correlations between
geopotential height and stream function and Lψu covariances of the part of stream function
that is not correlated with geopotential height. If required further cross correlation terms
can be added to the lower triangle of the block matrix.
In an elaborate formulation the cross correlation term Lhψ is a sparse matrix in wavelet

representation. In our current more simple formulation we will still use a balance operator
in spatial representation describing a geographically varying geostrophic coupling.
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7.3.2 Detailed description of the separable operator approach

Equation (7.63) is fully general and does not assume separability in the horizontal and
vertical direction. However we start with a formulation where the separable analytical
approach described in Section 7.2 can be replaced step by step with matrices derived from
the NMC method.
First the vertical covariances ci,j in equations (7.30,7.33,7.34), will be replaced by an

explicit matrix representation:

ci,j = Iv iEi(ri) Wv Lv(λi) Lv(λj)
T WT

v Ej(rj) I
T
v j (7.64)

Here Ii describes the interpolation from the vertical grid of P̃b in wavelet representation
(typically 64 levels in log p) to the level of the model grid or observation, Ei is a correction
term for the error (square root of the variance), depending on horizontal location ri, Wv

the vertical wavelet transformation and Lv a factorization of the wavelet-transformed
vertical correlation matrix derived by the NMC method for the respective geographical
latitude λi.
If the horizontal covariance function F in (7.30,7.33,7.34) is represented as a matrix as

well, with coefficients depending only on the horizontal distance (ri− rj), and being non-
zero only for corresponding vertical indices of the matrices L (in wavelet representation),
we formally end up with the operator description:

Pb
i j = Iv iEi(ri) Wv Lv(λi) F(ri − rj)Lv(λj)

T WT
v Ej(rj) I

T
v j (7.65)

Actually the operator Fh(ri−rj) is represented by a sparse covariance matrix in wavelet
representation, fitted by the NMC method, leading to:

Pb
i j = IiEi Wv Lv(λi) Wh Lh LT

h WT
h LT

v (λj) WT
v Ej I

T
j (7.66)

Wh is the 2-dimensional horizontal wavelet transformation and Lh a factorization of the
horizontal covariance matrix. Formulation (7.66) now allows a variation of the param-
eters of the horizontal covariance matrix with geographical location (latitude). If the
horizontal correlations Fh depend on the vertical index (in wavelet representation), it
is mostly equivalent to formulations proposed in [5]. There the vertical covariances are
not described by a wavelet representation but by EOFs of the vertical covariance ma-
trix. This approach to a large extent also fulfills the requirements for a full 3-dimensional
non-separable formulation. Merely Wv Lv(λi) Wh Lh has to be replaced by 3-d matrices
W L.

By splitting up horizontal and vertical interpolation and explicitly introducing balance
and transposition operators (7.66) yields:

Pb
i j = Ei Ivi Ihi K Wv Lv(λi) T Wh Lh LT

h WT
h TT LT

v (λj) WT
v KT IThj I

T
vj Ej (7.67)

In detail the operators are as follows:

Multiplication with standard deviations (E)

Multiplication with the errors E (standard deviations) yields the representation of
covariance functions from the correlation functions.
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Interpolation operators (Ih, Iv)

The interpolation operators interpolate from the regular (or Gaussian) grid
(log p, λ, φ) of the P̃b representation to the location of the observation or the model
grid. In case of temperature and wind they also perform vertical and horizontal
differentiation to derive these quantities from geopotential height, stream function
and velocity potential (later on denoted as Dv, Dx and Dy).

Balance operator (K)

For modeling multivariate covariances the correlated quantities (stream function ψ
and geopotential height h) are represented as linear combinations of uncorrelated
quantities (ψu and h). Currently the balance operator K is a factor depending on
latitude only. In a more elaborate representation it could be a (wavelet transformed)
matrix and incorporate more correlated quantities (compare with (7.63) ).

vertical wavelet transformation (Wv)

In the current implementation assuming separability the vertical wavelet transfor-
mation Wv is not urgently required. In that case Lv would be represented in physical
space. Only if the horizontal correlation functions shall depend on vertical scales or
the number of vertical grid-points becomes large it will be needed.

Square root of vertical covariance matrix (Lv)

Vertical correlations are modeled by means of a representation of the vertical co-
variances in physical or wavelet transformed space.

Transposition (T)

The operators described so far (E Iv Ih K Wv Lv) act on columns at the location of
the observations (or adjacent grid columns where P̃b is represented). Thus they are
calculated by the processors which hold the respective observations.

The operators described below (Wh Lh) will act in a horizontal plane. In the par-
allel environment we distribute the uncorrelated parameters (h, ψu, χ, q) and levels
of the P̃b representation over processors. The redistribution is performed by the
transposition operator T.

Horizontal wavelet transformation (Wh)

The horizontal wavelet transformations act in the planes described above.

Square root of horizontal covariance matrices (Lh)

Multiplication of vectors with these sparse matrices is performed by the respective
operators implemented in the data assimilation code. So far no advantage is taken
from the horizontal homogeneity of the matrices.

The operator approach is able to represent the OI covariance model as well as the co-
variance model derived by the NMC method. In the former case (wavelet-)representations
of the respective analytical covariance model are used. Currently we use a mixed mode
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where vertical covariance functions are taken from the NMC method but horizontal cor-
relations mimic the former analytical covariance model.
Explicitly splitting up (7.67) for the different quantities of the multivariate formulation

yields the explicit expression (7.68) for the square root of Pb, first for the analytic (OI)
covariance model . The ζ.. represent normally distributed uncorrelated deviations. The δ..
indicate the resulting correlated multivariate deviations. Dx, Dy, Dv are the interpolation
operators including horizontal or vertical differentiation.
µ(λ), ν and Lh are the prescribed coefficients of the OI covariance model, describing

geostrophic balance, partitioning of rotational and divergent wind, and horizontal length
scale. The respective terms in (7.68) are the explicit representation of the balance operator
K.

δz = Ez Ih Iv WvLvz WhLhz ζz
δt = Et Ih Dv WvLvz WhLhz ζz
δu = Eu Lh (−Dy) Iv

√
1−ν µ(λ) WvLvz WhLhz ζz

+ Eu Lh (−Dy) Iv
√

1−ν
√

1−µ2 WvLvψu WhLhψu ζψu
+ Eu Lh Dx Iv

√
ν WvLvχ WhLhχ ζχ

δv = Ev Lh Dx Iv
√

1−ν µ(λ) WvLvz WhLhz ζz
+ Ev Lh Dx Iv

√
1−ν

√
1−µ2 WvLvψu WhLhψu ζψu

+ Ev Lh Dy Iv
√
ν WvLvχ WhLhχ ζχ

δrh = Erh Ih Iv WvLv rh WhLh rh ζrh

(7.68)

The NMC method in addition to the correlations also estimates variances or standard
deviations σ... Furthermore the length scales are not prescribed but implicitly provided
by the correlations. Furthermore the latitudinal dependence of µ(λ) is not prescribed but
estimated from the data. Consequently the balance operator is based on these quantities
and takes the different explicit representation given below:

δz = Ez Ih Iv WvLvz WhLhz ζz
δt = Et Ih Dv WvLvz WhLhz ζz
δu = Eu σ−1

u (−Dy) Iv σψ µ(λ) WvLvz WhLhz ζz
+ Eu σ−1

u (−Dy) Iv σψu WvLvψu WhLhψu ζψu
+ Eu σ−1

u Dx Iv σχ WvLvχ WhLhχ ζχ
δv = Ev σ−1

v Dx Iv σψ µ(λ) WvLvz WhLhz ζz
+ Ev σ−1

v Dx Iv σψu WvLvψu WhLhψu ζψu
+ Ev σ−1

v Dy Iv σχ WvLvχ WhLhχ ζχ
δrh = Erh Ih Iv WvLv rh WhLh rh ζrh

(7.69)

Technically switching between the OI and NMC model is achieved by assigning different
values to certain components in the description of the covariance operator covm:
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Variable OI model NMC model
covm% L_h Lh 1
covm% c_h_psi µ σψ µ

covm% c1_h_psi
√

1−µ2 σψu
covm% sqnu

√
ν σχ

covm% sq1nu
√

1−ν 1
covm% sdev_u 1 σu
covm% sdev_v 1 σv

7.3.3 Implementation of Background Error Covariace Matrices

This section descripes the implementation of the various B-matrix approaches which may
be used in the 3dVar and VarEnKF. The routines to multiply a vector with the Pb matrix
are located in module mo_bg_err_2d. Main entries are:

Name Notation Left hand side (output) Right hand side (input)
apply_B_oo HIPbITHT observation space observation space
apply_B_io IPbITHT interpolation space observation space
apply_B_oi HIPbIT observation space interpolation space
apply_B_mi I ′PbIT model grid interpolation space
apply_B_ii IPbIT interpolation space interpolation space

Routines apply_B_oo, apply_B_io, and apply_B_oi finally call apply_B_ii and in ad-
dition apply the Jacobi matrix H of the observation operator. Routines apply_B_mi and
apply_B_ii are further described below. In dependence on namelist settings they use
either Pb

OI or a combination of Pb
NMC and Pb

EnKF .

Pb
NMC – PSAS

Multiplication of Pb by a vector as required by the PSAS algorithm of the 3dvar or
VarEnKF is performed by subroutine apply_B_ii. This routine calls the specific routine
apply_B_2d for NMC covariances and further branches into a number of nested calls to
lower level routines:

B_ii
B_ii_2d

LvWvKIhIv T WhLh WhLh_t T_t LvWvKIhIv_t
IhIv IhIv_t

Ei Ivi Ihi K Wv Lv T Wh Lh LTh WT
h TT LTv WT

v KT IThj ITvj Ej

The data flow in between the nested calls is shown below. Input variables to a given
routine are shown in green, output variables in red and meta data parameters in black:
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B_ii ( obs, x, y, e_fi )
B_ii_2d ( x, y, e_fi, sink )
LvWvKIhIv_t ( xw, x, e_fi, sink )
IhIv_t ( xv, x, e_fi, sink )

T_t ( xh, xw, io )
WhLh_t ( xd, xh, )
WhLh ( xd, xh, )
T ( xh, xv, io )
LvWvKIhIv ( xw, y, e_fi, sink )
IhIv ( xv, y, e_fi, sink )

Description of parameters:

Name Type Description
x t_vector input vector (gradient of cost function) in interpolation space

(control variables interpolated to the location of the observa-
tions).

xv real(wp) (:,:,:) gradient/increment of prognostic variables at the locations of
the columns of the NMC covariance grid.

xw real(wp) (:,:,:) gradient/increment of vertical ’modes’ (multiplied by the
square root of vertical covariance matrix) at the locations of
the columns of the NMC covariance grid.

xh real(wp) (:,:,:) same as xv, but re-distributed to the processors holding planes
of the different control variables.

xd real(wp) (:,:,:) same as xh, but horizontally wavelet transformed coefficients.
(Actually the transformed control variables with unit B ma-
trix.)

y t_vector result (analysis increment) in interpolation space.
obs t_obs_set observation meta data.
e_fi t_vector background error in interpolation space.
sink t_vector temporary to hold gradient/increment of sink variables. Sink

variables are handled locally by each observation report. The
respective gradients/increments are extracted from the input
vector x, bypassed, and included again in y.

io t_intop coefficients (taken from intop_obs, module mo_bg_err_io)
for interpolation from the grid of the NMC covariances to the
locations of the observations.

Pb
NMC – Postmultiplication

Multiplication of Pb by a vector in the Post multiplication of the 3dvar or VarEnKF
is performed by subroutine apply_B_mi. The algorithm calls the specific routine
apply_B_mi_2d for NMC covariances and branches a number of nested calls to
lower level routines similar to apply_B_ii_2d described above. Merely the final trans-
position and interpolation step is not targeting to the observations but to the model grid.
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B_mi
B_mi_2d

L_m L_i_t
LvWvKIhIv_m T WhLh WhLh_t T_t LvWvKIhIv_t

IhIv_m LvWvK_m IhIv
Ei Ivi Ihi K Wv Lv T Wh Lh LTh WT

h TT LTv WT
v KT IThj ITvj Ej

The data flow in between the nested calls is shown below. Input variables to a given
routine are shown in green, output variables in red and meta data parameters in black:

B_mi ( a_m, cbg, obs, x, lnewpl, e_fi )
B_mi_2d ( a_m, cbg, x, lnewpl, e_fi, )
L_i_t ( xd, x, e_fi, )
LvWvKIhIv_t ( xw, xv, x, e_fi, )
IhIv_t ( xv, x, e_fi, )

T_t ( xh, xw, io )
WhLh_t ( xd, xh, )

L_m ( a_m, cbg, xd, lnewpl, )
WhLh ( xd, xh, )
T ( xh, xw, io_cbg )
LvWvKIhIv_m ( a_m, cbg, xw, lnewpl, io_cbg )
LvWvK_m ( xw, xv, io_cbg )
IhIv_m ( a_m, cbg, xv, lnewpl, io_cbg )

The adjoint calculations correspond to those in subroutine B_ii_2d used in the PSAS
solver. Merely in the forward calculations the final transposition and interpolation is not
targeting to the observations but to the model grid.
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Name Type Description
x t_vector input vector (gradient of cost function) in interpolation space

(control variables interpolated to the location of the observa-
tions).

xv real(wp) (:,:,:) gradient/increment of prognostic variables at the locations of
the columns of the NMC covariance grid.

xw real(wp) (:,:,:) gradient/increment of vertical ’modes’ (multiplied by the
square root of vertical covariance matrix at the locations of
the columns of the NMC covariance grid.

xh real(wp) (:,:,:) same as xv, but re-distributed to the processors holding planes
of the different control variables.

xd real(wp) (:,:,:) same as xh, but horizontally wavelet transformed coefficients.
(Actually the transformed control variables with unit B ma-
trix.)

a_m t_cols result (analysis increment) on the model grid.
obs t_obs_set observation meta data.
cbg t_cols reference state (first guess). The derived type holds informa-

tion on the target and destination gridpoints (processor, grid
indices) for transposition and interpolation purposes.

e_fi t_vector background error in observation space.
lnewpl logical flag for steering of interpolation.
io t_intop coefficients for interpolation from the NMC covariance grid to

the locations of observations (taken from intop_obs, module
mo_bg_err_io).

io_cbg t_intop coefficient for interpolation from the NMC covariance grid to
the model grid (derived on the fly from the reference state
info cbg.

Pb
EnKF – PSAS

Multiplication of Pb by a vector as required by the PSAS algorithm of the 3dvar or
VarEnKF is performed by subroutine apply_B_ii. The routine calls the specific routine
apply_B_ii_ensb for EnKF covariances and further branches into a number of nested
calls to lower level routines:

B_ii
B_ii_ensb

IhIv_ensb get_cols_adj varenkf get_cols IhIv_ensb_t
Iv Ih Tog X̂ Sv Sh T STh STv X̂T TT

og ITh ITv

The data flow in between the nested calls is shown below. Input variables to a given
routine are shown in green, output variables in red and meta data parameters in black:
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B_ii ( obs, x, y, e_fi )
B_ii_ensb ( x, y )
IhIv_ensb_t ( Benkf%io xv, x, )
get_cols_adj ( Benkf%io%mc, z, cols, ids )
varenkf ( Benkf, a, z, )
get_cols ( Benkf%io%mc, a, cols, ids )
IhIv_ensb ( Benkf%io xv, y )

Description of parameters passed:

Name Type Description
x t_vector input vector (gradient of cost function) in interpo-

lation space (control variables interpolated to the
location of the observations).

xv real(wp) (:,:,:) gradient/increment of prognostic variables at the
locations of the columns of the EnKF covariance
model grid (but still on the processors which han-
dle the observations).

cols t_cols same data as xv but copied to different data struc-
ture suitable for sending/receiving to the destina-
tion processor..

z t_atm gradient of prognostic variables, same data as cols
but redistributed according to the ensemble grid
decomposition.

a t_atm increment of prognostic variables.
y t_vector result (analysis increment) in interpolation space.
obs t_obs_set observation meta data (not used here).
Benkf t_Benkf variational ensemble B matrix meta data.
Benkf%io t_intop interpolation coefficients from the ensemble grid to

the model grid locations.
Benkf%io%mc t_mcols model column meta data for transposition from the

ensemble grid to the model grid decomposition.
ids integer bit flags to specify required parameters used by the

observations.
e_fi t_vector background error in interpolation space (not used

here).

Pb
EnKF – Postmultiplication

Multiplication of Pb by a vector in the Post multiplication of the 3dvar or VarEnKF
is performed by subroutine apply_B_mi. The algorithm calls the specific routine
apply_B_mi_ensb for EnKF covariances and branches into a number of nested calls
to lower level routines similar to apply_B_ii_ensb described above. Merely the final
transposition and interpolation is not targeting to the observations but to the model
grid.
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B_mi
B_mi_ensb

IhIv_ensb_m varenkf IhIv_ensb_t
Iv Ih Tom X̂ Sv Sh T STh STv X̂T TT

og ITh ITv

The data flow in between the nested calls is shown below. Input variables to a given
routine are shown in green, output variables in red and meta data parameters in black:

B_ii ( a_m, cbg, x, lnewpl, e_fi )
B_ii_ensb ( a_m, cbg, x, lnewpl )
IhIv_ensb_t ( Benkf%io xv, x, )
get_cols_adj ( Benkf%io%mc, z, cols, ids )
varenkf ( Benkf, a, z, )

. . .

Description of parameters passed:
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Name Type Description
x t_vector input vector (gradient of cost function) in interpo-

lation space (control variables interpolated to the
location of the observations).

xv real(wp) (:,:,:) gradient/increment of prognostic variables on the
columns of the EnKF covariance model grid (but
still on the processors which handle the observa-
tions).

cols t_cols same data as xv but copied to different data struc-
ture suitable for sending/receiving to/from the
destination processor.

z t_atm gradient of prognostic variables, same data as cols
but redistributed according to the ensemble grid
decomposition.

a t_atm increment of prognostic variables.
a_m t_cols result (analysis increment) on the model grid.
cbg t_cols reference state (first guess). The derived type

holds information on the target and destination
gridpoints (processor, grid indices) for transposi-
tion and interpolation purposes.

Benkf t_Benkf variational ensemble B matrix meta data.
Benkf%io t_intop coefficients for interpolation from the EnKF en-

semble grid to the locations of the observations.
Benkf%io%mc t_mcols model column meta data for transposition from

the EnKF ensemble grid to the decomposition of
the observations.

ids integer bit flags to specify required parameters used by the
observations.

lnewpl logical flag for interpolation steering.
e_fi t_vector background error in observation space (not used

here).
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Chapter 8

Observation Treatment

Now that the observation operator and observation types (Section 6) and the first of
the data assimilation schemes (Section 7) have been described, a look is taken at how
real-world observation quantities are treated in the assimilation:

• Section 8.1 describes the preprocessing of the data with the main goals of quality
control and data-thinning.

• Section 8.2 (3dVar-specific) describes the procedure of Variational Quality Control.

• Section 8.3 (3dVar-specific) describes how humidity is assimilated using a trans-
formed control variable

• Section 8.4 describes the preprocessing of satellite observations.

101
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8.1 Quality Control and Thinning of Data
The data assimilation algorithms derive the optimum analysis based on the background
(previous forecast) and the observations, taking into account the error estimates of both
background and observations. The uncertainty of the observations is specified by the
observation error covariance matrix R. However, observational errors in general are not
normally distributed as presumed by a quadratic observational cost function. Instead,
observations have outliers and their error distributions may have fat tails. If observations
with outliers (i.e with actual errors which do not obey to the assumptions made in the
specification of R) are used, they will degrade the analysis. A number of checks (compar-
ison of observed values with background or climatological values, test for consistency) are
applied in order to identify and reject outliers, so that they are not used in the subsequent
analysis.
In general the observational errors are specified by a diagonal covariance matrix R,

i.e. observational errors are assumed to be uncorrelated. In principle error correlations
may be specified by using a non-diagonal R. However it is not straightforward to ac-
curately determine the correlation pattern of observations. Thus, in practice, correlated
(i.e. redundant) observations are accounted for by a spatial thinning algorithm.

The quality control checks and the thinning algorithms are described in this Section. In
general only gross errors can be identified by this kind of tests. Remaining deviations from
a normal distribution are handled by using a non-quadratic observational cost function
in the variational scheme. This mechanism, called Variational Quality Control (VQC), is
further described in Section 8.2.

Observation processing is performed as follows:

1. The observation input files are read. Some of the observational quality control
(which does not rely on any comparison of observed to modelled data) is performed
immediately so that observations are not processed unnecessarily.

2. The observations are redistributed over the available processors, observation opera-
tors are applied to the model background, and quality control checking and thinning
is performed as described below.

3. The observations which will be used in the analysis are redistributed over the avail-
able processors and the analysis is derived.

4. Optionally the observation operators are re-run on the complete set of observations
(as used in step 2.) for diagnostics.

Finally, each observations takes one of the following states:

ACCEPTED : The observation was used in the assimilation step (passed all quality checks)
and finally received a VQC-weight larger than 0.5 .

ACTIVE : The observation was used in the assimilation step (passed all quality checks)
and finally received a VQC-weight smaller than 0.5 .

REJECTED : The observation has failed at least one of the quality checks and was therefore
not used in the assimilation.
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PASSIVE : The observation was not intended to be used in the analysis but quality checks
were applied (and passed successfully) for monitoring purposes. This is the usual
procedure to assess the quality of new observation types.

PASSIVE-REJECTED : The observation was not intended to be used in the analysis and
has failed at least one of the quality checks.

DISMISSED : The observation was rejected without being written to any of the monitoring
files.

Observations are hold within reports (radiosonde ascend, SYNOP report, satellite field
of view) which are generally related to a single horizontal coordinate but may (SYNOP
report, aircraft report) or may not (radiosonde ascend, satellite field of view, radio oc-
cultation) be confined to a single vertical location. Each report consists of one or more
quantities (temperature, humidity, wind, bending angle,. . . ) observed at the same or at
different levels. Some of the tests described below refer to single observed quantities,
others to the report as a whole.

Report Statistics Single Observations
status DISMISSED PASSIVE REJECTED ACTIVE monitored used
SYNOP 8 068 0 17 7 591 16 610 16 373
AIREP 19 204 70 55 10 427 31 579 29 204
SATOB 192 065 0 1 682 9 369 22 102 18 738
DRIBU 2 055 0 10 622 706 694
TEMP 117 1 3 626 101 298 28 071
PILOT 27 9 29 165 5 432 1 446
PAOB 82 0 27 276 303 276
SCATT 105 361 2 082 413 12 978 30 946 25 956
RAD 126 762 139 145 130 3 834 2 466 973 33 123
GPSRO 5 9 0 248 8 868 8 065
total 453 746 141 316 2 366 46 136 2 684 817 161 946

Table 8.1: Operational monitoring and usage of data in the pre-operational suite of the
global data assimilation at 2010-07-20 00UT. ‘Monitored’ observations have states of
PASSIVE-REJECTED, PASSIVE, REJECTED, ACTIVE or ACCEPTED, ‘used’ observations have
states of ACTIVE or ACCEPTED.

A report obtains the highest status value of all its observation (i.e. if all but one
observations of a TEMP report were REJECTED and one stays ACTIVE, the status of the
report remains ACTIVE). Table 8.1 shows the amount of data typically monitored and used
during a 3 hours time window (at 00 UT) in the global assimilation system.

8.1.1 Generic Quality Checks

Generic checks applied to all observation types are described here. However, values of the
quality check bounds are specific to the respective observation type.
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Blacklist

Individual observation platforms (radiosonde or SYNOP stations, ships, aircrafts, . . . )
may have persistent errors or quality problems for various reasons (defective or inac-
curate instrument, misspecified coordinates or station height, . . . ). In order to identify
these situations the observations are continuously monitored and problematic stations are
put on the so called ‘blacklist’. The blacklist may apply to specific observed quantities
(temperature, wind, humidity) and height ranges only. This kind of monitoring is not
performed at DWD, instead the blacklist from ECMWF is used.

Data Selection

Criteria for data selection (geographic area, height range, underlying surface type, . . . )
may be specified individually for observation types as certain measurements are known to
be inaccurate or not representative under certain conditions. More specific criteria may
be applied to certain observation types due to their individual nature (e.g. cloud check
for radiances).

First Guess Check

Within this Section, the observed value is denoted as o, the forecasted value as fg, and
the specified observational and background error as eo and efg, respectively. Prescribed
values for bounds to be used are denoted as σfg, σo1 , . . . .
The first guess check rejects observations, those deviation from the first guess is larger

than σfg times the expected standard deviation (e2
fg + e2

o)
1/2. Furthermore the observed

values have to be confined by prescribed climatological or physically meaningful bounds.
Specific checks are applied to reject small observed wind vectors if the first guess wind

speed is large in order to reject misspecified aircraft and pilot reports.

Observation Error Check

If the nominal observational error is too large , the observation will be rejected, because
it does not add sufficient information to the analysis. Observations are rejected, if either
eo > σo1 , eo/|o| > σo2 or eo/efg > σo3 .
The specified observational error has to account for both the measurement error and

the error of representativeness. If the nominal observational error is considerably smaller
than the background error, this is an indication that the error of representativeness has
not been properly considered. Thus eo is bound below to a value of σo4 · efg.

8.1.2 Thinning of Data

A virtual grid is defined with equidistant pressure levels in the vertical and a hexagonal
(GME) grid in the horizontal. Depending on the desired density of data a suitable vertical
spacing and horizontal resolution parameter (ni) is chosen. Each observation report is
assigned to the nearest grid-point and for each grid-point only one report is kept. For
observation reports not related to a vertical location (as surface observations or satellite
observed radiances) only horizontal thinning is applied.
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A number of rules is evaluated in order to identify the report to be kept for a given
grid-point. If two reports are weighted equally next rule is applied in turn. The criteria
can be specified individually for each observation type. The default sequence is as follows:

1. Status of the report (active, rejected,. . . )

2. Preference (individually specified for each observation type)

3. Minimum temporal distance to the analysis time

4. Quality of the data (individually specified for each observation type)

5. Minimum spatial distance to the virtual grid-point

6. Amount of data in the report

7. Sequence in the input file (to obtain a unique order if all other tests fail)
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8.2 Variational Quality Control

This Section is specific to the 3dVar algorithm (Chapter 7) and can be skipped by users
that are only interested in the pure EnKF (Chapter 9).

Unreliable observations are rejected by the first guess check as described in the previous
section 8.1, before they enter the assimilation step. It is not recommended to make the
first guess check too restrictive in order to keep the ability to correct bad forecasts. Instead
observations should be checked by comparing them not only to the background, but to
other independent observations as well. This is implicitly done by the Variational Quality
Control described below.
In the context of Variational Quality Control more realistic distributions for the pdf

of the observational error are used, taking into account outliers. These non-Gaussian
distributions result in a non-quadratic cost function Jo. In section 7.1.2 we have already
introduced non-quadratic observational cost functions and presented a method to solve
the non-quadratic minimization problem. We have seen that this results in a generalized
observation error covariance matrix R, cf. equation (7.18).
In section 8.2.1 we will introduce three different formulations for the observation’s prob-

ability density function and briefly discuss their properties. The handling of correlated,
uncorrelated and wind observations is sketched in section 8.2.3. Section 8.2.4 gives a
detailed description in the special case of a superposition of a Gaussian and a flat distri-
bution.

8.2.1 Observation’s Probability Density Function – Different For-
mulations

Different formulations of the probability distribution of observations can be used. They
reflect different assumptions on the deviations of observational errors from a Gaussian
distribution resulting in different formulations of the cost function with different conver-
gence properties of the minimization algorithm. Here we show the uncorrelated case,
where R denotes the variance. The parameter σ describes the shape of the pdf and is
further specified in section 8.2.2.

Gaussian+Flat In this formulation the pdf is described by a superposition of a Gaussian
and a flat distribution. The underlying idea is that the observation is either good,
corresponding to a normal distribution, or bad without any information content at
all, corresponding to a flat distribution. This formulation is described in more detail
in section 8.2.4. A plot of this probability density function can be found in figure
8.1, the respective cost function is given in figure 8.2.

Huber In this approach the pdf is described by a Gaussian distribution in the inner
part (−σ < x < σ), and by an exponential decay of the distribution in the tails
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Figure 8.1: Probability density function for the three different formulations compared to
the Gaussian distribution. The similarity of Huber and modified Huber function is clearly
visible.

Figure 8.2: The observation cost functions corresponding to the three different formula-
tions.
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(x < −σ, x > σ). This corresponds to a quadratic cost function with linear tails:

Jqc (x) =


1
2
x2

R
−σ ≤ x ≤ σ

1
2
σ2

R
+ (x− σ) σ

R
x > σ

1
2
σ2

R
− (x+ σ) σ

R
x < σ

(8.1)

This distribution is also called ‘Huber norm’, although it is not a norm in the
mathematical sense. However, for small deviations x the formulation is similar to
the L2 norm whereas for large x it comes close to the L1 norm, which is a very
robust formulation for data with outliers. In the L1 case the result of the analysis
is the median of the distribution. A plot of this probability density function can be
found in figure 8.1, the respective cost function is given in figure 8.2.

Modified Huber In this formulation the cost function is described by a branch of a
hyperbel. σ is a parameter, further described in the context of weights later on.

Jqc (x) =

√
0.7

σ√
R3

√
x2 + 0.7σ

√
R− 0.7

σ√
R

(8.2)

For small deviations it approximates a quadratic, and for large x a linear function.
This choice is very similar to the previous one. Thus we call it the modified Huber
function. A plot of this probability density function can be found in figure 8.1, the
respective cost function is given in figure 8.2.

Figure 8.1 shows the probability density function for the three different formulations
compared to the Gaussian distribution. The similarity of Huber and modified Huber
function is clearly visible.
The corresponding observation cost functions are given in figure 8.2. While the cost

function is constant for large yo −H(x) in the case of the Gaussian+Flat distribution, it
grows linearly in case of the Huber and modified Huber function.
The gradient and the second derivative of the observation cost function are given in

figure 8.3 and 8.4. Both, Gaussian+Flat and modified Huber function are continous, while
the Huber function is discontinous. In case of the modified Huber function the second
derivative is strictly positive.

Using pdf’s with fat tails (Gaussian+Flat) results in a smaller absolute first derivative
of Jo for large deviations yo − H(x) (cf. figure 8.3). In the minimum of the total cost
function (Jb+Jo for all observations) the gradients from all contributions sum up to zero.
Thus applying variational quality control results in a smaller weight for the observations
with large deviations to the analysis. Thus we define the weight as the derivative of
the cost function divided by the derivative of the corresponding quadratic function for
the same x. The weight is displayed in figure 8.5. The extend of the tails of the pdf is
controlled by the parameter σ, defined as the deviation yo −H(x) for which the weight
is 1/2. This definition applies to all formulations of the VQC.
In formulation two and three the analysis is still influenced by large outliers as a non-

zero VQC weight is maintained in any case. On the contrary, large outliers are fully
neglected in formulation one.
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Figure 8.3: Gradient of the observation cost function for the three formulations.

Figure 8.4: Second derivative of the observation cost function for the three formulations.
While the Gaussian+Flat and the modified Huber version are continuous, the Huber
version is discontinuous. Another important fact is the positivity of the modified Huber
function.
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Figure 8.5: VQC weight for three different approaches.

The different formulations of VQC pdf and cost function have a large impact on the
convergence properties of the minimisation algorithm. Formulation 1 (Gaussian+Flat)
shows negative values of the second derivative of the observation cost function. This has
the following consequences:

1. The total cost function may have multiple local minima.

2. The total cost function may have a negative second derivative. The preconditioned
conjugate gradient algorithm (cf. Section 7.1.2) requires a quadratic local approxi-
mation to the true cost function with positive second derivatives (Hessian). As this
is not guaranteed a less accurate approximation has to be used.

As a consequence the Huber function results in better convergence properties of the
minimisation algorithm than the Gaussian+Flat formulation. The properties of the mod-
ified Huber functions are even better (as the second derivative is continuous and strictly
positive). Thus the latter formulation is currently used operationally.

8.2.2 Parameterization of VQC

In order to specify the shape of the probability density distribution and the related cost
function for the different formulations of VQC two parameters are required:

1. The nominal observational error σo in the case that no VQC is applied. For uncor-
related observations this parameter corresponds to the square root of the diagonal
elements of the observation error covariance matrix R. The parameter determines
the second derivative of the pdf and cost function at x = 0.
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2. The parameter ςvqc determines the shape of the tails of the pdf. This parameter is
defined so that for x = ςvqc ·σo the weight of the observations is 0.5. The parameters
of the different formulations are related to ςvqc by:

Gaussian + Flat: γ = exp (1
2
ςvqc)

Huber: σ = 1
2
ςvqc σo

Modified Huber: σ = 3
4
ςvqc σo

All figures of the previous section were generated with a choice of ςvqc = 2 and σo = 10.
Thus all lines of figure 8.5 meet in the points (-20,0.5) and (20,0.5).

8.2.3 Correlated, Uncorrelated and Wind Observations

For independent, uncorrelated observations the joint pdf is the product of the two pdf’s:
p(x1, x2) = p(x1) · p(x2). The corresponding cost function f(x1, x2) = f(x1) + f(x2) is
shown in Figure 8.8 for the Gaussian+Flat formulation.
The assumption of independent, uncorrelated observations is not applicable to the ob-

servation of the two components of the horizontal wind vector. For this case a formulation
with rotational symmetry is required. Thus, for wind observations, we use the same formu-
lation of the cost function, but relate it to the absolute value of the wind vector deviation
only: f(x1, x2) = f(

√
x2

1 + x2
2). In this case both components of the wind observation

obtain the same VQC weight.
Despite wind observations, correlated observations are currently not used. A method to

treat correlated observations is described in Section 8.2.4 for the case of the Gaussian+Flat
formulation. No attempt has been made so far to implement the use of correlated obser-
vations in the framework of the Huber norm.

8.2.4 Detailed Description for Gaussian + Flat Distribution

In this section the modified cost function for the first formulation, the superposition of
Gaussian and flat distribution, is calculated as an example. First and second derivative,
which are needed to solve the optimization problem, are calculated as well.

Uncorrelated Data

In variational quality control a non-Gaussian probability density function pQC is used for
modeling the observation errors in order to formally include the existence of outliers in the
formulation of the minimization problem. As proposed by [2] we assume a superposition
of a Gaussian distribution N and a flat distribution F :

pQC = (1− A)N + AF (8.3)

A is the a priori probability that the observation is incorrect.
In the case of uncorrelated data, the covariance matrix R is a diagonal matrix. Only
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diagonal terms contribute.

Nŷ,σo(y) =
1

σo
√

2π
exp

[
−1

2

(
y − ŷ
σo

)2
]

with ŷ = H(x) (8.4)

Fŷ,d,σo(y) =


1

D
=

1

2dσo
, if|y − ŷ| < D/2

0 otherwise.

(8.5)

y is the observed quantity and ŷ its model equivalent. The distribution of incorrect
data is assumed to be a flat distribution in a vicinity of d×σ0 around the observed value.
Note that other choices for pQC are possible and that the distinction between correct

and incorrect data is not mandatory. Other distributions pQC are described in 8.2.1.
The observational cost function corresponding to a given probability density distribu-

tion p is given by

Jo = − ln p+ c (8.6)

In general, c is chosen so that Jo(ŷ = y) = 0. A pure Gaussian error distribution
corresponds to a quadratic cost function, as introduced in Section 7.1. The distribution
given in Eq. (8.4) corresponds to

Jo(y)N =
1

2

(
y − ŷ
σo

)2

(8.7)

Its gradient is

∂JN
o

∂ŷ
= − 1

σo

(
y − ŷ
σo

)
(8.8)

Non-Gaussian error distributions correspond to non-quadratic cost functions. The dis-
tribution (8.3) corresponds to:

JQC
o = − ln

[
γ + exp(−JNo )

γ + 1

]
with γ =

A
√

2π

(1− A)2d
(8.9)

The gradient of this cost function is:

∂JQC
o

∂ŷ
= wQC∂J

N
o

∂ŷ
(8.10)

The term wQC is the a posteriori probability that the observation is correct:

wQC = 1− γ

γ + exp(−JN
o )

(8.11)

The second derivative of the cost function (8.9) is:

∂2JQC
o

∂ŷ2
= wQC 1

σ2
o

(
1− γ (y − ŷ)2

σ2
o

exp

[
1

2

(y − ŷ)2

σ2
o

])
(8.12)
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In order to apply variational quality control, the parameters of the error model (A, d,
and σo in Eq.(8.9)) must be specified. In praxis, the exact values of A and d as defined
in equations (8.3) and (8.5) are not very relevant. Indeed the maximum size if outliers,
d · σo, is merely introduced to make F integrable. Instead of A and d the parameter γ is
prescribed by specifying a threshold value σrej for ŷ − y, beyond which the observation is
rejected with an a priory probability of Prej:(

σrej
σo

)2

= 2 ln
Prej

(1− Prej)γ
(8.13)

The cost function and a posteriori probability for correct data is shown in Figure 8.6.
The second derivative of the cost function (Hessian) and approximations to it are shown
in Figure 8.7.

Figure 8.6: Cost function JQC (red) and a posteriori probability for correct data wQC

(green) as a function of (ŷ − y)/σo for a rejection limit of σrej = 3σo and Prej = 0.5 .

For uncorrelated observations, the joint probability distribution is given by the product
of the marginal distributions of the individual probability distributions. Consequently
the cost function (cf. Figure 8.8) is the sum of the individual cost functions according to
equation (8.9).

Wind Data

Wind observations consist of its u and v-component. The components are assumed to be
uncorrelated. However if a wind component has gross errors, the whole observation, i.e.
both of its components are rejected. This is described by the probability distribution pQCuv:

pQCuv = (1− Auv)NuNv + AuvFuFv (8.14)

with Normal distributions Nu, Nv and flat distributions Fu, Fv defined similar to equa-
tions (8.4), (8.5), but with y, ŷ replaced by u, û or v, v̂, respectively. The expressions
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Figure 8.7: Second derivative of the cost function ∂2JQC
o

∂(ŷ−y)2
(green) and its approximation

(limited to values > 0.01/σo) used in the Newton algorithm (red) as a function of (ŷ −
y)/σo. The approximation wQC/σ2

o used by [7] is shown in blue.

Figure 8.8: As figure 8.6, but for 2 uncorrelated observations



116 DWD DA System Documentation March 4, 2019

for the cost function (Figure 8.9) and its gradient remain as in equations (8.9) and (8.10)
with JN

o replaced by JN
uv

JN
uv = JN

u + JN
v , (8.15)

γ replaced by γuv

γuv =
Auv2π

(1− Auv)2du2dv
, (8.16)

and wQC replaced by wQC
uv

wQC
uv = 1− γuv

γuv + exp(−JN
uv)

. (8.17)

Figure 8.9: Cost function JQC
uv (green) and a posteriori probability wQC

uv for correct wind
data (magenta).

The second derivatives of the cost function in the longitudinal direction to ŷ − y is
the same as those given in equation (8.12) (green graph in Figure 8.7), with y being the
observed wind vector and ŷ the model equivalent. In the transversal direction it is (blue
graph in Figure 8.7):

∂2JQC
uv

∂ŷ2
t

= wQC
uv

1

σ2
o

(8.18)

The cost function for wind data (Figure 8.9) is considerably different from a case there
probabilities for gross error of the components are independent (Figure 8.8).

Correlated Data

The more complicated case with correlated data has implemented and will therefore be
described, but it is currently not used.
In this section, we use normalized observation increments

u = S−1(ŷ − y) (8.19)

and observation error correlations C instead of covariances R. S is the diagonal matrix
consisting of the observation error standard deviations σo.
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In case of no gross errors, the probability density distribution is described by a multi-
variate normal distribution:

Nn(u) = ((2π)n|C|)−
1
2 exp

(
1

2
uTC−1u

)
(8.20)

with |C| being the determinant of C.
In case of observations uj1 , uj2 , . . . rejected due to gross errors, the distribution of the

remaining correct observations ui1 , ui2 , . . . is described by the marginal probability density
function:

Nip,k(u) =

∫ ∞
−∞

∫ ∞
−∞

. . . Nn duj1 , duj2 , . . . (8.21)

The index k counts the total number (0 . . . n) of rejected observations and ip runs over
the different combinations n!

k!(n−k)!
of accepted or rejected observations for given k.

Nip,k is given by a multivariate normal distribution as well:

Nip,k(u) =
(
(2π)k|Cip,k|

)− 1
2 exp

(
1

2
uTip,kC

−1
ip,k

uip,k

)
(8.22)

with Cip,k being the observation error correlation matrix consisting of the rows and
columns of C corresponding to the accepted observation increments uip,k only.
Consequently the probability distribution of correlated observations with gross errors is

given by the sum of distributions with different combinations of rejected data, weighted
by their a priory probabilities:

pQC =
∑
ip,k

Aip,kNip,kFip,k (8.23)

with Nip,k given by equation (8.22), Fip,k being the product of the flat distributions of
the rejected observations according to equation (8.5), and Aip,k the a priori probability
of the combination of accepted or rejected data. If the a priory probabilities for rejection
of the different components are independent, Aip,k is the product of these independent
probabilities:

Aip,k =
∏

(1− Ai1)(1− Ai2) · · ·
∏

Aj1Aj2 . . . (8.24)

with Ai1 , Ai2 , . . . being the a priory probability of gross error in the n − k accepted
observations and Aj1 , Aj2 , . . . , of the k rejected observations of the combination denoted
by ip, k. For dependent probabilities of rejections different a priory probabilities must be
prescribed.
Again, instead of using the a priory probabilities Ai, Aj we can use parameters γj related

to certain rejection limits, similar to equation (8.13). Then the correlation function (8.23)
becomes:

pQC =
∑
ip,k

pQCip,k =

∑
ip,k

γip,k|Cip,k|−
1
2 exp

(
1
2
uTC−1

ip,k
u
)

∑
ip,k

γip,k
(8.25)
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The cost function (Figure 8.10) of the distribution and its first and second derivatives
are given by the expressions:

JQC = − ln(pQC) (8.26)

dJQC

du
=

1

pQC

∑
ip,k

pQCip,kC
−1
ip,k

u (8.27)

d2J

du2
=

1

pQC

∑
ip,k

pQCip,k(C
−1
ip,k
− [C−1

ip,k
u][C−1

ip,k
u]T ) . (8.28)

The probability for correct observations is:

wQC =
1

pQC

∑
ip

pQCip,kδip,k (8.29)

there δip,k denotes the vector with components of 1 for accepted data and 0 for rejected
data.

Figure 8.10: Cost function JQC
uv for correlated data (correlation coefficient ρ = −0.8).

Practical Implementation

The evaluation of the observational cost function for n correlated data is very expensive
because 2n evaluations (including inversions of n× n matrices) of all the combinations of
accepted and rejected must be performed. There exist different strategies to cope with
the problem as discussed below. The first 3 items were also discussed by [2].

1. Evaluating all terms
This choice is too expensive in general and can only be pursued for a small number
of correlated observations.

2. Omitting some terms
Some of the combinations may be omitted. In particular all combinations with
k > kmax may be omitted (that means all terms with more than kmax observations
rejected) but the term with k = n (all data rejected) kept. This has been done for
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the wind data with kkmax = 1. This implies that the a priory probabilities for gross
errors are not independent any more and especially the value of the probability Aip,n
(all data rejected) must be reconsidered.

3. Diagonalizing the problem
If gross errors themselves are correlated in the same way as random errors, i.e.
according to the matrix C the matrix may be diagonalized and variational quality
control may be formulated in the diagonalized vector space. There the ‘observations’
are treated as uncorrelated. [2] argue that it is unphysical to assume that gross
errors have the same correlations as random errors. On the other hand correlated
observations occur for two reasons:

(a) The observation operator may lead to correlated errors of representativeness.

(b) The observations are not independent but derived from primary observations
which may be assumed to be uncorrelated. In our case the geopotential ob-
servations are derived from temperature observations using the hydrostatic
equation and some equation of state.

Especially in the latter case gross errors cannot be assumed to be uncorrelated.

4. Calculating only the most important terms
In general only a small number of terms should contribute significantly to the sums
(8.25) to (8.29). Some algorithm may be sought to evaluate only the terms with large
pQCip,k. An algorithm was tested which for given k evaluates only those combinations
which are reached from the most probable combination for k−1 by a limited number
of changes to the sets of accepted and rejected observations. However this strategy
was not fully satisfactory because considerably different values for JQC

o could be
obtained with different parameter settings.

5. Searching for other formulations of JQC
o

It may be possible to find a simpler formulation for JQC
o which has similar charac-

teristics.

Currently only geopotential observations within one radio sounding are assumed to
be correlated, but as there is no preselection of levels up to now, up to 80 correlated
observations occur within one sounding. Evaluation of 280 terms is not feasible and
thus the following strategy has be pursued up to now for variational quality control (the
parameters may be changed by namelist group /VARQC/ .):

n ≤ 10:
All combinations are considered for.

n ≤ 20:
All combinations with less than 6 rejected observations are calculated. Combinations
with higher number of rejections are evaluated only partially (strategy 4 above).
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n ≤ 30:
All combinations with less than 4 rejected observations are calculated. Combinations
with higher number of rejections are evaluated only partially.

n ≤ 50:
All combinations with less than 3 rejected observations are calculated. Combinations
with higher number of rejections are evaluated only partially.

n ≤ 100:
All combinations with less than 2 rejected observations are calculated. Combinations
with higher number of rejections are evaluated only partially.

n > 100:
All combinations with less than 2 rejected observations are calculated. Combinations
with higher number of rejections are not considered.
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8.3 Assimilation of humidity data
This Section is specific to the 3dVar algorithm (Chapter 7) and can be skipped by users
that are only interested in the pure EnKF (Chapter 9).

8.3.1 Humidity sensitive observations

TEMP and aircraft data
Information on humidity is gained by direct in-situ observations from radiosondes
(TEMPS) and aircraft observations. As radiosonde humidity observations have
large biases in the upper troposphere, they are currently used only below 300 hPa.
Aircrafts were only recently equipped with accurate humidity sensors (in the US and
very view in Europe). Assimilation of aircraft humidity data is under investigation.

SYNOP data
Humidity observations from SYNOP, SHIP and BUOY reports are assimilated as
relative humidity data. The model equivalent is taken from the lowest model level
(10 m) without further adjustment to the station height.

AMSU-B and MHS data
Assimilation of humidity sensitive satellite radiances measured by the AMSU-B and
MHS instruments is under preparation.

GNSS radio occultations
In the lower troposphere refractivity as observed by GNSS radio occultations de-
pends on a linear combination of temperature and humidity.

8.3.2 Humidity in the stratosphere

Humidity is not assimilated in the stratosphere. Instead specific humidity is set to a
constant climatological value of q = 4. ·10−6 Kg/Kg. The tropopause height is analysed in
the same way as beforehand in the Optimum Interpolation system. In addition to that,
analysis increments are forced to zero above the 250 hPa level.

8.3.3 Generalised humidity control variable

The background error model assumes a quadratic cost function Jb and a Gaussian back-
ground error distribution. This assumption cannot hold for a quantity as humidity which
is confined to a finite interval (q ≥ 0). For this reason a transformation to a generalised
humidity variable is performed. For values larger than rh0 = 3% generalised humidity
gh is equal to relative humidity rhw over water. Below rh0 relative humidity differs from
generalised humidity. There are 2 options for the choice of generalised humidity in this
range:

1. exponential dependence of relative humidity on generalised humidity.
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2. quadratic dependence of relative humidity on generalised humidity.

The transformation to generalised humidity has the following effects:

• The control variable gh is allowed to take any value within the variational analysis
process. Positive definiteness of the derived relative humidity is ensured in any case.

• In the vicinity of the lower bound (0 < rh ≤ rh0) the background error of relative
humidity is reduced. This is reflected by the Jakobian d rh/d gh.

This behavior is sketched in Figures 8.11 and 8.12.

Figure 8.11: Generalised humidity variable gh

Here the transformation to generalised humidity is mainly performed for technical rea-
sons, i.e. in order to ensure that analysed humidity remains positive. No attempt has
been made so far to adapt parameters intentionally in order to match a given distribution
of background errors.
A similar mechanism may be activated to prevent super-saturation (rh > 1) as well by a

respective re-definition of generalised humidity in the vicinity ofh ≈ 100%. In case of the
exponential dependence of relative humidity on generalised humidity rh0 is not allowed
to become zero because gh would become −∞. For this reason the first guess relative
humidity is constrained to be larger than a small positive threshold value rh0. Further
details can be found in the user guide 16.23.

8.3.4 Cloud water and ice

Cloud liquid water and ice content (as well as prognostic rain and snow) is not assimilated
in the 3dVar. Merely cloud water content is forced to zero if analysed relative humidity
falls below 90%.
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Figure 8.12: Relative humidity rh as a function of generalised humitity gh for exponential
(top left) and quadratic formulation (top right). The respective Jakobians d rh/d gh are
shown below.
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8.4 Preprocessing Module (satpp)

Level Description
0 Raw Data
1 Data extracted by instrument, at full instrument pixel resolution, with Earth-

location and calibration information
1a Instrument counts with ancillary information
1b Instrument counts with quality control and with Earth-location and calibration

information appended but not applied
1c Brightness temperatures (IR) or reflectance factor (VIS) of instrument pixels

with Earth-location and calibration information
1d Same as level 1c, with cloud flag (only for sounding data)
2 Geophysical value (temperature, humidity, radiative flux ...) at instrument

pixel resolution

Figure 8.13: WMO Description of Levels for Satellite Data

DWD has developed a tool for preprocessing of satellite data (satpp). The main pro-
cessing steps of this module are:

1. Data files are converted from BUFR to NetCDF.

2. The NetCDF data files with Level 1b data are red and converted to Level 1d data,
compare Table 8.13.

3. Quality checks are carried out on the data sets, including the test of cut-off times,
scanline status, Field of View (FOV) and Calibration tests, and diverse instrument
specific tests.

4. Erroneous data are corrected as far as possible.

5. Mapping procedures are carried out to map datasets onto each other.

6. The results of the preprosessing is saved in a common format in NetCDF.
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Chapter 9

Ensemble Kalman Filter
(EnKF/LETKF)

In Chapter 7 the 3dVar algorithm was introduced with the goal to determine the state
of the atmosphere with the highest probability, using a static error covariance matrix B
(Section 7.2).
In this Chapter, the EnKF/LETKF is introduced. EnKF-type filters use an ensemble of

atmospheric realizations to sample-estimate and predict the background error covariance
matrix Pb. This matrix is fully flow-dependent which is an advantage over the static B,
and it also contains correlations between model variables that do not need to be prescribed
analytically (e.g. the geostrophic wind balance contained in B). Therefore the EnKF-
method is most useful where such balance relations cannot be formulated – which is the
case in a nonhydrostatic local model such as COSMO-DE. Here the EnKF is used as the
core of the COSMO-KENDA-System, and also for the global LETKF (GME/ ICON).
The first type of EnKF for atmospheric applications was proposed by [10]. It was further

worked out by [14] that ones needs to use perturbed observations to generate an analysis
ensemble in this EnKF type. The second type of EnKF algorithms are the deterministic
filters that typically use a matrix square root to generate the analysis ensemble.
As a natural preconditioning, Pb can be transformed into an ensemble space (instead

of the model phase space) – in this case, one usually speaks of an Ensemble Transform
Kalman Filter (ETKF, [3]). To get any of these ensemble type Kalman Filter working
with a small ensemble size, covariance localization needs to be applied – which coins the
term LETKF.
The deterministic and transformed EnKF-algorithm in the DWD-DA-system is based

on the Local Ensemble Transform Kalman Filter (LETKF) formulated in [16]. When the
terms "EnKF" and "LETKF" are used throughout this documentation, they usually refer
to the specific algorithm which is described in this Chapter.
The cycling filter recursion of the LETKF includes three steps (cf. Fig 9.1):

1. Analysis step: computation of the analysis from current observations and a back-
ground ensemble (Section 9.1)

2. Resampling step: resampling to produce the analysis ensemble (Section 9.1)

127
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3. Forecast step: propagation of the analysis ensemble members to obtain a new
forecast/background ensemble (Section 9.1.4)

Therefore, during ensemble data assimilation the forecast and the forecast ensemble are
updated with measurements to produce an analysis and an analysis ensemble. The analy-
sis ensemble is propagated to the next analysis time with the full nonlinear NWP model.
Once this new forecast ensemble is computed, one cycle of the recursion is completed and
the process repeats at the next analysis time.

Figure 9.1: LETKF filter recursion. The index j counts the cycled analyses.

In ensemble Kalman filtering, the uncertainty is quantified only in the low-dimensional
subspace spanned by the ensemble with L−1 degrees of freedom. The forecast/background
ensemble {xb(`) : ` = 1, . . . , L} typically consists of L ≥ 32 members. At the times the
analysis is calculated, the number of observations m is much larger than L, and the model
has n degrees of freedom, so the ratio L� m� n holds.
This limitation can be overcome by localizing the covariances and performing locally

independent analyses (Section 9.2.1), so effectively more degrees of freedom are available
with respect to the whole model domain. Because the dimensionality of atmospheric error
covariances tends to be locally much lower than the possible degrees of freedom of the
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Figure 9.2: LETKF filter recursion for KENDA (using COSMO with internal operators)

model [21], the local L−1 degrees of freedom of the covariance localization can be sufficient
to explore the possible states of the full model. Nevertheless, the background ensemble
will usually predict too little variance, so it is necessary to apply inflation (Section 9.2.4).
Section 9.1 describes how the analysis is produced by the LETKF algorithm, including

detailed description of each recursion step illustrated in Fig. 9.1.
Sections 9.2.1 and 9.2.4 describe the techniques of localization and inflation, that ad-

dress the problem of calculations of background error covariances with small ensemble
size. Section 9.2.6 describes balancing operations on the raw filter solution and reasoning
behind their implementations.

9.1 Analysis of the Local Ensemble Transform Kalman
Filter (LETKF)

The analysis should represent the state of the atmosphere with the highest probability,
estimated by the background ensemble, weighted with its background error covariance,
and by the observations, weighted with their observation error covariance. The entries
of the observation error covariance matrix R are the variances and covariances of the
measurement errors and errors of representativity. The background error covariance in
ensemble methods is calculated from the ensemble.
Assuming a normal distribution of states1, the most likely background state is simply

1This assumption holds rather well for wind or temperature, but not for example for precipitation or
vertical wind speeds in convective storms.
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given by the mean x̄b of the background ensemble

x̄b = L−1

L∑
`=1

xb(`) (9.1)

The background error covariance Pb of this multidimensional Gaussian is sampled by the
ensemble:

Pb = (L− 1)−1

L∑
`=1

[xb(`) − x̄b][xb(`) − x̄b]T (9.2)

(9.2) can be written as
Pb = (L− 1)−1Xb(Xb)T (9.3)

where the background perturbation matrix Xb is a n×L matrix with columns of xb(`)− x̄b

and spans the L-dimensional space S of the background ensemble perturbations. By
definition, the sum of the columns of Xb is zero, so they are necessarily linearly dependent.
Matrices Pb and Xb are thus at most of rank L− 1.

9.1.1 The cost function in ensemble space

The quadratic cost function J(x) is minimized for the analysis x = x̄a:

J(x) = [x− x̄b]T (Pb)−1[x− x̄b] + [yo −H(x)]TR−1[yo −H(x)] (9.4)

As Pb is only of rank L − 1, its inverse is well defined in only a L − 1 subspace of the
n-dimensional model space. The natural preconditioning for the minimization of (9.4)
involves a change of variables from state x of size n× 1 to a vector w of size L× 1. Based
on this reasoning, we regard Xb as a linear transformation from a L-dimensional space
S̃ onto a L-dimensional space S and perform the analysis for a L-dimensional vector w
in S̃. The corresponding analysis is given by x = x̄b + Xbw, so Xbw describes a linear
combination of ensemble perturbations that is added to the ensemble mean to obtain the
solution x.

If w is a Gaussian random vector with mean w̄ = 0 and covariance P̃f = (L − 1)−1I,
then x = x̄b+Xbw is Gaussian with mean x̄b (9.1) and covariance Pb (9.3). This motivates
the cost function

J̃(w) = (L− 1)wTw + [yo −H(x̄b + Xbw)]TR−1[yo −H(x̄b + Xbw)] (9.5)

in S̃ which relieves us from computing Pb explicitly. The solution w = w̄a that minimizes
(9.5) corresponds to x̄a = x̄b + Xbw̄a that minimizes (9.4).

9.1.2 Observation operator in LETKF (linear approximation)

H(x̄b + Xbw) can not be computed if H is nonlinear. Therefore, we need to linearly
approximate H: First we compute an ensemble of model equivalents {yb(`) : ` = 1, . . . , L}

yb(`) = H(xb(`)) (9.6)
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With their mean ȳb and the n× L matrix Yb (whose `-th column is yb(`) − ȳb) we make
the linear approximation

H(x̄ + Xbw) ≈ ȳb + Ybw (9.7)

This means that a deviation of one member from the mean in observation space (i.e.
yb(`)− ȳb via Yb) is approximated to correspond linearly to the resulting deviation of the
same member from the mean in model space (i.e. xb(`) − x̄b via Xb)2.

9.1.3 Analysis equation / Resampling for analysis ensemble

While still in S̃, we substitute (9.7) in (9.5) to gain the final cost function

J̃∗(w) = (L− 1)wTw + [yo − ȳb −Ybw]TR−1[yo − ȳb −Ybw] (9.8)

with the analysis equations

w̄a = P̃a(Yb)TR−1(yo − ȳb) (9.9)

P̃a = [(L− 1)I + (Yb)TR−1Yb)]−1 (9.10)

and their retransformations 3 in model space

x̄a = x̄b + Xbw̄a (9.11)

Pa = XbP̃a(Xb)T (9.12)

Now that the cost function is solved for x̄a, we need to gain an analysis ensemble {xa(`) :
` = 1, . . . , L} with mean x̄a and covariance Pa = (L− 1)−1Xa(Xa)T .
Therefore, we rewrite (9.10) as P̃a = (L−1)−1Wa(Wa)T to perform the transformation

Xa = XbWa. The columns of Xa have the same properties as those of Xb. We gain Wa

by taking the symmetric square root of P̃a as

Wa = [(L− 1)P̃a]1/2 (9.13)

The use of matrix square root makes the LETKF a deterministic EnKF-algorithm (op-
posed to a stochastic EnKF with perturbed observations) and ensures that the column-
sum of Xa is zero as desired, and that Wa depends continuosly on P̃a. Also, the mean-
square distance between I and Wa is minimized, so the analysis perturbations are as close
as possible to the background perturbations – a crucially important feature for nonlinear
atmospheric models that are very sensitive to small changes.
The `-th column of the computed Wa can be written as

W a(`) = wa(`) − w̄a, ` = 1, . . . , L (9.14)
2For a linear H this approximation is exact, while for a nonlinear H (e.g. observations of radar

reflectivity) the approximation only holds for small deviations and may cause unbalanced increments in
model space if the analysis is fit rigorously towards the observations.

3not used in the algorithm, but mentioned for the sake of completeness
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By adding w̄a to we the columns of Wa we therefore obtain {wa(`) : ` = 1, . . . , L} and
can then compute the final analysis ensemble members in model space as

xa(`) = x̄b + Xbwa(`), ` = 1, . . . , L (9.15)

The terms {wa(`) : ` = 1, . . . , L} are called analysis weight vectors, the terms {Xbwa(`) :
` = 1, . . . , L} are called ensemble increments.

9.1.4 Forecast step

Cycling interval

As seen in Figure 9.1, the single members of {xa(`) : ` = 1, . . . , L} are used as initial
conditions for the forecast model and integrated forward through the forecast interval
∆tfc from the analysis time k − 1 to the next assimilation time k where the forecasts
represent the new background ensemble {xb(`) : ` = 1, . . . , L}:

x
b(`)
k = M(x

a(`)
k−1), ` = 1, . . . , L , k ∈ N (9.16)

The cycling interval ∆tfc is a characteristic parameter of the EnKF and should be
chosen long enough for the ensemble PDF to explore new dynamical developments of the
system without diverging from the mean state too strongly. ∆tfc can also be referred to as
analysis interval because at the end an analysis takes place, as forecast interval because
the forecast model propagates the ensemble through that time-interval, or simply as the
assimilation interval of the cycling.

Ensemble boundary conditions

In case of the local LETKF (COSMO-KENDA), ensemble initial (IC) and boundary
conditions (BC) are essential in order to provide a range of possibilites (spread) for the
synoptic scales and the mesoscale. A global ensemble of GME members, cycled in an
LETKF system, provides these ensemble IC and BC (cf. Section 9.1.5).
Generally: ICON is probably not well-mentioned in the EnKF Chapter

9.1.5 Generation of initial ensemble (global model)

Generation of initial ensemble: Complete?

It is necessary to have an initial ensemble at time t0 to spin up before the very first assim-
ilation. In the DWD-DA-system, this is done with an ensemble of the global model GME.
A 3dVar analysis state xa3dV ar is used as the mean and the 3dVar-B-matrix (Section 7.2)
is used as the covariance of the initial random ensemble sample {xinit(`)t0 : ` = 1, . . . , L}:

x
init(`)
t0 ∈ N(xa3dV ar,B) (9.17)

The matrix square root of B, multiplied by a random noise vector b, is added to the
3dVar analysis

x
init(`)
t0 = xa3dV ar + fgen B1/2b , ` = 1, . . . , L , b ∈ N(0, I) (9.18)
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where fgen is a factor between 0 and 1 that controls the amplitude of the perturbations.
This initial ensemble is then consistent with the dynamics and can be spun up (inte-

grated forward in time) to serve as a background-ensemble for the GME-LETKF assimi-
lation, or as initial states and boundary conditions for the COSMO-KENDA ensemble.

9.1.6 Deterministic update

In the case of COSMO, ensemble forecasts of convective systems are produced. These need
extensive postprocessing in order to be evaluated. As a simple alternative, it is possible
to let a deterministic instance xdet of the model run parallelly to the EnKF-cycling and
to update it via

xa,det = xb,det + K[yo −H(xb,det)] (9.19)

with the Kalman gain K:

K = Xb[(L− 1)I + YbTR−1Yb]−1YbTR−1Xb

[
(k − 1)I + YT

b R−1Yb

]−1
YT
b R−1

The deterministic analysis is obtained on the same (coarse) grid as the ensemble is
running on; the analysis increments are interpolated to the full model resolution of the
deterministic run.
HL: It could make sense to reformulate the equations of this deterministic update in
terms of the EnKF-update above. I could not infer this backwards from the code.
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9.2 Background error covariance in EnKF

Contrary to the prescribed background error covariance of 3dVar (Section 7.2), the EnKF
uses a background error covariance matrix Pb (9.2) that is sampled and propagated in
time by the background ensemble.
The aspect of localization is discussed already here, although the LETKF localizes R

and not Pb – but the sampling error, which is aimed to be reduced by localization, arises
from the estimate of Pb.

9.2.1 Local Analysis and Localization

As L � m, Pb is strongly rank deficient and contains extensive sampling error: Spatial
correlations are not always trustworthy, especially with long distances between intermit-
tent atmospheric phenomena such as convective cells.
To overcome this limitation, one possibility would be to localize Pb in phase space by

setting spatially distant covariance-entries of Pb to zero, but this method is not performed
here. Instead, local analyses are computed parallely by minimizing (9.8) for every model
gridpoint of x. If done this way, the model grid is also the analysis grid. As shown in
Section 9.2.2, a coarser analysis grid can also be chosen for the minimization.
Performing the local analyses, only nearby observations are taken into account, so a

localized observation error covariance matrix Rloc is used for every analysis grid point.
After combining the local analyses (which were localized in observation space) back into
the phase space of x, the result is an effective localization in phase space, although the
localization radius of R should be chosen shorter than for Pb – for a comprehensive
comparison see [12].

Figure 9.3: Ensemble-sampled Pb, localized by C0 (9.21).
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Horizontal Localization

For every point i = 1, . . . ,m of the analysis grid, a local ensemble of model equivalents
{yb(`)i : ` = 1, . . . , L , i = 1, . . . ,m} with corresponding local observations yoi is formed:
So, for every point i of the analysis grid, the corresponding entries in the inverse obser-
vation error covariance matrix R−1 are multiplied with a distance dependent correlation
function C0 (9.21) to gain a localized set of {R−1

loc,i : i = 1, . . . ,m}. This means that the
single observations yoi will contribute to the local analysis at i with an observation-weight
≤ 1 determined by (9.21).

The following derivation is adapted from [11] in the formulation of [13].

Figure 9.4: Function C0(b, a) of Gaspari Cohn 1999 compared to Gaussian G0(b, l). lh
was chosen as 20 km.

(9.21) is a polynomial approximation to a Gaussian

G0(b, l) = exp

(
−b2

2l2

)
(9.20)

where b is the spatial distance between the single analysis grid point and the location
of one single observation. l is the length scale where G0 = exp(−1

2
) ≈ 0.61. From hereon,

the term length scale always refers to the "Gaussian" length scale l. G0 is approximated
by

C0(b, a) =


−1

4
( b
a
)5 + 1

2
( b
a
)4 + 5

8
( b
a
)3 − 5

3
( b
a
)2 + 1 if 0 ≤ b ≤ a,

1
12

( b
a
)5 − 1

2
( b
a
)4 + 5

8
( b
a
)3 + 5

3
( b
a
)2 − 5( b

a
) + 4− 2

3
( b
a
)−1 if a < b ≤ 2a

0 if b > 2a.

(9.21)

(cf. Figure 9.4). For corresponding C0(b, a) and G0(b, l), the parameter a relates to the
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length scale l as

a = l

√
10

3
(9.22)

The radius b = 2a where (9.21) goes to zero is here referred to as localization radius rloc
(or support radius of localization). The entries of the reduced R−1

loc,i that is used in one
local analysis (9.8) at a grid point i = 1, . . . ,m are given by

R−1
loc,ji = R−1

jj C0(bji, a), j = 1, . . . ,m (9.23)

where bji is the spatial distance between the analysis point i and observation point j.
The input-parameter l that results in rloc = 2l

√
10/3 is typically chosen ample enough

to overlap with neighboring analysis grid points in order to obtain a spatially smooth field
of local analysis weights {wa(`)

i : ` = 1, . . . , L; i = 1, . . . , n}. Observations that are further
away than rloc are simply neglected, while the observation-weights of the contributing
observations are very close to a Gaussian. The horizontal length scale is referred to as lh
and is typically specified in kilometers.
Example: lh = 20 km is chosen and the observation is 30 km away from the analysis

point. The horizontal observation-weight is given by C0(30 km, 20 km ·
√

10/3) ≈ 0.36 (cf.
Figure 9.4).
The localization in observation space usually takes place both in the horizontal and in

the vertical. In the latter case, the observation-weight C0 is the product of the horizontal
observation-weight C0,hor and the vertical observation-weight C0,vert:

C0 = C0,horC0,vert ∈ [0, ..., 1] (9.24)

Vertical Localization

In this implementation of the LETKF, the vertical coordinate of observations is their
pressure p. Using the pressure-distance of an observation to the analysis point would
result in irregular spacings above and beneath the reference. Therefore, the logarithm
ln(p), which scales approximately linear with height, is used as the argument for (9.21).
The parameter a of (9.21) is derived from the specified vertical localization length scale

lv, both in the units of ln(p) (typically in the order of 0.3 to 0.5). For a specific ∆p
beneath the reference pressure pref , lv is given by

lv = ln

(
pref

pref −∆p

)
(9.25)

The pressure distance ∆p beneath a specific pref with specified lv is given by

∆p = pref [1− exp(lv)] (9.26)

Example: For an analysis point at pref = pana = 500 hPa and lv = 0.3, ∆p = 175 hPa,
so an observation at pobs = 675 hPa is assigned a observation-weight of C0,vert(ln(675) −
ln(500), 0.3 ·

√
10/3) ≈ exp(−1/2) ≈ 0.6
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Adaptive Horizontal Localization

The ideal localization length scale should minimized the analysis error. Physically, it
depends e.g. on the weather situation, the observation density and other non-constant
parameters.
One simple adaptive method

@Hendrik: Was there a reference planned here?

is to keep the number of effective observations fixed, and vary the localization radius
rloc. The effective number of observations Neff,i at an analysis point i = 1, . . . , n is defined
as the sum of the observation weights C0,j , j = 1, . . . ,mi (9.21) that fall into the local
subdomain of i:

Neff,i =

mi∑
j=1

C0,j(bj,i) , i = 1, . . . , n ; bj,i ≤ rloc (9.27)

where rloc is determined by the length scale lh as in (9.22). Up to now, adaptive
localization is only implemented in horizontal direction. In order to perform the adaptive
localization, one has to a define minimum and maximum length scale lminh and lmaxh ; within
this range the actual length scale lh is variied to achieve the prescribed number of effective
observations Neff within rloc. As the LETKF with L ensemble members computes the
update in an L-dimensional subspace, it makes no sense to use a numberm of observations
with m� L. Thus, the ideal number of effective observations in this implementation only
depends on ensemble size and should be choosen as Neff = αL with α ≈ 1.5− 3.

9.2.2 Coarse Analysis Grid

In the raw LETKF algorithm, the cost function (9.8) is minimized for every single model
gridpoint of x. As the optimal linear combination of members indicated by the field of
{wa(`) : ` = 1, . . . , L} usually varies smoothly between spatial locations of the domain,
the field of the local analysis weight vectors {wa(`)

i : ` = 1, . . . , L; i = 1, . . . , n} can be
computed on a coarser analysis grid xanacoarse as {w

a(`)
i : ` = 1, . . . , L; i = 1, . . . , nanacoarse} and

then be spatially interpolated onto the fine model grid (see [23]).

Horizontally coarse

COSMO has a horizontally regular grid. The coarse analysis grid is also horizontally
regular and coarsed by a prescribed reduction factor fhor,r. The computational effort for
the analysis is therefore reduced by a factor of f 2

hor,r.
The GME has an icosahedral diamond-grid that covers the globe. The number ni of

diamonds (c.f. GME-documentation) to be used in the analysis can be chosen as the
parameter for the horizontally coarse grid.
HL: What about ICON?
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Vertically coarse

The number of vertical levels in the reduced grid is given by nzr. The structure of the
vertical coordinates of the reduced grid depends on the logarithm of the pressure. It is
constructed as follows:
The maximum pressure pmax is given by pmax(x̄

b) on the lowest full model level. If
pmax(x̄

b) is smaller than pconstmax = 1050 hPa, pmax = pconstmax is chosen.
The minimum pressure pmin is given by pmin(x̄b) on the highest full model level. If

pmin(x̄b) is larger than pconstmin = 40 hPa, pmin = pconstmin is chosen.
The vertical localization length scale can be specified for the model top ltopv and surface

lsurfv in the scale of δ[ln(p)].
If lsurfv = ltopv , the pressure levels of the reduced grid are chosen to be linear in ln(p) by

the recursion

p0 = pmin (9.28)
pi+1 = ln(pmin) + i ∗ δ[ln(p)] (9.29)

with δ[ln(p)] = {[ln(pmax)− ln(pmin)]/(nzr − 1)} here.
Usually it makes sense to choose lsurfv < ltopv in order to localize on finer scales near

the surface. Then, the pressure levels of the reduced grid are chosen correspondingly to
a lv that varies linearly in ln(p). The recursion is described in the subroutine set_lv in
mo_t_enkf.
HL: How to handle references to such subroutines? Write the full recursion as equa-
tions here?

9.2.3 Updated and Non-Updated variables

In the analysis update (9.15) the analysis increments {Xbwa(`) : ` = 1, . . . , L} are added
to the background mean x̄b to obtain the analysis members {xa(`) : ` = 1, . . . , L}.
This updates those prognostic model variables (Section 5.2) which should be affected

by the observation-derived analysis. Constant fields, e.g. surface parameters, are not
updated.
If the model variables of x̄a are updated independently of the observation types (and

operators) that are used, some variables may be updated only through correlations given
by the ensemble perturbations contained in Pb. This is the case if these variables are not
mapped in any observation operator H(x) into observation space to be compared with
actual observations.
To be safe, specific variables of x can be excluded from the update, e.g. the Rain, Snow

and Graupel mixing ratios qr, qs, qg, if they are have no observed counterpart (e.g. radar
reflectivity of precipitation).

9.2.4 (Adaptive) Covariance Inflation

The flow-dependent background error covariance Pb is estimated from the ensemble per-
turbations. It usually underestimates the true background error, partly due to the limited
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number of ensemble members and partly due to the presence of model errors. This lack
of spread causes the analysis scheme to overestimate the influence of the background
ensemble while the influence of the observations is possibly underestimated. An infe-
rior analysis estimate is the consequence, and during cycled assimilation the background
ensemble might eventually diverge from the true state.

Multiplicative inflation

Multiplicative covariance inflation [1] is a simple technique to deal with this problem. A
covariance inflation factor ρ > 1 can be chosen by which the analysis perturbation of Wa

are explicitly multiplied

Wa
infl = ρWa (9.30)

before adding w̄a to Wa
infl in order to obtain {wa(`)

infl : ` = 1, . . . , L} through (9.14)
which is then used for the update of the member states in model space as in (9.15). This
method enhances the spread of the analysis ensemble posterior to the computation of the
analysis.
As an alternative to (9.30), one can apply ρ in the computation of P̃a. (9.10) then

changes to

P̃a
infl =

[
(L− 1)

ρ
I + (Yb)TR−1Yb)

]−1

(9.31)

This method enhances the spread of the background ensemble (contained in Pb) prior
to the computation of the analysis.
A typical value could be ρ = 1.05, but tuning for an optimal value is inevitable, costly

and mostly impossible due to the changing number of available observations.

Adaptive multiplicative inflation

The underestimation of variance might not be homogeneous throughout the forecast do-
main. Therefore it makes sense to estimate and apply a locally dependent ρ(x) in model
space. Following [6] and [19], an appropriate inflation factor ρ̃ can be estimated using
statistics of increments in observation space:

ρ̃ =
dTo−bdo−b − Tr(R)

Tr(HPbH)
(9.32)

This equation computes a scalar ρ̃-estimate for the whole domain. In the following
derivation, it is used as a template for a local estimate ρ̃(xanacoarse) on the coarse analysis
grid of the present LETKF-implementation.

Let the vector d2
o−b denote the squared deviation of the mean of the members’ first

guesses ȳb from the observations yo with

d2
o−b,j =

(
yoj − ȳbj
σj

)2

, j = 1, . . . ,m (9.33)
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These terms are normalized by the attributed observation errors σj in order to get rid of
the respective units (e.g. K or m/s) and the different orders of magnitude in the numerical
values of different observation types.
Then, let the vector p2 denote the local traces of the background error covariance in

observation space (analytically given by HPbH, but here with the same linear approxi-
mation as in (9.7)):

p2
j =

1

L− 1

L∑
`=1

(
y
b(`)
j − ȳbj
σj

)2

, j = 1, . . . ,m (9.34)

The σ-normalization is performed as in (9.33). As R is taken to be diagonal, it can be
expressed by a vector r2 with

r2
j =

(
σj
σj

)2

= 1, j = 1, . . . ,m (9.35)

Now the mismatch between the specified R and the forecasted Pb, which turns up in
d2
o−b, can be expressed in observation space as

ρ̃(y) =
d2
o−b − r2

p2
(9.36)

with the element-wise computation

ρ̃j =
d2
o−b,j − r2

j

p2
j

, j = 1, . . . ,m (9.37)

ρ̃(y) is then the estimate for the local covariance inflation of every observation point
j ∈ y. As the local analyses are performed on a (coarse) analysis grid (Section 9.2.2), the
estimated inflation needs to be known at every analysis grid point as ρ̃(xanacoarse).
Therefore, all d2

o−b, r2 and p2 that fall into the vicinity of one analysis grid point
are summed up, observation-weighted by their respective localized contribution C0ji (cf.
(9.24)):

d2
o−b,i =

m∑
j=1

d2
o−b,jC0ji , i = 1, . . . , nanacoarse (9.38)

r2
i =

m∑
j=1

1 · C0ji , i = 1, . . . , nanacoarse (9.39)

p2
i =

m∑
j=1

p2
jC0ji , i = 1, . . . , nanacoarse (9.40)

The final estimate ρ̃(xanacoarse) can now be computed as

ρ̃i =
d2
o−b,i − r2

i

p2
i

, i = 1, . . . , nanacoarse (9.41)



DWD DA System Documentation March 4, 2019 141

which can be traced back to (9.32).
This estimation is performed for every analysis grid point and then interpolated onto

the model grid to obtain a ρ̃(x), before computing the analysis with an inflated Pa
infl as

in (9.31) or to apply the update using the inflated Wa
infl as in (9.30).

Because sampling error is an issue with the small number of members L that is used
here, the ρ-field of the covariance inflation should be temporally smoothed to avoid dis-
continuities. A weighting factor α is chosen to combine the estimated ρ̃k at the current
analysis time k and the ρk−1 that was used in the previous analysis cycle to get the ρk to
be applied at the current analysis time k:

ρk = αρ̃k + (1− α)ρk−1 (9.42)

Additive Inflation

Additive Inflation: Complete?

In the present implementation of the LETKF, the analysis computation accounts for
background and observation errors, but not for the inherent model error. In the case
of the global LETKF, it is possible to use the background error of the 3dVar-B-matrix
(Section 7.2) as a proxy for the model error: After or before the generation of the analysis
ensemble {xa(`) : ` = 1, . . . , L}, random noise with mean 0 and covariance B is added
to the members. This is similar to the generation of an initial global ensemble (Section
9.1.5).

x` = x` + faddB
1/2b , ` = 1, . . . , L , b ∈ N(0, I) (9.43)

where fadd is a factor between 0 and 1 that controls the amplitude of the added per-
turbations.

9.2.5 Multistep analysis

Multistep analysis is also known as successive, serial or batch assimilation
@Hendrik: Was there a reference planned here?

. It means that the observations are assimilated in two or more steps, using a subset of
the observations in each of these steps. The analysis obtained in the previous step serves
as the first guess for the next step. If also the Pb matrix is updated and no localization
is applied, it can be shown that the last analysis is identical to an analysis obtained by
assimilating all observations in one step simultaneously.
So far, multistep analysis was used for computational or algorithmic reasons. In the

COSMO-LETKF, there are various motivations to use multistep analysis :

• to account for local / nonlocal observations (e.g. Radiances)

• in relation with adaptive localization: to account for different observation densities
(conventional / radar). When using adaptive localization and assimilating different
kinds of observations with different observation densities simultaneously, an adaptive
localization method would choose a very small localization radius only slaved to the
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dense parts of the observation network. This would result in missing information
from the coarser observation types at many gridpoints.

• to respect different observed scales (synoptic / convective scale) and observation
errors

It appears senseful to assimilate nonlocal and sparse observations ahead of local and
dense observations. A final strategy for different observation types has yet to be developed.
For example, nonlocal observations such as radiances could be assimilated in a second step
without vertical localization.
The multistep analysis is technically implemented in COSMO-LETKF and will be

tested with radar data.

Theoretical background

The proof of the following derivations can be found in
@Hendrik: Reference to inverse-problems paper?

For the standard Kalman Filter with analysis xa, and the multistep Kalman Filter with
analysis xa,ξ and multiple steps ξ = 1, ..., q, we have for the final analysis q

xa = xa,q and Ba = Ba,q.

For the covariance matrices Pa := (Xa)(Xa)T generated by the classical EnKF and the
covariance matrix Pa,q := (Xa,q)(Xa,q)T generated by the multi-step EnKF we have

Pa = Pa,q.

We define
A1 := (Xb)T (H(1))T (R(1))−1H(1)X(b)

and
A2 := (X(b))T (H2))T (R(2))−1H(2)X(b).

Assume that the observation operators H(1) and H(2) for two different sets of measure-
ments satisfy A1A2 = A2A1. Then the analysis ensemble generated by the multi-step
EnKF with square root filter is identical to the analysis ensemble generated by the classical
EnKF.
Note: This assumption only holds for linear observation operators - which is not the

general case in COSMO, especially with satellite radiances and radar data (9.7). A sensible
strategy has to be developed for the operational system.

9.2.6 Physical corrections and balances

The forecast state of a model run that is spun up sufficiently can be assumed to be
dynamically consistent, meaning that no unphysical phenomena are contained as far as
the model physics are concerned.
In contrast to the 3DVAR analysis where stability and balance are prescribed (Section

7.2), this dynamical consistency of the forecast is altered in an EnKF system: the EnKF-
analysis update is based on a flow dependent error covariance that is represented by a finite
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ensemble size. A linear combination of dynamically consistent states is not necessarily
a dynamically consistent and balanced state[12], especially in the case on the nonlinear
atmospheric dynamics.
To prevent such inconsistencies, the analysis states are adjusted posterior to the mini-

mization of (9.8) by different means:

Positive humidity

Mixing ratios of atmospheric water mass (vapor q, cloud droplets qcl, cloud ice particles
qci, rain qr, snow qs and graupel qg) are necessarily positive. As there is no constraint
on positivity of these mass fields in the computation of {xa(`) : ` = 1, . . . , L}, these fields
have to be postprocessed in order to provide physically senseful initial conditions for the
forecast model.
For of every member of {xa(`) : ` = 1, . . . , L} the following checks are performed

subsequently:

q
a(`)
cl =

{
q
a(`)
cl , where q

a(`)
ci ≥ 0

q
a(`)
cl + q

a(`)
ci , where q

a(`)
ci < 0

q
a(`)
ci =

{
q
a(`)
ci , where q

a(`)
ci ≥ 0

0, where q
a(`)
ci < 0

qa(`) =

{
qa(`), where q

a(`)
cl ≥ 0

qa(`) + q
a(`)
cl , where q

a(`)
cl < 0

q
a(`)
cl =

{
q
a(`)
cl , where q

a(`)
ci ≥ 0

0, where q
a(`)
cl < 0

(9.44)

This means that negative analysis-values of cloud particles are evaporated "instantly"
and turned into their predecessor in the hierarchy water vapor – cloud water – cloud ice.
After that, the following positivities is set:

q
a(`)
g = 0, where q

a(`)
g < 0

q
a(`)
s = 0, where q

a(`)
s < 0

q
a(`)
r = 0, where q

a(`)
r < 0

qa(`) = 0, where qa(`) < 0

(9.45)

While (9.44) conserves the mass sum of q, qcl and qci, (9.45) actually adds water mass to
{xa(`) : ` = 1, . . . , L}. Nevertheless, this constraint is necessary in order to obtain correct
initial conditions.

Saturation adjustment

In the analysis, oversaturation may occur and disturb the model physics. To compensate,
the saturation water vapor pressure ea over water is computed at points using the Magnus
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formula. All the following computations are performed only where it is warmer than −40◦

C (i.e. T > 233.15 K).

ea(T ) = 610.78 exp

(
17.27 (T − 273.15)

T − 35.86

)
Pa (9.46)

From ea, the saturation mixing ratio qasat is derived:

qasat(T ) =
R
Rd
· ea(T )

pa −
(

1− R
Rd

)
· ea(T )

(9.47)

To compensate for possible subsaturation, first all the cloud water is added towards the
water vapor in all members independently:

where (T > 233.15 K)

{
qa(`) = qa(`) + q

a(`)
cl

q
a(`)
cl = 0

(9.48)

Following this, occuring supersaturations are compensated:

where (T > 233.15 K) and (qa(`) > q
a(`)
sat )

{
q
a(`)
cl = qa(`) − q

a(`)
sat

qa(`) = q
a(`)
sat

(9.49)

This saturation adjustement conserves the mass of q and qcl.
The following 3 paragraph should be moved into the implementation part and then be
deleted here.
There are two subroutines which influence the humidity variables, apply_hum_bounds

and sat_ad. The first one corrects negative values of the humidity variables, the second
one performs corrections of q and qcl in the case of sub/supersaturation. In the following
we briefly describe both subroutines.
apply_hum_bounds first checks whether negative values of qci occur. If this is the case,

qcl is reduced by this value, and qci is set to zero. The same procedure is now repeated
for qcl (subtracting negative values from q, setting qcl to zero if necessary). In the last
step, negative values of q, qr, qs, qh are set to zero. rh is limited to values between 0 and
1.1.
sat_ad performs a very simple saturation adjustement. This is done by first computing

the saturation humidity qvsat. In a second step, q and qcl are adjusted according to qvsat:
in the case of subsaturation e.g. qcl is added to q until qcl is zero or the saturation
humidity is reached.

Hydrostatic balancing of pressure increments (COSMO)

In the case of COSMO, the pressure is a prognostic variable and formulated as p = p0 +p′,
so it is represented by the pressure perturbation p′ from a hydrostatic reference pressure p0.
COSMO is a non-hydrostatic model and is used to forecast convective systems associated
with vertical movement of air parcels. The abundance of inertia gravity waves (IGW)
is therefore necessary and desired, but IGW may be spuriously triggered by unbalanced
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analysis increments of ∆p′ = p′a − p′b and then propagate, interfere and deteriorate the
forecast.

To prevent this, ∆p′ is hydrostatically balanced before it is added to the background:
Assume a non-hydrostatic and dynamically consistent background state containing an
updraft of a convective system with positive w. This is dynamically associated to a
larger p′ above the updraft than in the horizontal environment, and a smaller p′ below
the updraft. Now assume observations that cause an amplification of the vertical wind
speed w through analysis increments ∆w. Usually, w is not directly observed, so ∆w is
determined through Pb (9.3), as is ∆p′. Because the dynamical consistency of ∆w and
∆p′ is not guaranteed, it is safer to compute hydrostatically balanced increments ∆p′hydbal
(9.52) in order to prevent some of the inevitable spurious IGW.

The following derivation is adapted from the COSMO documentation Part III: Data
Assimilation: The hydrostatic equation between background and analysis in finite dif-
ferences of the COSMO formulation on model levels (counted downwards by index k)
reads

p′ak+1 − p′ak
1
2

(
dp0k+1

+ dp0k

) =
dp0k

dp0k+1
+ dp0k

{
T0k+1

T bk+1p0k+1

p′ak+1 −
T ak+1 − T0k+1

T ak+1

− qa,virtk+1

}
+

dp0k+1

dp0k+1
+ dp0k

{
T0k

T bkp0k

p′ak −
T ak − T0k

T bk
− qa,virtk

}
(9.50)

where qa,virt = (Rv/Rd − 1) · qa − qacl − qar − qas , and T b, T a are the background and
analysis temperature. (Rv/Rd− 1) contains the gas constants of dry air and water vapor,
qa is the analysis water vapor mixing ratio, qacl, qar , qas describe the mixing ratios of cloud
water, rain and snow. dp0k describes the vertical variation of the reference pressure p0 on
the k-th model half level as

dp0k = (p0)k+1/2 − (p0)k−1/2

A background buoyancy term Bk on level k is defined as

Bk = Rρ0kT
b
k (9.51)

where ρ0k is the density of the COSMO reference atmosphere (in the Fortran code:
zfbuyot = Bk and zfbuyob = Bk+1).
The final pressure increment ∆p′hydbal (hydrostatically balanced with respect to tem-

perature T ) is then computed upwards from the lowest model level (largest k) by the
recursion

∆p′k,hydbal =

(
2 +

dp0k

Bk

)−1

·
{

∆p′k+1 ·
(

2−
dp0k+1

Bk+1

)
+
T ak dp0k+1

T bk
+ dp0k∆q

a,virt
k+1

+
T ak+1dp0k

T bk+1

+ dp0k+1
∆qa,virtk

}
(9.52)
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where ∆qa,virt = (Rv/Rd − 1) ·∆qa −∆qacl −∆qar −∆qas .
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9.3 Observation error covariance
Section 9.2 already discussed the properties of the background error covariance Pb, implic-
itly contained in the minimization of the background part of (9.8), and the localization
of R.
This section discusses the actual entries of the observation error covariance matrix R.

For simplicity, the present implementation of the LETKF assumes and uses a diagonal R
whose entries are the variances {sigma2

obsjj
: j = 1, . . . ,m}. This means that only the

variance of the observation errors are taken into account and error correlations (contained
in the off-diagonal covariances) are disregarded.

9.3.1 Error Models

Observation errors consist of three main partitions:

1. Measurement error: For in-situ measurements like temperature or pressure, this
part is usually small and possible to determine, while for remote sensing it is more
difficult.

2. Representativity error: A single observation may represent a scale that is smaller
than the model resolution, e.g. a turbulent wind gust of O(10-100 m) observed by
a radio sonde compared to the model resolution of O(1 km).

3. Operator error: Although not an error of the observation itself, the computations
of the observation operator may be simplified or tainted by assumptions that make
the model equivalent H(x) differ from yo, even if x was perfect.

Here the error models of the observation operators of shortly discussed, first those that
are applied in COSMO, then those of the operators contained in 3dVar which are also
used for the VarEnKF (Chapter 10).

COSMO-Operators

When the observation reports are read in the by COSMO members (using the COSMO-
module data_obs_cdfin), every single observation data point yj is assigned a standard
deviation σobs from an error table which depends on the type and height of the observation.
Usually, the assumed observations errors are larger near the surface and the stratosphere
than within the stratified mid-tropospheric levels.

GME/ICON

Missing: Error models/tables of GME/ICON

9.3.2 (Adaptive) R-correction

The abundance of observations is spatially inhomogeneous, so typically there are regions
within the analysis model domain that have a more dense observation network. The
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presence of many observations causes a large contribution of the observational part of
(9.8) in the computation of the analysis solution x̄a. The background ensemble gets little
weight in such a situation, and the ensemble spread may be overly diminished, while x̄a

gets pulled fiercely towards the observed values.
By transforming the observational part of the costfunction into the ensemble space,

it can be determined if the background ensemble perturbations are sufficient in order to
span the possible states of the observations.
This is often not the case if there is a large number of observations or if the observation

error in R is chosen to small. Therefore, the entries of the R-matrix can be corrected
(typically enlarged) to make the computation of the analysis ensemble consistent.
Incomplete: Description of (adaptive?) R-correction



Chapter 10

Hybrid Variational Ensemble Kalman
Filter (VarEnKF)

VarEnKF Chapter: Complete?

The LETKF described in the previous section uses ensembles of short range forecasts
and analyses in order to represent the uncertainty of the background and analysis in the
cycled analysis system. The ability to provide a flow dependent estimate of the model
forecast and to make use of it in the analysis system itself is the most important advantage
of Ensemble data assimilation systems and the motivation to use them in operational
weather forecasting.
A number of compromises have to be made regarding ensemble size, resolution, model

balances, and consistency in localization of non-local observations in order to achieve a
computationally efficient assimilation system. It is difficult to beat current deterministic
variational analysis systems by pure ensemble Kalman filter formulations and in general
they are not replaced but merely augmented by EnDA systems. Combined hybrid systems
exchange information for instance by using the variance of ensemble forecast to adjust the
variance of the background error covariance matrix of the variational scheme (but keeping
the static correlations) or by adjusting the ensemble mean to the deterministic analysis.
It is possible to use the complete localized ensemble background error covariance matrix

in a variational context as proposed by [4]. The static 3DVAR background error covariance
matrix is replaced or augmented by the flow dependent ensemble B-matrix. Thereby
the 3DVAR gains characteristics of a 4DVAR scheme, namely consideration of temporal
background error covariances consistently with the model dynamics. This setup will be
used in the global data assimilation system for ICON and is described in the following
subsections.

10.1 Extension of the 3DVAR background error covari-
ance matrix

The background error covariance matrix Pb used in the variational scheme is replaced by
a combination of the static covariance matrix Pb

NMC as used formerly in the 3DVAR and
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the ensemble covariance matrix Pb
EnKF :

Pb = βPb
NMC + αPb

EnKF (10.1)

Without localization Pb
EnKF is given by (9.3) and by using x = x̄b+Xbw the cost function

of the EnKF is given by (9.5) now depending on the k (ensemble size) dimensional vector
of control variables w. For this reason this augmentation of the static Pb

NMC with Pb
EnKF

is also known as the method of additional control variables.
In the variational PSAS scheme the background error covariance matrix is given by

operator representations which allow to calculate the product of the background error
covariance matrix Pb with a vector. The representation of Pb

NMC was described in Section
7.3 and the representation of a localised Pb

EnKF is described in the subsequent Section
10.2.

10.2 Localization by the Schur product
The localization approach follows the original proposal by [15] to multiply the ensem-
ble background covariances in physical space (i.e. at each model grid-point) element by
element (Schur product ◦) with a localization matrix C:

Pb = C ◦Pb
EnKF (10.2)

Considering (9.3) we write

Pb = (L− 1)−1C ◦ [Xb(Xb)T ] (10.3)

In the variational optimization algorithm we have to look for an efficient representation
for multiplying the matrix Pb (10.3) with some vector z. If we denote the spatial indices
of the matrix with i and j, and the ensemble index with `, elements of (10.2) are written
as:

pbij = (L− 1)−1

L∑
`=1

cij x
b(`)
i x

b(`)
j (10.4)

We can write:

pbij = (L− 1)−1
∑
`

∑
i′

δii′
∑
j′

δjj′
∑
`′

δ``′ ci′j′ x
b(`)
i x

b(`′)
j (10.5)

and re-arrange:

pbij = (L− 1)−1
∑
`

∑
i′

∑
`′

∑
j′

(x
b(`)
i δii′) (ci′j′δ``′) (x

b(`′)
j δjj′) (10.6)

Finally (10.3) can be formally written as the product of 3 matrices:

Pb = (L− 1)−1X̂b Ĉ (X̂b)T (10.7)

Equation (10.6) provides the recipe to multiply Pb with a vector z in model representation:
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1. Multiply with (X̂b)T : The vector z is a gradient vector defined for each of the
model variables analysed in the variational scheme (temperature, wind components,
humidity) at each model grid-point. For each of the L ensemble members l the vector
z is multiplied grid-point by grid-point and variable by variable with the deviation
[xb(`) − x̄b]. The results for all variables are summed up. The final result of the
operation is a set of L gradient fields defined on the model grid.

2. Multiply with Ĉ: multiply each of the resulting L vectors with the localization
matrix C, resulting in L fields on the (ensemble) model grid.

3. Multiply with X̂b: multiply each of the L vectors element by element with the
respective ensemble deviation [xb(`) − x̄b] and sum over the L products. The result
has the same dimension as z, being defined for each model variable at each grid-
point.

It can be seen that most of the computational effort has to be spent for multiplying L
vectors with the matrix C. An efficient implementation for this operation is discussed in
the following section.

10.3 Representation of the localization matrix C

As discussed in Section 9 the elements cij of the localization matrix C are chosen as
a function of the spatial distance of the location of the respective grid-points i and j.
Localisation functions have similar shape as Gaussian functions and are chosen here as
the Gaspary & Cohn function in multidimensional space. This ensures that the resulting
matrix is positive definite and matrix elements are zero for distances larger than a given
cutoff radius. However for smaller radii the matrix remains dense and matrix vector mul-
tiplications would require a relatively large number of multiplications. Thus we will aim
for another representation which is computational efficient and approximates a Gaussian
function as well. We can exploit the following points:

1. Multiplication of the matrix is basically the application of a smoothing operator or
convolution with a Gaussian like kernel.

2. To ensure that the resulting operator is positive definite we will factorize it as
C = SST with S being the square root of C. Again S can be represented by a
smoothing operator (with lengthscale smaller by a factor 2−1/2).

3. As the localization length scale is considerably larger than the grid spacing, the
smoothing operator can be efficiently implemented on a hierarchical grid. S need
neither be the symmetric square root nor be a square matrix at all, but instead a
matrix of size n times nc, with n being the number of model grid-points and nc the
number of grid-points of a coarser grid, with grid-spacing of order of the localization
length scale.

4. As localisation in vertical and horizontal direction is seperable, we can split up the
matrix S in a vertical and horizontal operator S = SvSh.
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Thus the ensemble background error covariance matrix has the following form:

Pb
EnKF = (L− 1)−1 X̂ Sv Sh STh STv X̂T (10.8)

10.4 Detailed description of the operators applied
Equation (10.8) describes the representation of Pb

EnKF on the model grid (in the resolution
of the ensemble). If used in the PSAS algorithm we have to use HP b

EnKF HT , i.e. we have
to consider interpolation operators I to the locations of the observations. Furthermore
in the MPI parallel environment transposition operators T which redistribute data in
between processors are needed. Taking this into account the background background
error covariance matrix between observation locations has the following form:

IPb
EnKF I

T = (L− 1)−1 Iv Ih Tog X̂ Sv Sh T STh STv X̂T TT
og I

T
h I

T
v (10.9)

Multiplication of the matrix Pb
EnKF with a vector z is achieved by the following sequence

of operations:

1. Multiplikation with ITh I
T
v : (the adjoint of the interpolation operators.) The ele-

ments of the vector z are defined at the pressure levels of the observations for the
adjoint variables of geopotential height, virtual temperature, (generalised) relative
humidity, and wind components. The interpolation operators Iv Ih are mainly the
same as those described in Section 7.3 for the NMC background error correlation
model. However here they do not include any spatial differentiation as the EnKF
background error is represented in physical quantities, not streamfunction or veloc-
ity potential.

2. Multiplikation with TT
og: The interpolation operators (and their adjoints) act at the

locations of the observation and they are evaluated on the processors which hold
the observations. For the (ensemble) model grid a different paralelisation strate-
gie is followed. The transposition operator TT

og redistributes the model columns
accordingly.

3. Multiplikation with (X̂b)T : The vector at the right hand side is defined for each
model variable (temperature, wind components, humidity) at each model grid-point.
For each of the L ensemble members l the vector is multiplied grid-point by grid-
point and variable by variable with the deviation [xb(`) − x̄b]. The results for all
variables are summed up.

The operations of this step are performed on the original model grid. As model
columns are distributed over all processor elements computations are distributed
over processors accordingly.

The final result of the operation is a set of L fields (for each ensemble member).
The above operations for each of the L ensemble members are independent from
each other, so that the operations of this step 3, as well as those of the subsequent
steps 4 to 9 can be performed sequentially.
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4. Multiplikation with STv : This is a 1-dimensional smoothing operator in vertical
direction. It is evaluated on a grid with linear spacing in log(p) corresponding
to the choice of the vertical localisation parameter. As motivated previously the
result is computed on a coarser grid with spacing corresponding to the vertical
localisation length scale. Matrix elements between coarse grid-points (here index
j) and model grid-points (index i) are calculated as sij = Ni cg(4ij). Here cg(4ij)
is the Gaspari&Cohn function depending on the ’distance’ in log(p) with vertical
localisation length scale multiplied by 2−1/2. The factor Ni is a normalisation factor
ensuring that

∑
j(Ni cg(4ij))

2 = 1. This ensures that diagonal elements of SvS
T
v

have value 1, i.e. correct normalisation for a correlation function.
Because the coarse grid spacing is chosen of order of the localisation length scale
and the support of the Gaspari&Cohn function is of order 6 (-3. . . 3) the number
of nonzero coefficients of Sv per model gridpoint i is of order 6. consequently the
number of operations involved is about 6 times the number of model gridpoints.
The size of the result vector is mhmv there nh is the number of horizontal grid-
points and mv is the number of vertical modes (vertical model extend divided by
the localisation length scale). The latter is of order 10 which is considerably smaller
than the number of vertical grid-points.

5. Multiplikation with STh : This is a 2-dimensional smoothing operator in horizontal
direction. As motivated previously the result is computed on a coarser grid with
spacing corresponding to the vertical localisation length scale. Different approaches
are used for regular regional lat-lon grids (COSMO) and irregular global grids (GME,
ICON):

COSMO
On the regular (rotated) lat-lon grid the horizontal localisation operator can
be split into seperable operators STh = STxSTy . This option is currently not
implemented.

GME/ICON
For global irregular grids a GME grid is taken for the coarse grid. The GME
resolution parameter ni is chosen so that the grid spacing is equal or smaller to
the localisation length scale. Again coefficients take the form sij = Ni cg(4ij)
with proper normalisation Ni. Now of order 30 coefficients are required for
each horizontal model grid-point i. For a horizontal localisation length scale of
300 km ni becomes 24 corresponding to 6250 horizontal gridpoints.

6. Transposition T: As model columns are distributed over all processor elements, the
computations in the vertical (step 4, STv ) are evaluated on different processors. The
previous step 5 (STv ) actually consists of smoothing the results horizontally on a
coarse grid, i.e. of multiplying the right hand side with some predefined coefficients
and sum them up. This requires input from different processors. However, as the
result grid is coarse (and thus the amount of resulting data is manageable) we
perform the summation of the terms independently on each processor, and finally in
this transposition step T take the sum over the individual results of each processor
and again redistribute it to all processors.
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7. Multiplikation with Sh: This step corresponds to the multiplication with the trans-
posed of step 5.

8. Multiplikation with Sv: This step corresponds to the multiplication with the trans-
posed of step 4.

9. Multiplikation with X̂b: The previous step provides the ensemble member weights
on the model grid. It is multiplied with the respective ensemble deviation and
summed up to finally yield the analysis increment. This step is the last one of steps
3 to 9 which is performed sequentially for each ensemble member.

10. Multiplikation with Tog: This transposition operator redistributes the model
columns to the processors which handle the observations.

11. Multiplikation with Iv Ih: Apply the interpolation operators from the (ensmble)
model grid to the location of the observations.

In the postmultiplication step the result of the multiplication of a vector with Pb
EnKF is

not interpolated to the locations of the observations but to the grid of the deterministic
analysis. In this case (10.9) is applied in the same way, merely in the final steps 10 and
11 (Iv Ih Tog) the transposition and interpolation operators act in between the ensemble
grid and the deterministic analysis grid.
Some computational optimisations are possible in the above procedure (10.9): The

columns of the ICON grid are distributed arbitrarily over processors. Thus we are free
to allocate the columns of the ensemble deviations X on the same processors as used
for handling the observations (and dublicate them if the same grid column is required
for observations on different processors). Then the transpositions Tog and TT

og become
obsolete.

10.5 Prospects for Multiscale Localisation
Schur product multiplication of Pb

EnKF with a localisation matrix C, is an ad hok approach
to suppress stochastical noise due to the limited ensemble size for matrix elements which
are known to be small, here correlations for large spatial distances. However application
of the Schur product in model representation is a somehow arbitrary choice and other
options are possible. Localisation may be applied in transformed representation.
In the ensemble framework this corresponds to

1. derive the ensemble deviations in transformed representation by applying the trans-
formation T−1:

X̃ = T−1X

2. apply the Schur product using a localisation matrix C̃ in transformed representation:

Pb
EnKF = T P̃b

EnKFTT = T (C̃ ◦ (X̃X̃T )) TT

For specific choices of the transformation T this has the following effects:
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Spectral transform
If T is a spectral transform, localisation on P̃b

EnKF corresponds to the suppression
of correlations between different scales. This is equivalent to a spatial smoothing
of the correlations. The method has been applied when deriving the climatological
static background correlations Pb

NMC for the 3dVar from the NMC method by using
the FFT transformation for zonal averaging of the correlations.

Wavelet transform
If T is a wavelet transformation, localisation on P̃b

EnKF corresponds to the sup-
pression of correlations between different scales and different locations. This kind
of multiscale localisation becomes important especially for assimilation in regional
models or refined regions there multiple scales with different correlation length scales
are involved, for instance convective and synoptic scales.

The technique to apply the localisation matrix on a coarser grid as described in the pre-
vious section can be extended to localisation in wavelet representation using a hierarchical
model grid if we define the transformations T and T−1 as follows:

Inverse transformation T−1:

1. repeatedly smooth the ensemble deviation X and represent it on a coarser grid.

2. repeatedly re-interpolate the smoothed fields from the coarser to the next finer
grid and subtract it from the ensemble deviations represented on the latter.

This procedure seperates the ensemble deviations on different scales. Localisation
using different length scales may be applied to each of them.

Forward transformation T: repeatedly re-interpolate the smoothed fields from the
coarser to the next finer grid and add it to the ensemble deviations represented on
the latter scale.

The proposed method does not provide an orthogonal wavelet transformation (which
would imply TT = T−1). However, this is not mandatory for this application. The
method is known as the lifting scheme and especially applicable to irregular grids on the
sphere.

10.6 Usage of the VarEnKF
The following namelist parameters are relevant for steering the VarEnKF:

Namelist Group Parameter Value for VarEnKF Description
/RUN/ method ’VARENKF’ Switches on VarEnKF.

In the global data assimilation cycle the deterministic 3dVar and ensemble LETKF
analyses are derived in the same call of the data assimilation binary. The sequence of
operations depends on the method specified in the namelist group /RUN/: PSAS denotes
a deterministic 3dVar only. PSAS+LETKF denotes the LETKF ensemble analysis with
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preceding 3dVar which provides quality control and bias correction of observations. for
VARENKF in addition the ensemble background error covariance matrix is used in the
variational scheme. In detail the following sequence of operations is performed:

method task
PSAS PSAS+LETKF VARENKF
X X X read observations and deterministic

forecast
X X read forecast ensemble

X set up ensemble B matrix to be used in
the variational scheme.

X X X monitoring of observations vs. deter-
ministic forecsat.
FG-check, observational QC.

X X X deterministic variational analysis, in-
cluding variational quality control of
observations.

X X LETKF ensemble analysis.



Chapter 11

Supplemental Modules SST, ICE,
SMA, SNOW

In Section 2.3, the concept of the four modules was introduced which produce analysis
fields for

• Sea Surface Temperature (SST) and sea Ice coverage (ICE) (both in Section 11.1)

• the Soil Moisture Analysis (SMA) (Section 11.2)

• the Snow coverage (SNOW) (Section 11.3)

In this Chapter, the analysis methods of these modules are documented. They stem
from the COSMO package [22], which is called LM in this Chapter.
HL: This documentation of SST, ICE, SNOW, SMA is simply COPIED from the
COSMO-Docu Part III (Data Assimilation). It needs a real good overhaul to make
it consistent with the rest of this docu. Also, someone needs to tell Christoph Schraff
that this DWD-DA-Docu has now taken the job of documenting these 4 modules!
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11.1 SST and ICE: Analysis of Sea Surface Tempera-
ture and Ice Cover

11.1.1 Overview

Over water, the sensible and latent heat fluxes at the surface strongly depend on the
surface temperature. The correctness of its specification is a prerequisite for realistic
simulations of cyclonic development, particularly in baroclinic regions. In addition, the
location of the sea ice boundary is also very important since strong vertical heat fluxes
can be induced when cold air masses are advected from ice-covered areas to the open
water.
Therefore, sea surface temperature and the location of the sea ice boundary are analyzed

2-dimensionally in another separate procedure. Typically, this analysis is performed once
a day at 0UTC as part of the data assimilation.
The object of the sea surface temperature analysis for LM is to capture not only the

slowly varying large-scale temperature patterns, but also smaller-scale phenomena such
as cold anomalies due to upwelling currents or the relatively rapid warming in shallow
coastal areas in periods of strong solar irradiation. However, diurnal or very small-scale
variations should be filtered out because sea surface temperature is held constant during
the forecast.

11.1.2 Analysis Method

Firstly, the extent of the sea ice cover is analyzed. For this purpose, external analyses are
directly interpolated to the model grid. Namely for the Baltic Sea, a weekly analysis from
the Federal Maritime and Hydrographic Agency of Germany (BSH) with a latitudinal–
longitudinal resolution of 0.1 by 0.16 degrees is used. For other areas, a daily global
analysis (Grumbine, 1996) from the Ocean Modelling Branch of NCEP based on SSMI
satellite data is available at a resolution of 0.5 by 0.5 degrees and could be used if required.
Sea ice temperature is currently derived from ECMWF climatology, however it is planned
to compute this quantity by means of a one-layer sea ice model incorporated in the LM
in the foreseeable future.
Sea surface temperature (SST) is analyzed by means of a correction scheme. The

analysis is determined by adding weighted observation increments to a first guess or
background field in the environs of the observations. As a first guess field, the interpolated
SST analysis of GME is deployed for which the first guess field is given by a 0.5 by 0.5
degree SST analysis of NCEP. The latter analysis does not only use in-situ observations
but also bias-corrected satellite data (Reynolds and Smith, 1994). Hence, the SST analysis
of LM does also benefit from these satellite data.
The observational data set used for the SST analysis of LM comprises of all the ship

and buoy data from within the previous 5 days. As a quality control, the data are checked
against the first guess and against observations from the other stations in the vicinity.
For the analysis at each grid point, the first guess value is corrected by a weighted mean
of all the observation increments. The individual weights depend on the distance between
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analysis and observation time, on the observation type, and on the spatial distance of the
observation from the target point according to Eq. (11.18) with ∆z = 0 and s = 200 km
( s = 430 km for the SST analysis of GME).
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11.2 SMA: Variational Soil Moisture Analysis

11.2.1 Overview

2–m temperature observations are assimilated by the variational soil moisture analysis,
as presented in the following. Soil water content influences screen–level values for tem-
perature and relative humidity during clear–sky days. An inaccurate specification can
result in forecast errors up to several degrees centigrade. Since direct measurements of
soil moisture contents are rarely available, an indirect determination is necessary. This
is done by a variational method: The optimal soil moisture contents minimize a cost
functional that expresses the differences between model derived and observed screen–level
temperature and humidity1 (cf. Mahfouf et al., 1991, Callies et al., 1998, Rhodin et al.,
1999, and Bouyssel et al., 1999).
Since, basically, the soil moisture fields are adapted so that the model screen–level fore-

casts approximate the observed values, the retrieved soil moisture fields depend essentially
on the used forecast model, especially on the applied soil and boundary layer parame-
terizations. Errors of the model forecasts are reflected in errors of the retrieved values.
However, the resulting forecasts are improved and the computed heat and moisture fluxes
at the bottom of the atmosphere model have a good chance to be improved as well.
Since the soil–atmosphere coupling is strongest with high radiative impact, observations

close to noon are assimilated. The diurnal variation of 2–m temperature and 2–m relative
humidity have to be provided by the physical parameterizations.
The soil moisture analysis is applied once per day in order to provide improved soil

moisture fields to be used by the forecast that starts at the following day. Because the
soil–atmosphere coupling is not always strong enough to derive sufficient information on
the soil moisture contents to compute them in a reliable way, a Kalman filter cycled
analysis is applied that incorporates a background state along with background error
estimates. In case of low radiative impact, the retrieved moisture fields remain close to
the background. High impact, on the other hand, results in improved moisture fields and
reduced background error estimates.
The variational Kalman–filter analysis scheme that is documented in this section re-

quires one additional forecast run for each analyzed soil moisture layer, but does not
depend on a specific soil model nor on a certain boundary layer model and is applicable
for general numerical models and technical environments.

11.2.2 Variational Analysis

The variational analysis scheme derives improved soil moisture contents by minimizing a
cost functional. The minimization problem is of high dimension in general; the moisture
contents of each horizontal grid column of every soil layer has to be retrieved. However,
since the screen–level values for temperature and relative humidity are mainly vertically

1 Currently only 2–m temperature observations are assimilated; 2–m relative humidity observations
can be included in the analysis in a straight forward way as soon as the model forecast values are in
comparative quality.
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coupled to the soil moisture contents of the same grid column (at least in case of clear–
sky conditions with strong soil moisture–atmosphere coupling), a horizontal decoupling is
assumed that reduces the high–dimensional minimization problem to a large series (one
for each horizontal grid point) of low–dimensional (the number of analyzed soil layers)
minimizations2. In this way the computational requirements are essentially reduced.
In the following the formulation of the variational soil moisture analysis scheme is

given for an arbitrary horizontal grid point and for the assimilation of 2–m temperature
observations only.
Let η and ηb denote vectors of dimension nsoil containing the moisture contents of the

analyzed soil layers and their background states, respectively. The vectors T o and T (η)
of dimension nobs contain analyses (based on synoptic observations) and model forecasts,
respectively, of 2–m temperature for specified observation times. The cost functional J
to be minimized at each analysis step (i. e. daily) reads

J (η) = J o(η) + J b(η) (11.1)

with the observation term

J o(η) =
1

2

(
T o − T (η)

)T
R−1

(
T o − T (η)

)
(11.2)

and the background term

J b(η) =
1

2
(η − ηb)T B−1 (η − ηb) , (11.3)

with ADP ≤ ηj ≤ PV , j = 1, . . . , nsoil . The components of η (indicated with lower
indices) are limited by air dryness point (ADP ) and pore volume (PV ) of the actual soil
type.
Matrix R ∈ IR

nobs×nobs denotes the observation error covariance matrix and B ∈
IR

nsoil×nsoil the background error covariance matrix. Both matrices R and B are sym-
metric and positive definite for physical reasons. Matrix R is assumed constant and
diagonally dominant. At the start of the cycled soil moisture analysis scheme matrix B
is initialized with estimated error variances and error covariances of the first guess soil
moisture fields that are used as initial background ηb . Further on, the background values
ηb and the background error covariance matrix B are provided within the cycled Kalman
filter analysis scheme, see Section 11.2.2 .

Minimization of J results in the analyzed soil moistures ηa :

J (ηa) ≤ J (η) for all η 6= ηa . (11.4)

The minimization is performed under the assumption that the linearization given in
Section 11.2.2 is valid; a unique minimum is guaranteed.

2 Experiments have been carried out that confirm the assumption of horizontal decoupling for grid
sizes of 14 km and 7 km.
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Minimization

Although the soil moisture – 2–m temperature dependency is nonlinear in general, lin-
earization around the background state provides good approximations as long as the
retrieved values are not too far from the background state.
Linearization of the model 2–m temperature T (η) around ηb gives

T (η)
.
= T (ηb) + Γ (η − ηb) , (11.5)

where the Jacobian Γ∈ IR
nobs×nsoil is approximated by one–sided finite differences,

Γi,j := min

(
Ti(η

j)− Ti(ηb)
ηjj − ηbj

, 0

)
, (11.6)

with i = 1, . . . , nobs and j = 1, . . . , nsoil . The approximation (11.6) requires the routine
forecast based on the background moisture contents ηb and nsoil additional forecast runs
with varied soil moisture contents ηj . The partial derivatives are known to be negative
for physical reasons.3 The components of vector ηj are computed by

ηjk =

{
ηjj

ηbj
for

k = j

k 6= j
, k=1, . . . , nsoil , (11.7)

where the varied soil moisture content ηjj is altered depending on air dryness point (ADP )
and field capacity (FC) of the soil model in order to reduce the influence of the soil type
of the actual horizontal grid point. The size of the alteration ∆η is given by

∆η = (FC − ADP ) ∆ε , (11.8)

the fraction ∆ε ∈ ]0, 1
2
[ is a tuning parameter. The direction of the variation is chosen

according to the forecast error as long as the background ηb is not too close to the limits
ADP and FC, i. e. :

ηjj =



min(ηbj , FC)+∆η for


nobs∑
i=1

Ti(η
b) >

nobs∑
i=1

T oi and ηbj+∆η < FC

or
ηbj −∆η ≤ ADP

min(ηbj , FC)−∆η for


nobs∑
i=1

Ti(η
b) ≤

nobs∑
i=1

T oi and ηbj−∆η > ADP

or
ηbj + ∆η ≥ FC

(11.9)

Although soil moisture influences evapotranspiration and 2–m temperature only be-
tween ADP and FC (as defined by the applied soil model of the LM4), higher moisture

3 Slightly varying cloud covers in the different forecast runs can result in erroneous positive finite
differences, that are eliminated by the minimization.

4 Similar boundaries should exist for other soil models.
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values up to PV are allowed to reduce the instant impact on the soil model and to provide
more realistic soil moisture values (e. g. in case of heavy precipitation).
In order to provide reasonable analysis increments for background values ηb that exceed

FC , it is necessary to derive non–vanishing soil moisture – 2–m temperature dependencies.
The minimization of ηbj by FC in Equation (11.9) assures that the varied soil moisture
contents reside in the sensitive range between ADP and FC even if ηbj exceeds FC .

Using the linearization (11.5) the gradient of the cost function can be analytically
expressed as

∇J (ηb) = −ΓT R−1
(
T o − T (ηb)− Γ (η − ηb)

)
+ B−1 (η − ηb) . (11.10)

For the low–dimensional minimization problem it is highly efficient to solve

∇J (ηa)
!

= 0 (11.11)

directly5. Little calculus gives the minimum ηa of the cost function as

ηa = ηb +
(
ΓT R−1Γ + B−1

)−1
ΓT R−1

(
T o − T (ηb)

)
. (11.12)

Equation (11.12) is the formula that is implemented to actually compute ηa .
Worth to mention that the applied minimization by linearization and direct solution is

no degradation in accuracy of the retrieved soil moisture fields.

The minimization of the cost functional J is performed under the constraint that the
analyzed values ηa are in the range

ADP ≤ ηaj ≤ PV , j = 1, . . . , nsoil . (11.13)

If the global minimum of the cost functional resides outside this valid range, the minimum
at the boundaries is computed to result in the analyzed values. The algorithm that
computes the minimum considering the boundary side constraints is rather technical and
will not be reported here6.

Kalman–filter Cycling

The soil moisture analysis is performed daily for 0UTC . For the start of the cycled soil
moisture analysis scheme the background error covariance matrix B is initialized with
estimated error variances and covariances B0 of first guess moisture fields that are used
as initial background ηb .
The background state (ηb)t+1 and the background error covariance matrix (B)t+1 for

the following day are provided in a Kalman–filter cycled analysis (the valid times of the
variables ηa , ηb , A , and B are indicated from now on by upper indices outside brackets).

5Because of the linearization a unique minimum is guaranteed.
6 A simpler approach would be to compute the global minimum and restrict the moisture values in

both soil layers independently to the valid range. Experiments showed only slight differences in the
analyses.
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An increase of confidence in the retrieved soil moisture values due to the assimilated
screen–level observations as well as a decrease due to the model error of the soil model
are taken into account.

The background soil moisture contents for the following day (ηb)t+1 are computed as

(ηb)t+1 = (ηa)t +
(
M t+1

t

(
(ηb)t

)
− (ηb)t

)
, (11.14)

where M t+1
t

(
(ηb)t

)
are the 24 h model values that result from the routine forecast that is

started at 0UTC with the background fields (ηb)t . Changes in soil moisture contents by
precipitation and evapotranspiration during the 24 hours are taken into account in this
way without the requirement of another additional forecast run.

The confidence in the retrieved values (ηa)t is given by the analysis error covariance
matrix A ∈ IR

nsoil×nsoil ,

(A)t =
(
∇2J

)−1
=
(
ΓT R−1Γ +

(
(B)t

)−1
)−1

, (11.15)

which is the inverse of the Hessian of J (e. g. Tarantola, 1987). If there is little dependence
of the moisture contents on the 2–m temperatures (Γ ≈ 0), then (A)t almost equals the
background error covariance matrix (B)t . The larger the dependence is, the smaller the
estimated analysis errors become.

An auxiliary new background error covariance matrix (B̃)t+1 is computed by

(B̃)t+1 = M (A)t MT + Q , (11.16)

where matrix M ∈ IR
nsoil×nsoil is an estimation of the tangent linear of the forecast oper-

ator M t+1
t . Matrix Q ∈ IR

nsoil×nsoil expresses the assumed error of M t+1
t . This additive

term reduces the sensitivity of the background to past observations and is important to
keep the retrieved moisture contents variable in long–term cycled analyses.

In case of weak soil–atmosphere coupling (Γ ≈ 0) for a sequence of days, the background
error covariance matrices (B)t+1, (B)t+2, . . . increase linearly with Q , which reflects the
reduced confidence in the retrieved moisture fields and larger variations become possible
in subsequent analyses. The error variances and error covariances of Q are the main
tuning parameters of the cycled assimilation scheme.

The background error covariance matrix (B)t+1 is limited by Bmax in order to prevent
the background errors from unlimited growth that could affect the stability of the soil
moisture analysis in case of longer periods with no soil moisture impacts (e. g. snow).
Strictly speaking: the variances (diagonal elements of (B̃)t+1) are limited by Bmax and the
covariances (non–diagonal elements) are adjusted in order to result in the same correlation
coefficients, i. e. the coefficients of (B)t+1 are computed as

bi,j =

 min(b̃i,j, b
max
i,j ) for i = j

b̃i,j
√

bi,i bj,j

b̃i,i b̃j,j
for i 6= j

, i, j=1, . . . , nsoil .
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Free Parameters

The tuning parameters of the variational soil moisture analysis scheme are the matrices
R, Q, B0, Bmax, and M as well as the fraction ∆ε . (They are controlled by namelist
parameters of the model SMA.)
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11.3 SNOW: Snow Analysis

11.3.1 Overview

Knowledge of the distribution of snow is necessary for the determination of surface albedo
and surface fluxes in weather prediction models. The presence of a snow cover reduces
dramatically the absorption of short-wave radiance at the ground and hence strongly
influences the local near-surface temperature. Moreover, the distribution of snow cover
can also have a significant large-scale impact as it may affect the characteristics of air
masses.
Therefore, snow depth is analyzed 2-dimensionally in a separate procedure and trans-

formed into the model variable snow water content in order to be used in the LM. Typi-
cally, this is done at a frequency of once every 6 hours during the data assimilation cycle.
Note that in the context of short-range numerical weather prediction, it is less important
to determine exactly the snow depth than the horizontal extent of the snow-covered areas.
The object of the snow depth analysis is to find a proper value for each model grid

point which is representative of the grid box and the height of the model orography. This
height is a mean value of the real orography within the grid box.

11.3.2 Input Data

There are three sources of information that are used in the snow depth analysis:

1. surface-level synoptic observations (SYNOP);

2. model ’forecast’ values of snow water content transformed into snow depth from
the LM nudging run for data-pour areas where the total influence (weight) of the
SYNOP observations is below a given threshold;

2. monthly snow depth climatology (from ECMWF) for defining permanently ice-
covered glacial areas.

Depending on the information content, different data are extracted from SYNOP reports:

- Total snow depth. If this is not reported then also:

- 6-hourly precipitation sum. This is converted into a snow depth increment provided
that the 2-m temperature T2m (observed or, if it is not observed, model-derived) is
below 0◦C and the present or past weather observations ww indicate snowfall. If
6-hourly precipitation is also missing, then also:

- Present and past weather observations. In case of reported snowfall, a snow depth
increment is calculated using an empirical function of ww . Other weather observa-
tions result in zero snow depth increments.
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11.3.3 Quality Control

At first, observed snow depth is subject to a plausibility check. It is rejected if it exceeds
an acceptance limit d alsn = 1.5 [m] · (1 + zob/800 [m]) which depends on station height zob .
Then, a first guess quality control check is performed. Here, the previous snow depth

analysis d a(t−1)
sn is regarded as a first guess for truth, and the observation is rejected if it

deviates from that guess by more than a threshold value d thrsn given by

d
thr

sn = 0.8 [m] ·
(

1 +
zob

2000 [m]

)
·max

(
0,min

(
1,

287.16 [K]− T2m

10 [K]

))
(11.17)

11.3.4 Analysis Method

The analysis method used for snow depth is based on a simple weighted averaging of
observed values and does not use a background field except in data-pour regions. The
individual weight wk of an observation k at a target grid point depends both on the
horizontal distance ∆r and the vertical distance ∆z between these two points,

wk = max

(
s2 −∆r 2

s2 + ∆r 2
, 0

)
· max

(
z2
s −∆z 2

z2
s + ∆z 2

, 0

)
(11.18)

The weight is zero for observations which are further away from the target point than
the radii of influence s and zs . The horizontal radius s is set to 120 km in data-dense
areas and to 200 km elsewhere, whilst the vertical radius of influence zs = 0.4 · z+ 180m
increases with increasing height z of the target point.

Using Eq. (11.18), the weighted averages of snow depth observations dsn
ob and of

snow depth increments ∆dsn
ob derived from precipitation and weather observations are

calculated as well as the sum of weights W d =
∑
wdk resp. W∆d =

∑
w∆d
k . The

total weights W d and W∆d are measures for the local data density of the two types of
observations.
As these data densities may vary strongly in space and time, the way to determine the

final analyzed snow depth depends on them. If the sum of weights of snow depth data
is greater than a prescribed value Wsuf then the analyzed snow depth d asn at that grid
point is set simply to the weighted mean value of observed snow depth, i.e.

d asn = dsn
ob

=
∑
k

wk · dksn / W d , W d ≥ Wsuf ≡ 2 (11.19)

If this condition is not satisfied but the mean of the two data densities is greater than
Wsuf , i.e. if 1/2·(W d+W∆d) ≥ Wsuf > W d , then (only) the weighted mean of snow depth
increments ∆dsn

ob is additionally taken into account. The weighted mean increment is
added to the previous analysis d

a(t−1)
sn , and a possible snow melt ∆dmeltsn is subtracted.

The result is combined with the mean weighted observed snow depth so that

d asn =
W d

Wsuf

· dsn
ob

+

(
1− W d

Wsuf

)
·
(
d
a(t−1)
sn + ∆dsn

ob −∆dmeltsn

)
(11.20)

Whenever the mean of the two data densities is also smaller than Wsuf , the third data
source, i.e. the 6-hour model forecast of snow water content converted into snow depth
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d fcsn , is also used. Then, the analyzed value is given by

d asn =
W d

W
suf

· dsn
ob

+
W∆d

2W
suf

(
1− W d

W
suf

)
· dsn

inc
+

(
1− W∆d

2W
suf

)(
1− W d

W
suf

)
· d fcsn (11.21)

where dsn
inc

= d
a(t−1)
sn + ∆dsn

ob −∆dmeltsn .
At grid points where climatological data indicate permanent ice cover the snow depth

is set to 100m . In a final check, it is ensured that the analysis increment at any grid
point does not exceed a limit that depends on height and temperature.
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User Guide: Overview

This Part III User Guide explains how to install, run and cycle the three core data as-
similation algorithms of 3-dimensional Variational Data Assimilation (3dVar) (Chapter
7), the Ensemble Kalman Filter (EnKF) in the formulation of the Local Ensemble Trans-
form Kalman Filter (LETKF) (global LETKF and local Kilometre-Scale Ensemble Data
Assimilation (KENDA), Section 9) and the Hybrid Variational Ensemble Kalman Filter
(VarEnKF) (Section 10).
Historically, the 3dVar-algorithm is the basis of the DWD-Data-Assimilation package.

The central binary which contains all three core algorithms is therefore called var3d – so,
whenever in this user guide var3d is mentioned, it refers to the central software and not
necessarily to the algorithm of 3dVar.

Chapter 12 Installation
explains how to download and install the var3d DA software.

Chapter 13 How to start the DA software
shows how to start the var3d-binary using the namelist /RUN/.

Chapter 14 DA Software: Perform the Assimilation Methods
shows how to perform the five different DA methods:

14.1 3dVar for global model (GME/ICON)

14.2 LETKF for global model (GME/ICON)

14.3 generation of global ensemble (GME/ICON)

14.4 LETKF for local model (COSMO-KENDA)

14.5 VarEnKF for global model (GME/ICON)

The Sections explain which namelists, switches and basic parameters need to be set
in order to perform these data assimilation algorithms.

Chapter 15 Cycled Data Assimilation
describes how the concept of cycled data assimilation is performed in the DWD DA
suite. Section 15.1 focuses on global 3dVar-cycling, 15.2 on global LETKF-cycling
and 15.3 on the local KENDA-LETKF-cycling.

Chapter 16 Namelist Groups
serves as a reference for all the possible namelists used in Chapter 14, often with
back-links to the scientific docu for specific switches.
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Chapter 17 Observation Handling
is 3dVar-specific and shows how to handle observation processing.

Chapter 18 1D-Var
is 3dVar-specific and shows how to set up observation retrievals.

Chapter 19 Computation Environment
gives information about the DWD NUMEX system (Section 19.1) and the utility-
and test-programs that are contained in the var3d-package (Section 19.2).

Chapter 20 File formats
gives detailed information about the file formats used in var3d.

Chapter 21 Program output (stdout)
explains the control-output of the var3d software and its different modules and
namelist sections.



Chapter 12

Installation

12.1 Source code management

Program development is done using the subversion (SVN) repository at the Max-Planck-
Institute in Hamburg (same SVN server as for ICON).
Subversion is a source code revision system which allows to work the code concurrently

by different persons, keep track of all changes and merge the changes applied by differ-
ent developers. This note describes how to create a personal working copy of the code
maintained in the repository and how to compile it for running a test-case.
The most important SVN commands are:

svn checkout https://svn.zmaw.de/svn/osas/trunk/3dvar
First checkout of the DWD data assimilation system sources. SVN user-id and
password are requested. The command will create a directory 3dvar/ with subdi-
rectories holding the source code, makefiles, and configuration files.
The SVN repository is hosted by the ZMAW in Hamburg. Direct access to the
repository is restricted by the firewall and granted only for exclusive IP adresses.
See Section 12.1.1 for details.

svn update [-r revision] [files]
This command will update the files (if given) or the content of the current directory
(and subdirectories), taking into account the changes made by others since the
last checkout or update command was issued. The -r flag switches the working
directory to the specified revision.

svn commit -m’comment’ [files]
Changed files are written back to the repository by the commit command. If the
files were committed by others since the last checkout or update was issued, they
must be updated beforehand.

svn diff [files]
Shows the changes between the working copy and the repository. Note that the
emacs editor provides a mode for this comparison as well.

173



174 DWD DA System Documentation March 4, 2019

svn log [file]
Shows the log file on the revisions checked in (revision number, date, comment given
by svn commit -m’...’, . . . ).

12.1.1 Access restrictions

The SVN repository is hosted by the ZMAW in Hamburg. The password can be changed
interactively by using the WEB interface:

https://svn.zmaw.de
...
-> SVN access management

Direct access to the repository is restricted by the firewall and granted only for exclusive
IP adresses. Some details for access from different sites are given below.

MPIfM / ZMAW sites :

No further precautions are required.

DWD sites :

In order to pass the DWD firewall the following lines must be included in /.sub-
version/servers :

...
[global]
http-proxy-host = ofsquid.dwd.de
http-proxy-port = 8081
...

Users with SSH access to ZMAW sites :

Access may be achieved by setting up an ssh tunnel:

1. Set up the SSH tunnel in a seperate window:
ssh -L 8888:svn.zmaw.de:443 m214030@login1.zmaw.de
Enter ZMAW user-id and password.

2. Access the SVN as described in Section 12.1. In the checkout command the
repository has to be specified as follows:
svn checkout https://localhost:8888/svn/osas/trunk/3dvar

12.2 Compilation
A Makefile is required for compilation in the source directory 3dvar/. In order to create
the Makefile the script ./Make has to be called. It calls the script ./configure with
suitable options.
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Different platforms are pre-configured. For program development and testing we rec-
ommend the gfortran compiler. For operational production code the NEC compiler (SX9)
and the sun compiler (hpc-Linux-cluster) are used.
For these platforms the configuration steps are in detail:

1. Within 3dvar/, edit the header of ./Make (as suggested by the comments). ./Make
is pre-configured for the gfortran compiler. A different script (Make-sx9) is provided
for the NEC SX9.

2. Make sure to acess the correct compiler. For program development on hpc we use
a non-standard compiler. Create the following symbolic link in your bin-directory
to access that compiler:
cd /bin
ln -s /e/uhome/hanlauf/X86_64/lib/gcc-4.3/bin/gfortran

3. Call ./Make :
cd 3dvar/
./Make

4. call make (or make -j8 for parallel compilation on 8 processors) to compile.

Library paths and compiler options are specified in config/mh-platform. If your plat-
form is not supported yet by respective entries in Make and config/mh-platform these
files must be modified accordingly.
For temporary changes the top level Makefile (3dvar/Makefile) may be changed, which

is restored by(.Make) .
A HTML-reference of the source files (3dvar/html/index.html) is created by typing

make index .

12.3 External libraries

For I/O purposes and parallelization the 3D-Var package requires the following external
libraries:

GRIB
The GRIB library is used to read and write the gridded model data. The CGRIBEX
library of the Max-Planck Institute for Meteorology is used. This library uses the
same interface as the GRIBEX and PBIO routines from ECMWF, but can handle
the GME icosahedral grid. This library supports GRIB version 1. In the future
GRIB version 2 will be handled using a different library (ECMWF GRIB API)

NetCDF
The NetCDF library is currently used to read (and eventually write back feedback
files) for observational data which is not coded in BUFR format (currently RTTOV
1D-Var data).

http://www.wmo.ch/web/www/WDM/Guides/Guide-binary-2.html
 https://code.zmaw.de/projects/cgribex
http://www.ecmwf.int/publications/manuals/libraries/gribex/index.html
http://www.ecmwf.int/publications/manuals/libraries/pbio/index.html
http://www.unidata.ucar.edu/packages/netcdf/
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MPI (Message Passing Interface)
The parallelization is based on the Message Passing Interface. Depending on the
platform, it may be necessary to link explicitely to the MPI library (for instance
openMPI), as long as the the library is not implicitly linked by the compiler or
program is not compiled for a single processor version (compiler option -DNOMPI).

The following libraries are optional and may be enabled/disabled by respective options
in the Make script:

BUFR
The DWD BUFRX library was used to read the observational data. Currently the
observations are converted to NetCDF files (by bufrx2netcdf, also from the BUFRX
package) and then read by the NetCDF routines. Thus linking to the BUFRX
library is obsolete and currently optional.

GRIP API Currently we upgrade from GRIB version 1 to GRIB version 2. The GRIB
API library supports both versions and will replace the CGRIBEX library in the
future.

The paths of the NetCDF- and MPI-libraries are set in the configuration files
3dvar/config/mh-platform.
The content of the following external libraries are provided within the source code tree

in order faciliate moving to other platforms and testing. Thus these sources may be
compiled and are provided as a library from the source code. Alternatively the respective
libraries may be linked externally:

BLAS, LAPACK
Linear algebra routines (Directory 3dvar/blas, 3dvar/lapack). For many platforms
optimised external libraries exist and should be used.

RTTOV7
Fast radiative transfer observation operator version 7 developed by the NWP SAF
(3D-Var Directory 3dvar/rttov7). This version was used in the past and will become
obsolete in the future.

RTTOV10
Fast radiative transfer observation operator version 9 developed by the NWP SAF
(3D-Var Directory 3dvar/rttov10).

12.4 DWD VCS
For the generation of operational binaries the assimilation code is also maintained in the
DWD VCS.
Recipe to access the VCS:

setenv ADM [/e]/rhome/for0adm/vcscmd
mkdir ..../3dvar
cd ..../3dvar
$ADM/workbench 3dvar

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.wmo.ch/web/www/WDM/Guides/Guide-binary-1A.html
https://software.ecmwf.int/wiki/display/GRIB/Home
http://research.metoffice.gov.uk/research/interproj/nwpsaf/
http://research.metoffice.gov.uk/research/interproj/nwpsaf/
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doku: $ADM/html/index.html
Three scripts handle the transfer of source files from CVS to VCS and back:

3dvar/scripts/vcs-from-cvs
3dvar/scripts/vcs-edit
3dvar/scripts/vcs-to-cvs
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Chapter 13

How to start the DA software

After the succesful compilation (Chapter 12), the executable var3d is found in the direc-
tory 3dvar/build/platform/bin/var3d, or shorter var3d-path/var3d. It is the central
program to be executed.

13.1 Starting var3d

Section 13.1.1 describes the execution commands for var3d. The namelist /RUN/ is fun-
damentally needed, as it sets up the different methods. It is documented in Section 16.1
and needs to be set up in any case.

13.1.1 Execution commands

var3d is compiled against the parallel computing library of the Message Passing Interface
(MPI) (cf. Chapter 12.3) which is also used for the execution. The following commands
may be used to run the executable:

Linux: mpirun-path/mpirun -np n var3d-path/var3d
Here n is the number of processors invoked which should be equal to the product of
nproc1 times nproc2 specified in the namelist-group /RUN/.

IBM (cos5): llsubmit LL
In the run script LL, the number of nodes times number of processes per node again
must match the values of the namelist parameters.

13.1.2 Starting Parameters

In general, it makes sense to start working from an existing set of namelists, like a template
or one that has been used by somebody else succesfully – with the same version of var3d,
as parameters may change!

The namelist /RUN/ sets the basic parameters for the execution of var3d. The following
settings in the namelist are the most fundamental to set:
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• method selects the assimilation algorithm (Chapter 14)

• model selects the forecast model

• nproc1 times nproc2 sets the number of parallel processors

• run_type determines whether the assimilation is performed or the program is only
tested

• time_ana sets the analysis point-in-time

• time_ref delivers the reference point-in-time from which the background forecast
had been started

• data, iopath, input, output, obsinput, aux set the input and output-directories
for the files

• center and subcenter are written into the GRIB-records (to match the WMO-
GRIB-tables)



Chapter 14

DA Software: Perform the Assimilation
Methods

The var3d software offers five wmethods of data assimilation to be performed:

Section 14.1
3dVar for global model (GME/ICON)

Section 14.2
LETKF for global model (GME/ICON)

Section 14.3
generation of global ensemble (GME/ICON)

Section 14.4
LETKF for local model (COnsortium for Small-scale MOdelling (COSMO)-
KENDA)

Section 14.5
VarEnKF for global model (GME/ICON)

The following subsections describe the basic settings of how these methods are called,
which namelists they use, what algorithms they perform, and their I/O.
When namelists and their parameters are mentioned, the user is highly advised to look

into the descriptive tables of the respective namelists (Chapter 16)
As soon as testcases and template-namelists exist for these methods, descriptions need
to be copied here!

With everyone of these algorithms, the assimilation computation is performed at a
specific point in time tk. The execution of this computation is described here – the cycled
data assimilation is described in Chapter 15.
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14.1 3dVar for global model

The 3dVar algorithm is the basis of the var3d software. It is applicable to the global
model GME and the global version of ICON.
The minimization algorithm and the background error covariance model for the B-

matrix of 3dVar are documented in Chapter 7.

14.1.1 3dVar – Settings

The following settings activate 3dVar:

Namelist /RUN/:

• method = ’PSAS’

• model = ’GME’ or ’ICON’

• run_type = 2

14.1.2 3dVar – Namelists

This section provides a description of the namelists that are necessary for the usage of
3dVar algorithm.

Processing of observations
var3d reads in the observations and applies the observation operators for global
models that are documented in Section 6.1.

General data selection parameters as described in Section 17 may be specified glob-
ally or individually for the different report types (TEMP, SYNOP, TOVS, ...) in
namelist /REPORT/*. More complex or specific rules can be set up in /RULES/*.
Some other observation processing parameters are specified in /OBSERVATIONS/.
Parameters applicable to specific observation types only may be set in one of the
namelist groups /SYNOP_OBS/, /TEMP_OBS/, /AMV_OBS/, /AIREP_OBS/, /TOVS_OBS/,
or /GPS_RO/ and /RO_VDA/*. Name and locations of blacklisting files are specified
in namelist /BLACKLIST/*. Artificial observations may be generated using namelist
/DEF_OBS_NML/*.

Modeling of background errors
Documented in Section 7.2, parameters of the background error covariance model are
specified in /PSCMODEL/ (correlation function parameters) and /CNTRLVAR/ (control
variable transformations). Details for the humidity analysis are set in /HUM_ANA/.
The new wavelet based B-model is specified in /BG_ERROR_OPERATOR/. Observa-
tion error correlation model parameters are specified in /OBSERR/. Parameters of
the Variational Quality Control algorithm are set in /VARQC/. Parameters for the
analysis error calculation are set in /ANAERROR/.
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Solver parameters
Parameters of the optimization algorithm (number of iterations, convergence cri-
teria) are specified in namelist /PSAS/. Here also parts of the program may be
switched off (analyses error estimation, post multiplication) and additional output
may be invoked.

Debugging and monitoring
Monitoring of the convergence process is controlled in /PSAS_MONITOR/. Tests of the
consistency of tangent tangent linear operators with their nonlinear counterparts is
invoked in /TEST_OBS_OPR/.

14.1.3 3dVar – Input/Output

Here the input and output of one 3dVar analysis computation at analysis time tk. Figure
14.1 provides a flowchart of the I/O concept, described in the lists below.

DA Core Module Input

Output

3dVar
var3d with setup_psas

[1] GME/ICON
Deterministic Forecast
GRIB: i128f_ + TIME_REF

[2] Observation files
BUFR and/or NetCDF

[3] Namelist
ASCII: namelist

[5] B-Matrix
NetCDF Format

[6] BiasStat
ASCII Format

[7] Analysis
GRIB Format

[8] Feedback Files
NetCDF Format

[9] Diagnostics
Diverse Formats

3dVar-one-assim figure is incomplete!

Figure 14.1: The figure displays the data processing concept of var3d in the 3dVar mode
for one analysis computation at analysis time tk (TIME_ANA). The previous analysis had
been at tk−1 (TIME_REF).

3dVar Input

The following list describes the input of 3dVar, following Figure 14.1:
Missing: Description of 3dVar input. Could be derived from the testcase in Section
14.1.4
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3dVar Output

The following list describes the output of 3dVar
Missing: Description of 3dVar output. Could be derived from the testcase in Section
14.1.4

14.1.4 3dVar – Testcase

In the sub-directory 3dvar/run, files for running a 3dvar test-case are provided:
namelist-ref13: namelist file for program steering
MPIRUN-gfortran: script to run the 3dvar interactively
D13 script to compare the output with a reference data set
psas.info-ref13: reference data set

Perform the following steps to run the test-case:

1. Copy the steering file namelist-ref13 to the standard input file namelist:

cp namelist-ref13 namelist

2. Provide an output directory for the test-case (create a directory or provide a sym-
bolic link):

mkdir output-ref13

3. Run the test-case on 4 processors, redirect the output to file OUT:

./MPIRUN-gfortran 4 | tee OUT

4. Compare the observation output of the program with a reference data set:

./D13

A description of the standard program output (file OUT) is provided in Section 21.
A description on the observation output (psas.info, feedback file in ASCII format) is

provided in Section 20.2.

Input data

Constant data
Files btfcoef_f, clerr_f, fgerr_f and rszcoef_f with climatological background

error coefficients and ww15mgh.grd with worldwide 15 minute gridded geoid heights (re-
quired for the GPS ray-tracing operator) are provided in the 3dvar/data/ directory from
the CVS repository. These files are stored in compressed format so that decompression
(gzip -d *.gz) is required prior to the first model run.
The RTTOV package needs coefficient files located in the directory there the analysis

code is run (3dvar/run/). The script rttlink establishes the required symbolic links.
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Variable data

The following input files are required for each analysis:

namelist:
Namelist file (cf. section 16) (ASCII), to be provided in the current directory.

io/input/i128f_yyyymmddhh:
Model forecast starting from the previous analysis (first guess) (GRIB).

io/input/i_ga_err_yyyymmddhh :
Estimated statistical error of the previous analysis (GRIB).

io/input/blk_yyyymm0100:
Blacklist (ASCII).

io/mld_file.z:
Observations (BUFR).

The directories io, input as well as the date of the previous analysis yyyymmddhh are
specified in the namelist-group /RUN/.

Executing the var3d code

HL: Parts of this Section are used in the new Chapter 13 – when it is finished, this
Section can be deleted/altered

The executable is located in 3dvar/build/platform/bin/var3d. For testing purposes
it is called from the directory 3dvar/run. The following commands may be used to run
the executable:

Linux: MPIRUN n
Here n is the number of processes invoked which should be equal to the product of
nproc1 times nproc2 specified in the namelist-group /RUN/ (cf. section 16).

IBM (cos5): llsubmit LL
In the run script LL, the number of nodes times number of processes per node again
must match the values of the namelist parameters.

Output data

For cyclic data assimilation the following output files are written:

nxxxxxxx.xxxxxx.o:
standard output (ASCII).

io/output/i128a_ga_yyyymmddhh:
analysis (GRIB)
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io/output/i_ga_err_yyyymmddhh:
analysis error (GRIB)

For diagnostics and monitoring the following output files are written optionally:

io/output/i128a_ga_yyyymmddhh_inc:
analysis increment (GRIB)

io/output/i128a_ga_yyyymmddhh_incp:
analysis increment on pressure levels (GRIB)

io/output/aux/fg_err.grads:
analysis error (GRADS)

io/output/aux/fg_err.grads.ctl:
analysis error (GRADS)

io/output/aux/nlpcg.info:
cost function and gradient as a function of iteration (ASCII, cf. Section 20.1)

io/output/aux/psas.info:
observation diagnostics (ASCII, cf. Section 20.2)

io/output/aux/spots.ctl:
diagnostics on observations (GRADS)

io/output/aux/spots.dat:
diagnostics on observations (GRADS)

The directory names io, output, and aux, as well as the date of the previous analysis
yyyymmddhh are specified in the namelist-group /RUN/.
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14.2 LETKF for global model

Performing the LETKF-algorithm is an option of the var3d software. An assimilation
computation using it can be performed a) for an ensemble of the global models GME
and ICON, and b) for the local COSMO model. Here case a) is described1, shortly called
global LETKF.
The LETKF algorithm is documented in Chapter 9.

In the case of global LETKF, the assimilation is performed in two steps:

1. First, a deterministic 3dVar-analysis (exactly as described in Section 14.1) is com-
puted with a deterministic forecast run in parallel, including first guess checks (Sec-
tion 8.1) and Variational Quality Control (Section 8.2). The idea behind this is to
make use of the sophisticated observation treatment of the 3dVar algorithm. The
treated observations are saved internally and handed over to the next step:

2. Secondly, a pure LETKF-analysis is performed with an ensemble of the global
model, using the preselected and preprocessed observations of the beforehandedly
performed 3dVar analysis.

The following Sections only describe the application of the pure LETKF step.
Missing: Flowcharts for all the 5 methods!

14.2.1 global LETKF – Settings

The following settings activate the LETKF for the global model:

Namelist /RUN/:

• method = ’PSAS+LETKF’

• model = ’GME’ or ’ICON’

• run_type = 2

14.2.2 global LETKF – Namelists

This section provides a description of the namelists that are used for the global LETKF.

Processing of observations
The application of observation operators is performed analogously to 3dVar (ob-
servation namelists in Section 14.1.2), but now for every member. The settings in
the observation namelists are only relevant for the beforehanded 3dVar-computation
which provides the LETKF with preselected and preprocessed observations.

1case b) is in KENDA Section 14.4
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Modeling of background errors
As documented Section 9.1, the background error covariance Pb is computed using
only the ensemble perturbations. As documented in Section 9.2, the namelist /ENKF/
sets up options for the background error covariances:

• the ensemble size L as parameter k_enkf

• the horizontal and vertical covariance localization using the parameters lh,
lv_surf, lv_top

• the multiplicative covariance inflation using rho, apply_rho, and adap_rho
(the latter with dependent settings)

• variables to be transformed in the analysis (par_trans) or passed through from
the forecast ensemble (par_fce)

Model errors
Using the background error covariance matrix B of 3dVar as a proxy for model error,
the namelist /ENKF/ sets up the amplitude of the added noise (additive inflation)
with parameter mf. It is added either to the background or the analysis ensemble,
controlled by moderr_fc.

Solver parameters
The LETKF-computation is performed using the algorithm documented in Section
9.1.

The namelist /ENKF/ sets up:

• the coarse grid number of diamonds ni as parameter rni

• the number of vertical analysis grid levels nzr as parameter nzr

• the analysis to be performed on common pressure levels with fix_plev

Physical corrections
For the post-processing, /ENKF/ activates the positivity of humidity using q_bound
and saturation adjustment using sat_adj.

@Andreas and Hendrik: Please check if this makes sense for the global LETKF!

14.2.3 global LETKF – Input/Output

Here the input and output of one global LETKF analysis step at analysis time tk. Figure
14.2 provides a flowchart of the I/O concept, described in the lists below.

global LETKF Input

The following list describes the input of the global LETKF, following Figure 14.3:
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[1] Prior 3dVar analysis
As mentioned above, var3d first computes a full deterministic 3dVar-analysis (Sec-
tion 14.1, Figure 14.1) to preprocess the observations. Then, var3d keeps running
and passes the proprocessed observations yo in the specific fortran datatype contain-
ers [3] to the routine letkf_driver of var3d which applies H(x`) for all members
and then performs the global LETKF.

Description of 3dVar flowchart and I/O is incomplete.

[2] global Forecast Ensemble
An L-sized ensemble of global GME or ICON members has produced forecasts from
tk−1 (TIME_REF) to tk (TIME_ANA). These forecast states (valid at tk) are provided
as GRIB files in the input directory in the filename form
gff + TIME_REF + .xxx
where xxx is the number of the respective ensemble member, e.g. 001 or 032.

[3] Preprocessed observations
These observations (value, location, observation error) had been read and prepro-
cessed in [1].

[4] Adaptive Inflation Estimate from tk−1

If the adaptive covariance inflation is activated by the parameter adap_rho, the
inflation estimate ρk−1 from the previous analysis at tk−1 is read from the input
directory as the binary file
rho_local.dat
where local refers to the fact that ρ is computed locally for every analysis grid
point.

What happens at the very first assimilation where there is no previous rho-
estimate?

[5] Namelists
Placed in the run-directory where var3d is executed, the ASCII-file
namelist
contains the namelist groups that contain the specific settings for the global LETKF
(Section 14.2.2 and Chapter 16).

global LETKF Output

The following list describes the output of the global LETKF (all files are saved in the
output directory), following Figure 14.2:

[6] global Analysis Ensemble
The LETKF produces a L-sized analysis ensemble at tk as initial conditions for the
next GME/ICON-forecast step. These GRIB files are saved in the filename form
gaf + TIME_ANA + .xxx
where xxx is the number of the respective ensemble member, e.g. 001 or 032.
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[7] Forecast Ensemble Mean and Spread
Before computing the analysis, the mean and the spread of the forecast ensemble of
[1] are saved as
gff + TIME_REF + .mean/spread
in two separate files for mean and spread.

[8] Analysis Ensemble Mean and Spread
The mean and the spread of the analysis ensemble of [6] are saved as
gaf + TIME_ANA + .mean/spread
in two separate files for mean and spread.

[9] Adaptive Inflation Estimate at tk
Depending on [4], the new covariance inflation estimate ρk from the current analysis
is saved as the binary file
rho_local.dat

[10] Output of Wa matrix
If gp_mat is active, the analysis weight matrix Wa is saved for certain analysis grid
points selected by gp_mat as the binary file
matrix.dat.iii
where iii describes the indices of the chosen analysis gridpoints.

Name convention for iii? See letkf_driver!

[11] Diagnostics
Various diagnostics of RMSE and spread and usage of observations are possible.

Missing: Description of LETKF-diagnostics and produced output-files!

[12] Control Output
Running on a parallel computer, var3d produces text output to the terminal via
stdout. This is output typically caught by the queuing system of the cluster and
saved into the ASCII-file
var3d.out
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var3d as global LETKF : Input

Output

global LETKF
letkf_driver in var3d

[1] Prior
3dVar analysis
setup_psas in var3d

[2] global Forecast Ensemble
GRIB files: gff + TIME_REF + .xxx

[3] Preprocessed
observations

Fortran Obs. Datatypes

[4] Inflation (tk−1)
Binary file: rho_local.dat

[5] Namelists
ASCII: namelist

[6] global Analysis Ensemble
GRIB files: gaf + TIME_ANA + .xxx

[7] Fc. Mean/Spread
gff + TIME_REF + .mean/spread

[8] Ana. Mean/Spread
gaf + TIME_ANA + .mean/spread

[9] Inflation (tk)
Binary file: rho_local.dat

[10] Wa Matrix
Binary file: matrix.dat.iii

[11] Diagnostics
Various files

[12] Control Output
via stdout as var3d.out

var3d keeps running

Figure 14.2: The figure displays the data processing concept of var3d in the KENDA
mode for one analysis computation at analysis time tk (TIME_ANA). The previous analysis
had been at tk−1 (TIME_REF). Boxes with double borders denote an ensemble of files.
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14.3 generation of global ensemble

Missing: Userguide for generation of global ensemble
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14.4 KENDA: LETKF for local model COSMO
This Section describes how the LETKF is set up and performed for the local non-
hydrostatic model COSMO. The cycling system which is built around this assimilation is
KENDA.
The LETKF algorithm is documented in Chapter 9.
The following Sections only describe the application of the pure LETKF step.

Missing: Flowcharts for all the 5 methods!

14.4.1 KENDA – Settings

The following settings activate KENDA:

Namelist /RUN/:

• method = ’LETKF’

• model = ’COSMO’

• run_type = 2

14.4.2 KENDA – Namelists

This section provides a description of the namelists that are used for KENDA:

Processing of observations
The application of observation operators is performed within the members of the
COSMO ensemble (Section 6.2).

The communication between the COSMO members and var3d is done using feed-
back files that contain the model equivalents H(x`) and σobs,fof (Section 6.2). They
are selected using fof_prefix in the namelist /ENKF/.

The namelist /FOF_INPUT/ allows to manipulate σobs,fof while /OBSERR/ allows ac-
cess to the built-in error tables of the module mo_obs_err.

The namelist /RADAR_OBS/ gives control over observations processed by the radar
operator in COSMO.

The namelists /REPORT/ and /RULES/ give control over the usage of different obser-
vation locations, types and single measurements.

Modeling of background errors
As documented Section 9.1, the background error covariance Pb is computed using
only the ensemble perturbations. The namelist /ENKF/ sets up options for the
background error covariances (Section 9.2):

• ensemble size L as parameter k_enkf

• horizontal and vertical covariance localization using the parameters lh,
lv_surf, lv_top
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• adaptive localization using adap_loc (with dependent parameters)

• multiplicative covariance inflation using rho, apply_rho, and adap_rho (the
latter with dependent parameters)

• variables to be transformed in the analysis (par_trans) or passed through from
the forecast ensemble (par_fce)

Solver parameters
The LETKF-computation is performed using the algorithm documented in Section
9.1.

The namelist /ENKF/ sets up:

• horizontal coarse grid factor fhor,r as parameter rf

• number of vertical analysis grid levels nzr as parameter nzr

• (non-)application of analysis weights at COSMO boundaries using
ensbc_weights

• usage of a deterministic update additional to the ensemble update using
det_run

• output of Wa-weights on analysis gridpoints using gp_mat on indices gp_ind

Physical corrections
For the post-processing, /ENKF/ activates:

• positive humidity using q_bound

• saturation adjustment using sat_adj

• hydrostatic balancing of analysis increments using hyd_bal

14.4.3 KENDA – Input/Output

Here the input and output of one KENDA analysis computation at analysis time tk.
Figure 14.3 provides a flowchart of the I/O concept, described in the lists below.

KENDA Input

The following list describes the input of the LETKF of KENDA, following Figure 14.3:

[1] COSMO Forecast Ensemble
An L-sized ensemble of COSMO members has produced forecasts from tk−1

(TIME_REF) to tk (TIME_ANA). These forecast states (valid at tk) are provided as
GRIB files in the input directory in the filename form
lff + TIME_REF + .xxx
where xxx is the number of the respective ensemble member, e.g. 001 or 032.
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var3d as KENDA : Input

Output

KENDA
var3d with letkf_driver

[1] COSMO Forecast Ensemble
GRIB files: lff + TIME_REF + .xxx

[2] Observation minus first guess
Feedback files: fof_TIME_REF_ens-xxx.nc

[3] Det. COSMO Fc.
lff + TIME_REF + .det

[4] Inflation (tk−1)
Binary file: rho_local.dat

[5] Namelists
ASCII: namelist

[6] COSMO Analysis Ensemble
GRIB files: laf + TIME_ANA + .xxx

[7] Fc. Mean/Spread
lff + TIME_REF + .mean/spread

[8] Ana. Mean/Spread
laf + TIME_ANA + .mean/spread

[9] Det. COSMO Ana.
laf + TIME_ANA + .det

[10] Inflation (tk)
Binary file: rho_local.dat

[11] Wa Matrix
Binary file: matrix.dat.iii

[12] Diagnostics
Various files

[13] Control Output
via stdout as var3d.out

Figure 14.3: The figure displays the data processing concept of var3d in the KENDA
mode for one analysis computation at analysis time tk (TIME_ANA). The previous analysis
had been at tk−1 (TIME_REF). Boxes with double borders denote an ensemble of files.

[2] Observation minus first guess
In every COSMO-member ` of [1], the observation operator was applied to get
the first guesses H(x`), mapping onto the space of the observations yo. The pairs
[H(x`), yo] (together with observation time, location, and the observation error from
COSMO) are contained in L feedback files in the input directory in the filename
form
fof_ + TIME_REF + _ens + xxx.nc
where xxx is the number of the respective ensemble member. It is possible that there
are feedback files with different prefixes (due to different or external operators).
These can be listed in the parameter fof_prefix to read all the available data.

[3] Deterministic COSMO Forecast
For the deterministic COSMO-update of KENDA (optional, controlled by
det_update), the deterministic forecast from tk−1 (TIME_REF) to tk (TIME_ANA) is
provided in the input directory in the GRIB-file
lff + TIME_REF + .det
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[4] Adaptive Inflation Estimate from tk−1

If the adaptive covariance inflation is activated by the parameter adap_rho, the
inflation estimate ρk−1 from the previous analysis at tk−1 is read from the input
directory as the binary file
rho_local.dat
where local refers to the fact that ρ is computed locally for every analysis grid
point.

What happens at the very first assimilation where there is no previous rho-
estimate?

[5] Namelists
Placed in the run-directory where var3d is executed, the ASCII-file
namelist
contains the namelist groups that contain the specific settings for KENDA (Section
14.4.2 and Chapter 16).

KENDA Output

The following list describes the output of KENDA (all files are saved in the output
directory), following Figure 14.3:

[6] COSMO Analysis Ensemble
The LETKF produces a L-sized analysis ensemble at tk as initial conditions for the
next COSMO-forecast step. These GRIB files are saved in the filename form
laf + TIME_ANA + .xxx
where xxx is the number of the respective ensemble member, e.g. 001 or 032.

[7] Forecast Ensemble Mean and Spread
Before computing the analysis, the mean and the spread of the forecast ensemble of
[1] are saved as
lff + TIME_REF + .mean/spread
in two separate files for mean and spread.

[8] Analysis Ensemble Mean and Spread
The mean and the spread of the analysis ensemble of [6] are saved as
laf + TIME_ANA + .mean/spread
in two separate files for mean and spread.

[9] Deterministic COSMO Analysis
The deterministic analysis at tk is saved in the GRIB-file
laf + TIME_ANA + .det

[10] Adaptive Inflation Estimate at tk
Depending on [4], the new covariance inflation estimate ρk from the current analysis
is saved as the binary file
rho_local.dat
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[11] Output of Wa matrix
If gp_mat is active, the analysis weight matrix Wa is saved for certain analysis grid
points selected by gp_mat as the binary file
matrix.dat.iii
where iii describes the indices of the chosen analysis gridpoints.

Name convention for iii? See letkf_driver!

[12] Diagnostics
Various diagnostics of RMSE and spread and usage of observations are possible.

Missing: Description of LETKF-diagnostics and produced output-files!

[13] Control Output
Running on a parallel computer, var3d produces text output to the terminal via
stdout. This is output typically caught by the queuing system of the cluster and
saved into the ASCII-file
var3d.out
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14.5 VarEnKF for global model



Chapter 15

Cycled Data Assimilation

As introduced in Chapter 2, data assimilation is performed in a cycling manner where an
assimilation step is followed by a model forecast step with a forecast time interval ∆tfc
ranging from 3 hours in the global 3dVar-cycling down to 15 minutes or less for the local
KENDA-cycling system.
The following sections are building on the description of the point-in-time analysis

computations documented in Chapter 14:

Section 15.1
cycling for the global 3dVar analyses using deterministic forecasts of the GME or
ICON model.

Section 15.2
cycling for the global LETKF analyses ensembles of the GME or ICON model.

Section 15.3
cycling for local model LETKF analyses of KENDA using ensembles of the COSMO
model.

It should be noted that the cycling descriptions provided here refer to standalone-cycling
scripts used at the DWD. The user is free to construct own scripts for data management,
namelist templates and binary calls, depending on the architecture of the computational
cluster that is used.

199
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15.1 Global 3dVar Cycling

Userguide for 3dVar-Cycling: Complete?

The basic design of the basic cycling system for the global 3dVar data assimilation
system is shown in Figure 15.1.

0 UTC 3,6,9,...,21 UTC

[1a] Core DA
Module

[0] SatPP
Satellites

[1b] SNOW
Module

[1c] SST
Module

[1d] T2M
Module

[1e] SMA
Module

[1e] SMA
Module

2013053100
Directory

2013053103
Directory

[2] Model
24h run

[2] Model
run 4t = 3h

[1a] Core DA
Module

[1b] SNOW
Module

[0] SatPP
Satellites

[2] Model
run 4t = 3h

Figure 15.1: The figure displays the design of the basic cycling environment for the global
3dVar data assimilation system. The modules [1b] to [1d] are run only at 0UTC, the snow
analysis [1a] is run at every cycling time, currently at 3,6,9,... UTC. A 24h model run is
needed for the SMA which runs at every 0 UTC.

The idea of the basic cycle is to have a tool for development and debugging of each
of its modules. To this end, a careful treatment of the input and output of all modules
and its file processing is realized. The basic ideas are best explained by going into a little
more detail.

1. All files for each assimilation column are stored in one directory with a name re-
flecting the analysis date and time. We employ the name convention YYYYMMDDHH
with YYYY containing the year in four digits, MM the month with two digits, DD the
day in two digits and HH the hour. For faster update rates in KENDA, minutes mm
and seconds ss can also be added.

2. The cycling is managed by a loop which we also refer to as level 0, realized by a
script run_cycle. It takes basic parameters such as the startdate, the cycling
interval and the enddate and cycles by adding the cycling interval to the current
analysis date ADATE in each step and carrying out the assimilation for ADATE.
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3. At each analysis time, the different modules shown in a column of Figure 15.1 for
assimilation are called, where we use the order SST [1c], T2M [1d], SMA [1e], Core
DA [1a], the SNOW module [1b] and the model run [2]. We refer to this succession
of modules as level 1.

4. The runs generate diverse output, an output directory is generated containing log
files and feedback files, which contain the observations and corresponding model
equivalents for further evaluation and verification.

5. Some modules are carried out at every analysis step, for example the snow analysis
[1b]. Others as SST [1c], T2M [1d] and SMA [1e] are only run at 0 UTC. Further,
the SMA module [1e] needs a run of the model over the past 24 hours as input.
This is shown in Figure 15.1 in the bottom line with an arrow from [2] Model to
[1e] SMA.

An example of the list of data files when cycling ICON is given as follows:

LL ... shell script for running job
NAMELIST_ICON_output_atm ... ICON namelist
NAMELIST_icon_0018 ... ~
an_R02B06.2013050412 ... the core analysis file
bias_AIREP.201305041200 ... bias correction file
bias_RAD.201305041200 ... ~
end_LL ... job output
end_LL.icon ... ~
er_R02B06.2013050412 ... B Matrix for 3dVar
fc_R02B06.2013050415 ... first guess
fc_R02B06_ll.2013050415 ... lat-long version of first guess
icon_master.namelist ... ?
ini_R02B06_ll.2013050412 ... ?
namelist ... 3dVar namelist
nml.atmo.log ... log for namelist
run_out.snw ... log for snow analysis
snw_R02B06.2013050412 ... snow analysis
stdout_snow ... job output snow analysis

The above files are generated for the date 2013050412, i.e. for 12 UTC on the 4th of
May, 2013. In this case only snow analysis files snw_R02B06.2013050412 are available,
compare Figure 15.1. Forecast fields can be identified by fc (ll for lat-long output grid),
analysis fields by an, several further auxilliary files will be discussed later.

The basic cycle environment uses the following software concept:

1. The scripting environment is contained in some directory, e.g. DA4ICON, which
contains subdirectories and files

README ... generic information
bin ... binaries
config ... functions and shell variable setup
data ... constants, external parameters, climate fields
initdata ... initial data for starting cycling
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mld ... observations stored locally
scripts ... scripts for cycling
status ... status files while cycling
templates ... namelist templates for cycling

2. The different scripts run on different loop levels are contained in scripts. Scripts
include for example

cat_smainput
copy_feedback
getconst_sma
rerun_icon_fg
run_3dvar
run_ICON_climate
run_ICON_coldstart
run_cycle
run_icon
run_icon_sfc2mga
run_icon_sma
run_icon_snow
run_icon_sst

where the modules shown in Figure 15.1 can be identified by their short names
sma, snow and sst. Here, 3dvar is the core DA module for the ICON deterministic
analysis.

3. The scripts carry out the following basic steps.

(a) They organize the input files by setting up a list of shell variables, unzip or
untar observation files if necessary, copy and cat input files where needed, and
generate (if needed) output directories.

(b) They copy and fill the namelists for each module under consideration using
the namelist templates which are provided in the directory templates and the
shell variables set up before. Here, a standard approach with identifiers in
the templates is used, where identifiers of variables are replaced by the actual
variable values. The replacement is done by the unix sed editor and is carried
out by shell-functions from the config directory.

(c) Then, the actual module is run.

(d) Afterwords, the output files are stored and cleaning up takes place.

4. Every experiment generates unique work directories, e.g. at /e/gtmp/$USER, which
are used by the different scripts. They will be deleted when the same part of the
cycle runs again in a subsequent step. Output data is moved to the output directory
YYYYMMDDHH as described above.
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15.2 global LETKF cycling

Missing: Userguide for global LETKF cycling
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15.3 KENDA-LETKF cycling

Userguide for KENDA Cycling: Complete?

The Core Module for Ensemble Kalman Filter Analyses is the program var3d in the
EnKF-mode. The settings and features of the EnKF are controlled by the namelist /ENKF/
(see link for the full description!).
This Chapter describes how the LETKF of the COSMO-KENDA system is set up and

used.

15.3.1 Workflow of KENDA

Figure 9.2 displays the cycling as it is implemented in COSMO-KENDA:

1. Analysis Step (time-index j = j)

• A file-set of an initial background ensemble xb(i) (lff, GRIB) is provided to-
gether with an ensemble of initial feedback files (fof, NetCDF) which contain
the observations yo and the first guesses of the members H(xb(i)). In the 0-
th cycle, these need to be provided externally. Note that yo is redundantly
contained in every feedback-file.

• xb(i) and [yo, H(xb(i))] are read in by the LETKF (which is the program var3d
in the LETKF-mode) which computes and saves the analysis-ensemble xa(i)

(laf, GRIB).

2. Forecast Step (cycled time-index j = j + 1)

• An ensemble of COSMO-DE reads in the recently produced xa(i) together with
the externally provided boundary conditions xbound (lbf, GRIB) and the ob-
servations yo (NetCDF).

• COSMO computes an ensemble of background forecasts xb(i) for the next anal-
ysis step. The observation operator H is contained in COSMO and maps the
observations onto the forecast (per member), producing the feedback files.

3. Next analysis time. Back to Analysis Step 1.

15.3.2 Ensemble data assimilation

Ensemble data assimilation EDA for the global model is following the lines of the deter-
ministic global cycle (Chapter 15. In principle, Figure 15.1 also displays the concept of
basic cycling for the ensemble system. For Ensemble data assimilation

• the module [1a] Core DA consists of the EnKF/LETKF or a Hybrid Method
VarEnKF; for its scientific description we refer to Section 4.6.
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• The model run [2] Model over 4t consists of L independent model runs, where
L is the number of ensemble members under consideration, which is for example
L = 40 for the EnKF or L = 41 for the VarEnKF. Note that for the VarEnKF there
are L− 1 members with lower resolution which constitute the EnKF part and there
is one member with higher resolution, on which the variational component of the
method is built.

The scripting environment is built up analogously to the description on Page 201. As
described in Points 1 and 2, the scripts are contained in a central directory scripts.
Data are stored in the data directory. Every run generates unique working directories
in a temporary file space (compare Point 4), where the input and output of both the
different data assimilation modules and the model run are read and written, for example

/e/gtmp/$USER/working_directory/modelrun_001
.....
/e/gtmp/$USER/working_directory/modelrun_040

for running the first to fourtieth ensemble member.

15.3.3 KENDA Basic Cycling

The cycling environment for the high-resolution regional model with the KENDA for the
COSMO model system is basically following the philosophy which we use for the global
ICON 3dVar and for the global ICON VarEnKF.
For a regional model like COSMO the cycling is slightly more complicated due to the

fact that we need to provide and manage the boundary conditions which are needed for
each model run. In particular, for the ensemble data assimilation we need to provide an
ensemble of boundary conditions for the short-range forecast runs of the model.

1. The concept of the KENDA basic cycle employs different directories

bcdata ... provides the global BC data (gfff fieles)
bcfata_forecast ... ~ for forecast
data ... to store files for later use
data_forecast ... ~ for forecast
feedback ... collects all feedback files
obs ... provides the observations as tar-files
rundir ... all working directories

The basic idea here is that the individual module runs use a working directory in
rundir to read and store their data. Then, the managing script moves files which
are to be stored to the data directories and removes whatever is not meant to be
kept.

COSMO needs the initial conditions (names as laf-files) and the boundary condi-
tions (with name convention lbff-files).
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2. Initially, the boundary data are stored in subdirectories of bcdata as giff- or
gfff-files, respectively. For the boundary conditions it is important to note that
traditionally, the fields have been saved in a 3h period. Thus, for a particular
analysis date, we need to determine the corresponding boundary conditions date
DATE_BD, which is the starting time of the 3h period of the current analysis date. The
boundary data are stored in subdirectories with name convention YYYYMMDDHHmmss.

These files contain a selected region of a global model which is chosen to be able
to interpolate these low-resolution boundary condition files to the high-resolution
COSMO model grid. The conversion is carried out by the module INT2LM (com-
pare [0] INT2LM in Figure 15.2), which generates the actual boundary files on the
COSMO grid, which are much larger files with the lbff name convention. This
conversion is done on the fly before the files are needed for an individual COSMO
run.

3. For the individual model runs (see [1] Model in Figure 15.2) we employ a central
working directory cosmo in rundir, which contains

det ... directory for the deterministic run
ens001 ... for ensemble member 001
ens002 ... for ensemble member 002
... ...
ens040 ... for ensemble member 040

and further files which contain

• the observations in NetCDF formats
• the blacklist in ASCII format.

for example:

blklsttmp ... blacklist file
cdfin_acars.nc ...
cdfin_amdar.nc ... AMDAR airplane data
cdfin_buoy.nc ... Buoys measurements
cdfin_radar_vad.nc ... Radar measurements
cdfin_rass.nc ...
cdfin_ship.nc ...
cdfin_synop.nc ...
cdfin_temp.nc ...
cdfin_wprof.nc

Note that these files and the content of the directories has temporary meaning for
one analysis time only and is overwritten in each analysis step.

4. A satellite preprocessing step is needed for all KENDA versions where satellite
data are assimilated. Here, the preprocessing of data is carried out by a module
SatPP, compare [2] SatPP in Figure 15.2.
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5. The EnKF module, compare [3a] EnKF in Figure 15.2, uses a central working
directory letkf in the rundir directory for its input and output. The working di-
rectory has subdirectories input and output, which are prepared by the run_letkf
script. All job output and log files are written into the working directory, here a
name convention LETKF.eID or LETKF.oID with some job scheduling number ID is
used.

6. Storage. Due to limited storage space, usually one has to be very careful with
storing data during cycling. For the KENDA Basic Cycling we store data in the
data directory in subdirectories following the name convention YYYYMMDDHHmmss
described in Item 1. of Section 15.1. This could easily be replaced by storage in
some data base.

The scripting of KENDA basic cycle provides file input via symbolic links (soft links under
UNIX/LINUX), which avoids copying a large quantity of data.

Currently, the surface analysis modules [3b] SNOW, [3c] SST, [3d] T2M Analysis and
[3e] SMA (soil moisture analysis) are not yet included in the basic cycle, but are planned
for the near future.

The basic design of the KENDA basic cycle for is shown in Figure 15.2.

0 UTC 1,2,3,...,23 UTC

[3a] EnKF
Module

[1] Model
run 4t = 3h

[2] SatPP
Satellites

[0] INT2LM
BC preparation

[3b] SNOW
Module

[3c] SST
Module

[3d] T2M
Module

[3e] SMA
Module

[3e] SMA
Module

2013053100
Directory

2013053101
Directory

[1] Model
24h run

[1] Model
run 4t = 3h

[0] INT2LM
BC preparation

[3a] EnKF
Module

[3b] SNOW
Module

[2] SatPP
Satellites

Figure 15.2: The figure displays the design of the KENDA basic cycling environment.
INT2LM [0] prepares boundary condition for the model runs [1], which are providing
input in the form of feedback files for the EnKF [3a]. The use of satellite data needs
the preprocessing module SatPP [2]. The surface analysis modules [3b] to [3e] are carried
out in analogy to the global data assimilation.
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Chapter 16

Namelist Groups

This Chapter serves a reference to fortran namelists that are used by the binary var3d
and for its various modules and assimilation methods.

The namelist input must be provided in a file ’namelist’ in the directory there the
var3d program is started. As an extension to the standard namelists may appear in
arbitrary order, may be omitted, or may be called repeatedly. The latter feature is useful
if a similar set of parameters has to be specified for a number of targets (for instance
different observation types). The implementation of namelist groups which make use of
this extensions in a parallel environment is described in Section 22.1.5. An overview of the
namelist groups is given below. A * indicates that the namelist may be called repeatedly:
Note: Where the namelists are described here, mostly the code-copy of the namelist-
definitions is OLD! Need to check and copy new code for all namelist!

16.1 /RUN/ (Job control parameters)

mo_run_params.f90

!-------------------
! general parameters
!-------------------DA3
character(len=10) :: method = ’PSAS’ ! ’PSAS’ (default 3dvar mode)

! ’3DVAR’ (currently not implemented)
! ’PSAS+LETKF’
! ’LETKF’
! ’ENVAR’, ’ENVAR+LETKF’, ’VARENKF’
! ’GMESTAT’, ’MEC’

character(len=8) :: model = ’ICON’ ! or ’COSMO’, ’IFS’,’GME’
integer :: nproc1 = -1 ! number of PEs in direction 1
integer :: nproc2 = -1 ! number of PEs in direction 2
integer :: nproc_repro = -1 ! fict. PEs for repeatable runs
logical :: barrier = .true. ! call mpibarrier for diagnostics

209
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logical :: check_sync = .false.! check syncronisation(stop_time)
integer :: p_readgrib = -1 ! PE used to read GRIB
integer :: p_readbufr = -1 ! PE used to read BUFR
integer :: npe_read_obs = -1 ! number of PEs to read obsv
integer :: nex = 0 ! experiment number
integer :: run_type = 3 ! haupt=0, (vor=1), ass=2, test=3
character(len=8) :: runtype = ’forecast’ ! set to ’’ to read analyses
integer :: expseed = 0 ! nondefault random number seed
character(len=256) :: read_fields = ’ ’ ! fields to read from forecast
character(len=256) :: sst_fields = ’ ’ ! read from SST analysis (00UTC)
character(len=256) :: opt_fields = ’ ’ ! read optionally
character(len=256) :: urun_fields = ’ ’ ! unspecified runtype
character(len=256) :: pass_fields = ’ ’ ! pass to analysis (relabel)
character(len=128) :: dealloc_fields= ’ ’ ! do not write to analysis
character(len=128) :: gribout_24bit = ’ ’ ! fields to write with 24 bits
integer :: interp_strato= 0 ! interpolate stratosphere
logical :: abort_strato =.false. ! abort if file is not present
logical :: read_obs_first=.false.! read obs. before background
!------
! dates
!------
type(t_time) ,save :: ana_time ! analysis time
type(t_time) ,save :: ana_date ! analysis date (0 UTC)
type(t_time) ,save :: fc_ref_time ! reference time (forecast start)
type(t_time) ,save :: fc_time ! forecast interval
integer :: fc_hours = -1 ! forecast interval (hours)
integer :: yyyymmddhh_ana = 0 ! analysis time
integer :: yyyymmddhh_ref = 0 ! time of forecast start
integer(i8) :: time_ana = 0 ! analysis time (ccccmmddhhmmss)
integer(i8) :: time_ref = 0 ! forecast start (ccccmmddhhmmss)
integer(i8) :: runtime = 0 ! program run time YYYYMMDDHHMM
!----------------
! directory paths
!----------------
character(len=256) :: data = ’’ ! constant input data
character(len=256) :: iopath = ’’ ! path for input/output dirs
character(len=256) :: input = ’’ ! input directory
character(len=256) :: output = ’’ ! output directory
character(len=256) :: obsinput = ’’ ! observation input directory
character(len=256) :: aux = ’’ ! additional output directory
!-----------------
! input file names
!-----------------
character(len=128) :: fg_file = ’’ ! forecast file
character(len=128) :: blacklists(5) = ’’ ! blacklists
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character(len=128) :: oldanerr_file = ’’ ! analysis error
character(len=128) :: file_strato = ’’ ! stratosphere file name
character(len=128) :: invar_det = ’’ ! invariant fields
character(len=128) :: grid_file = ’’ ! grid metadata (ICON)
!----------------------------
! output file characteristics
!----------------------------
character(len=128) :: ana_file = ’’ ! analysis
character(len=128) :: ana_err_file = ’’ ! analysis error
character(len=128) :: out_file = ’’ ! protocol
character(len=128) :: fdbk_basename = ’’ ! feedback file
character(len=128) :: ready_det = ’’ ! ready file, determ. analysis
integer :: grib_edition = 2 ! GRIB edition to write (-1,1,2)
integer :: grib_library = 2 ! API: 1=(C)GRIBEX 2=GRIB2-API
!----------------------------------
! identification of center, process
!----------------------------------
integer :: center = 78 ! DWD
integer :: subcenter = 255 ! none
integer :: proc_ana_err = 0 ! process: analysis error
integer :: proc_ana = 0 ! process: analysis
integer :: proc_ana_ens = 0 ! process: analysis ensemble
integer :: range_ana = 0 ! time range parameter for analysis
integer :: ensemble_id = 1 ! ensemble id for GRIB output
!----------------------------------------------------
! switch behaviour of analysis system at a given time
!----------------------------------------------------
integer :: ga3_biasc_rad = 2099010100 ! radiance online biascor.
integer :: ga3_biasc_airep = 2013021409 ! aircraft bias correction
integer :: ga3_biasc_synop = 2099010100 ! SYNOP bias correction
integer :: ga3_biasc_gpsgb = 2099010100 ! GPSGB bias correction
integer :: ga3_biasc_scatt = 2099010100 ! SCATT bias correction
type(t_time) ,save :: date_biasc_rad
type(t_time) ,save :: date_biasc_airep
type(t_time) ,save :: date_biasc_synop
type(t_time) ,save :: date_biasc_gpsgb
integer :: flag_biasc_rad = -1 ! radiance online biascor.
integer :: flag_biasc_airep = -1 ! aircraft bias correction
integer :: flag_biasc_synop = -1 ! SYNOP bias correction
integer :: flag_biasc_gpsgb = -1 ! GPSGB bias correction
integer :: flag_biasc_scatt = -1 ! SCATT bias correction

Missing: Description-Table for Namelist /RUN/
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16.2 /REPORT/ (selection of observations)
This namelist is defined in subroutine (module mo_obs_tables) :

character(len=12) :: check
character(len=12) :: type
character(len=12) :: use
integer :: max_proc
integer :: max_act
integer :: ni
real(wp) :: height_t
real(wp) :: height_b
real(wp) :: lat_nb
real(wp) :: lat_sb
integer :: time_b
integer :: time_e
real(wp) :: min_dist ! min. distance between observations [km]
real(wp) :: sgm_dism ! first guess check bound: dismiss data
real(wp) :: sgm_pass ! first guess check bound: passive data
real(wp) :: sgm_act0 ! first guess check bound: inactive data
real(wp) :: sgm_act0i ! first guess check bound: vqcontrolled data
real(wp) :: sgm_act ! first guess check bound: vqcontrolled data
real(wp) :: sgm_act1i ! first guess check bound: vqcontrolled data

namelist /REPORT/ check, type, use, max_act, max_proc, ni, min_dist, &
height_t, height_b, lat_nb, lat_sb, time_b, time_e, &
sgm_dism, sgm_pass, sgm_act0, sgm_act0i, sgm_act, &
sgm_act1i

This namelist group may appear several times in the namelist file. The parameters
specified apply either to all observation types or to specific types only if the variable type
is specified. If the variable check is given, use specifies the effect of this check, otherwise
it determines the status of the observations if no check is flagged. Default values are
defined in the table rept_char in module .
Examples:
The following sequence will dismiss all observation types besides SYNOPs and TEMPs

for assimilation. SATOBs will be monitored.

&REPORT use=’DISMISS’ \
&REPORT type=’SYNOP’ use=’ACTIVE’ \
&REPORT type=’TEMP’ use=’ACTIVE’ \
&REPORT type=’SATOB’ use=’PASSIVE’ \

The following sequence specifies that the bound of the first guess check which causes
a SYNOP to be excluded from the assimilation (and monitored only will be 3 times the
(squared) sum of first guess and observational error:

&REPORT type=’SYNOP’ sgm_pass=3. \
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The following sequence specifies that the time range for SYNOPs used for assimilation
is +− one hour. Furthermore the effect of the time range check

type character(*) Name of a Report Type as defined in Table 17.1. If
this variable is present, the parameters given below only
apply to this Report Type, otherwise they will apply to
all Report Types.

check character(*) Mnemonic of a check as defined in Table ??. If this
variable is present the use-flag only applies to this check
(and the given Report Type), otherwise it will apply to
all checks.

use character(*) One of ’dismiss’, ’active’, or ’passive’. This flag
determines how to proceed with a report if the condition
of one of the checks is fulfilled.

count integer Maximum number of reports to process. This parameter
is provided to enable program development and testing
with a small number of observations.

dist_h real Minimum horizontal distance between two reports of the
same type (in km) used in the (old) thinning procedure
(Section 8.1.2).

height_t real Top and . . .
height_b real bottom bound of observations to be used, generally

given in hPa.
lat_nb real Northern and . . .
lat_sb real southern bound of observations to be used, given in de-

grees.

16.3 /RULES/ (complex data selection)

This namelist is defined in subroutine (module mo_obs_rules):
Missing: Documentation of namelist /RULES/

integer :: type
integer :: bf_type
integer :: bf_subt
integer :: db_kz (nkz)

real(wp) :: lat (2)
real(wp) :: lon (2)
logical :: xlonlat ! exclude area
real(wp) :: plim(2)

integer :: use
integer :: verb
integer :: msl
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type(t_set) :: t
type(t_set) :: gp
type(t_set) :: uv
type(t_set) :: q
type(t_set) :: p
type(t_set) :: c (nc)

type t_rules
character(len=40) :: comment = ’’
integer :: type = iud ! 3D-Var-type
integer :: bf_type = iud ! BUFR-message-type
integer :: bf_subt = iud ! BUFR-message-subtype
integer :: db_kz (nkz) = iud ! Databank-’Kennziffer’

real(wp) :: lat (2) = (/ rud, -rud /) ! Latitude bounds
real(wp) :: lon (2) = (/ rud, -rud /) ! Longitude bounds
real(wp) :: plim(2) = (/ rud, -rud /) ! Pressure bounds
logical :: xlonlat = .false.

integer :: use = iud ! how to use (USE_NOT, _ASS, _MON)
integer :: verb = iud ! verbosity flag (diagnostic printout)
integer :: msl = iud ! reduce pressure to mean sea level

type(t_set) :: t ! temperature specific settings
type(t_set) :: gp ! geopotential
type(t_set) :: uv ! wind
type(t_set) :: q ! humidity
type(t_set) :: p ! pressure
type(t_set) :: c (nc) ! channels, constituents ...

end type t_rules

type t_set
integer :: use = iud ! how to use this parameter
integer :: m_rej = iud ! for variational quality control
real(wp) :: sgm_o = rud ! observation error
real(wp) :: sgm_fg = rud ! first guess check bound
real(wp) :: sgm_vq = rud ! variational quality control bound

end type t_set

namelist /RULES/ comment, &
type, bf_type, bf_subt, db_kz, &
lat, lon, plim, xlonlat, &
use, verb, msl, t, gp, uv, q, p, c
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comment = ’added by namelist /RULES/’

16.4 /OBSERVATIONS/ (selection of observations)

This namelist is defined in .
Most entries be superseded by namelist /REPORT/ in the future.
Missing: Description of namelist /OBSERVATIONS/

.

mo_t_obs.f90

!=========
! namelist
!=========
logical :: read_bufr = .false. ! read BUFR files
logical :: read_NetCDF = .false. ! read NetCDF files
logical :: read_cosmo = .false. ! read COSMO observation files
character(len=64) :: obs_path = ’’ ! path to read observation files
character(len=64) :: bufr_files(63)= ’’ ! names of BUFR files
character(len=64) :: obs_files (63)= ’’ ! observation file names (NetCDF)
character(len=64) :: fdb_files (63)= ’’ ! feedback (input) files
integer :: bufr_verb = 0 ! verbose flag for BUFR decoding
logical :: bufr_pause = .false.
integer :: netcdf_verb = 2 ! verbosity level of NetCDF decoding
logical :: derive_dbkz = .false. ! derive DBKZ if not present
logical :: fix_no_obs = .true. ! set F to revert no_obs-check
logical :: int_vh = .true. ! interpolation: 1.vert.,2.hor.
logical :: int_nn = .false. ! hor. interp.: nearest neighb.
logical :: vint_lin_t = .false. ! linear vert.intp. for temp.
logical :: vint_lin_z = .false. ! linear vert.intp. for geop.
logical :: vint_lin_uv = .false. ! linear vert.intp. for wind
logical :: vint_lin_tov = .false. ! linear vert.intp. for RTTOV
integer :: nwv_rad = -1 ! radiance vertical interp. flag
integer :: ndv_rad = 3 ! vertical differentiation flag
integer :: pcc_conv = 1 ! per cent confidence usage flag
integer :: corme_conv = -1 ! correction message handling:

! -1 NetCDF=off BUFR=off
! 0 NetCDF=on BUFR=off
! 1 NetCDF=on BUFR=on
! 2 handle corme, ABCD separately
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16.5 /BLACKLIST/ (blacklist file name and path)

This namelist is defined in module :
Missing: Description of namelist /BLACKLIST/

mo_blacklist.f90

! !NAMELIST: /BLACKLIST/
!
! !DESCRIPTION:
!
! By namelist group {\bf /BLACKLIST/} the path and name of the blacklist
! files are specified by variables {\bf path} and {\bf name},
! respectively. The namelist group may be called repeatedly for
! different blacklisting files. In this case the path defined in
! previous calls remains valid. The logical variable {\bf default}
! may be set to {\bf .false.} to suppress reading of the default
! blacklist (\/io\/input\/blacklist\_yyyymmddhh).
!
! !DEFINITION:
!

character(len=128) :: file
character(len=128) :: path
logical :: default

namelist /BLACKLIST/ path, file, default
!
!EOP

!!P.G.U P.G.O P.W.U P.W.O P.T.U P.T.O P.D.U P.D.O

!0010 1 1100 0 0 0 0 0 0 0
!04045 1 1100 0 0 0 0 0 0 0
!0XRA6 1 1100 0 0 0 0 0 0 0

!...... 2 0 0 59 10 59 10 59 10
!034BATBA 2 0 0 0 0 1100 0 0 0
!0EVEIEBA 2 0 0 0 0 1100 0 0 0
!ABX... 2 0 0 1100 0 0 0 0 0
!ACHUIEBA 2 0 0 0 0 1100 0 0 0
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16.6 /DEF_OBS_NML/ (artificial observations)

Missing: Description of namelist /DEF_OBS_NML/

This namelist is defined in subroutine (module mo_obs_nml) :

real(wp) :: lon ! latitude [degree]
real(wp) :: lat ! longitude [degree]
real(wp) :: p ! pressure [hPa]
character(len=8) :: rtype ! report type
character(len=2) :: otype ! ’h’, ’t’, ’rh’, ’u’, ’v’
real(wp) :: value ! gpm K 1 m/s m/s
integer :: nlat ! number of latitudes
namelist /DEF_OBS_NML/ lon, lat, p, otype, rtype, value, nlat

lon = 0._wp
lat = 50._wp
p = 500._wp ! hPa
otype = ’’
rtype = ’TEMP’
value = 0._wp ! K
nlat = 0

16.7 /TEMP_OBS/ (TEMP observation operator)

Missing: Description of namelist /TEMP_OBS_NML/

This namelist is defined in module :

!------------------
! Namelist TEMP_OBS
!------------------
logical :: use_t = .false.
logical :: use_h = .true.
logical :: use_u = .true.
logical :: use_v = .true.
logical :: use_q = .true.
real(wp) :: top_q = 300._wp ! top level for humidity
observations (hPa)
logical :: mainpl = .false. ! use main pressure levels only
logical :: prt_data = .false.
real(wp) :: vmainpl (20) = -1._wp ! main pressure level values
[hPa]
namelist /TEMP_OBS/ use_t, use_h, use_u, use_v, use_q, mainpl,
vmainpl, &
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top_q, prt_data

16.8 /SYNOP_OBS/ (SYNOP observation operator)

Missing: Description of namelist /SYNOP_OBS/

This namelist is defined in module :

!-------------------
! Namelist SYNOP_OBS
!-------------------
logical :: use_t2 = .false. ! 2 m temperature
logical :: use_rh = .false. ! 2 m humidity
logical :: use_vs = .true. ! 10 m wind over sea
logical :: use_vl = .false. ! 10 m wind over land
logical :: use_p = .false. ! p(h) is observable
logical :: use_h = .true. ! h(p) is observable
logical :: use_msl = .true. ! reduce p,h to mean sea level
logical :: prt_data = .false. ! print data
namelist /SYNOP_OBS/ use_t2, use_rh, use_vs, use_vl, use_p, use_h,
use_msl,&

prt_data

16.9 /TOVS_OBS/ (TOVS observation operator)
This namelist is defined in module

!==================
! Namelist TOVS_OBS
!==================
!------
! Input
!------
character(len=64) :: netcdf_path = ’’ ! path to read input files
character(len=32) :: feedbk_files(5) = ’’ ! names of input/output files
!---------------
! Data selection
!---------------
integer :: max_scan = 1000 ! max. number of scans
integer :: ionly (60) = -1 ! channal indices to use
integer :: inot (60) = -1 ! channal indices not to use
integer :: skip_spots = 0 ! no.spots to skip in input
logical :: flg_external = .false. ! set channels by namelist
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integer :: flg_prc = 15 ! 1=data,2=min,3=sur,8=cld
integer :: flg_sur = 0 ! 1dvar surface flag
integer :: flg_cld = 0 ! 1=clr,2=cld,4=mwclr,8=mwclo
!------------
! Computation
!------------
logical :: use_1dvar_fg = .false. ! use first guess of 1dvar
integer :: rttov_version = 7 ! rttov version to use
real(wp) :: min_err = 0._wp ! minimum observation error
real(wp) :: p_rhtop = 10._wp ! no rh ass. above this lev.
real(wp) :: e_bg_ts_sea = 1._wp ! surf.temp. bg.error sea
real(wp) :: e_bg_ts_land = 3._wp ! surf.temp. bg.error land
real(wp) :: e_bg_ts_ice = 1._wp ! surf.temp. bg.error ice
real(wp) :: e_bg_t_top = 3.0_wp ! bg. error top levels t
real(wp) :: e_bg_lnq_top = 1.0_wp ! bg. error top levels q
logical :: lhum_dum_ana = .true. ! dummy humidity above an.lev
!------------
! Constraints
!------------
integer :: chk_bound (4) = 2 ! check bounds (:2=t-+;3:=q)
integer :: rep_bound = 0 ! report 0-2:none,brief,det.
!------------
! Diagnostics
!------------
integer :: monitor_prof = 0 ! monitor profiles (fg-scan)
integer :: mon_ana_prof = 0 ! monitor profiles (an-scan)

namelist /TOVS_OBS/ max_scan, netcdf_path, feedbk_files, &
use_1dvar_fg, rttov_version, min_err, p_rhtop, &
ionly, inot, skip_spots, flg_external, &
e_bg_ts_sea, e_bg_ts_land, e_bg_ts_ice, &
e_bg_t_top,e_bg_lnq_top, &
flg_prc, flg_sur, flg_cld, &
chk_bound, rep_bound, lhum_dum_ana, monitor_prof, &
mon_ana_prof

Parameter Default Description
Input

netcdf_path input Path to the input files. Default is input as specified in
namelist /RUN/.

feedbk_files ”,”,”, .. Names of the input files (currently feedback files from
the 1D-Var).

Data Selection
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flg_prc 15 1dvar processing flag: 0= observation is accepted and
processed by 1D-Var Any value different to 0 indicates
that the observation is rejected by 1D-Var. In partic-
ular: 1=data did not pass first-guess check, 2=1DVar
did not converge for this data, 3=surface, 8=cloudy ob-
servation For a comparison of the 3D-Var and 1D-Var
results, only 1D-Var observations with the 1D-Var pre-
cessing flag flg_prc=0 are processed in the 3D-Var

flg_sur 0 1D-Var surface flag, indicating the surface type of
the observation: 1=sea, 2=ice, 4=land, 8=highland,
16=mismatch

flg_cld 0 1D-Var cloud flag: 1=clear, 2=IR cloudy, 3=MW clear,
4=MW cloudy

Computation
e_bg_ts_sea 1. K Background error of surface temperature over sea. The

surface temperature has to be provided for the RTTOV-
operator and is treated as a dummy variable within
3DVar: The initial value is given by a 1D-Var back-
ground value superposed with a normal distribution of
width e_bg_ts_sea. Its intermediate value is altered
by the variational algorithm, but the resulting value is
not fed back to the analysis.

e_bg_ts_land 3. K Background error of surface temperatures as above, but
over land

e_bg_ts_ice 1. K Background error of surface temperatures as a above,
but over ice

e_bg_t_top 3. K Background error of temperature in RTTOV pressure
levels above the highest pressure level of the GME. To
provide the RTTOV operator with values in these lev-
els, the temperature is treated as a dummy variable
distributed around a 1D-Var background with a width
e_bg_t_top. These temperature values are not fed
back to the analysis.

e_bg_lnq_top 1. Background error of specific humidity in RTTOV pres-
sure levels that are not assimilated in 3D-Var (top lev-
els). The specific humidity is treated as a dummy vari-
able. The initial values spread around a 1D-Var back-
ground with width e_bg_lnq_top. To avoid the prob-
lem of negative humidities, the error is specified in ln(q).

Constraints
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chk_bound 2 Check if the RTTOV input variables are within specified
bounds:

chk_bound(1): flag for temperature, lower bound

chk_bound(2): flag for temperature, upper bound

chk_bound(3): flag for humidity, lower bound

chk_bound(4): flag for humidity, upper bound

0 = no check

1 = check (and report)

2 = check and constrain values (change variable)

3 = check and extrapolate (not yet implemented)

4 = check and abort

rep_bound 0 Report about result of check whether the RTTOV input
variables b are within specified bounds:

0 = no report

1 = brief report for each profile

2 = detailed report for each variable and level

messages are written to stderr .
Diagnostics

mon_ana_prof 0 Switch on monitoring of profiles in the analysis step.
The parameter is a bit-mask:

1: Output to ASCII-file.

2: Output to NetCDF-file.

4: Switch on some more expensive diagnostics.

8: Switch on diagnostics on H (observation operator)
and K (gain matrix).
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monitor_prof 0 Switch on monitoring of profiles in the first-guess step:

1: Output to ASCII-file.

2: Output to NetCDF-file.

16.9.1 Monitoring of profiles

The input parameters of the RTTOV opservation operator are monitored if the namelist
variables mon_ana_prof or monitor_prof are set.
ASCII Output:
The following files are written:
intm.info Monitoring in the first-guess step.
intp.info Monitoring in the analysis step.
intp-H.info Monitoring in the analysis step: linearised observation operator H.
intp-K.info Monitoring in the analysis step: gain matrix K.
Netcdf-Output:
The following files are written:
monRTOVP.nc Monitoring in the first-guess step.
cofRTOVP.nc Monitoring in the analysis step.

The content of the NetCDF-file is:
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name flag description
profile profile index variable.
level level index variable, 1 to 43
channel channel index variable.
len8 8 byte character index variable.
len16 16 byte character index variable.
parameter (parameter, len16) parameter index variable. Values:

2 ’fg ’: first-guess
2 ’fg_error ’: first-guess error
2 ’obs_error ’: not used
2 ’fg_1dvar ’: first-guess from the 1dvar feedback-file
2 A ’d_Jobs/d_x ’: gradient of the cost function
2 A ’ana ’: analysis
2 A ’ana_1dvar ’: analysis from the 1dvar feedback-file
2 A ’a-fg_aprox_1dvar’: analysis - first-guess, approximated
2 A ’a-fg_aprox_ginv ’: not used
2+4 A ’a-fg_aprox_psas ’: analysis - first-guess, approximated

id(profile) 2 observation id in 3dvar
lat(profile) 2 latitude of observation
lon(profile) 2 longitude of observation
statid(profile, len8) 2 station id in character form
ts(profile, parameter) 2 surface temperature (K)
ps(profile, parameter) 2 surface pressure (Pa)
t(profile, parameter, level) 2 temperature (K)
q(profile, parameter, level) 2 specific humidity (kg/kg)
H_ts(profile, channel) 2+8 A surface temperature H-operator
H_ps(profile, channel) 2+8 A surface pressure H-operator
K_ts(profile, channel) 2+8 A surface temperature gain-matrix K
K_ps(profile, channel) 2+8 A surface pressure gain-matrix K
H_t(profile, level, channel) 2+8 A temperature H-operator
H_q(profile, level, channel) 2+8 A specific humidity H-operator
K_t(profile, level, channel) 2+8 A temperature gain-matrix K
K_q(profile, level, channel) 2+8 A specific humidity gain-matrix K

Column ’flag’ denotes the bits to be set in ’mon_ana_prof’ in order to optain the
respective output. ’A’ means that this quantity is available only in the analysis step.
The gain matrix is calculated as K = BHT (HBHT +R)−1, with the matrices B, H, and

R being restricted to the subspace of the current field of view. The gain matrix written to
the file is multiplied by the innovation vector (obs-fg) from the right hand side, so that its
rows correspond to the analysis increment in a 1dvar-approximation. Thus the rows sum
up to the same value as given in ’a-fg_aprox_1dvar’. Because the observation operator
and the gain matrix require a large amount of space in the output file, their derivation is
enabled seperately by setting the respective bit in ’mon_ana_prof.
’a-fg_aprox_psas’ is the analysis increment in the space of the arguments of the

observation operators, obtained directly from HT (HBHT + R)−1(obs− fg), without in-
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terpolation to the model grid. Because the calculation of this quantity is expensive, it is
enabled seperately by setting the respective bit in ’mon_ana_prof.
Information on the observations themselfes (brightness temperatures) is present in the

feedback-file cofTOVS.nc and in cofTOVS_pp.nc (or monTOVS.nc and monTOVS_pp.nc).
The latter is derived from the former by the program post_psas.

16.10 /THINNING/ (thinning of observations)

This namelist is defined in subroutine (module mo_thinning):
Observational thinning is done as follows: For all observations of a certain type (classi-

fied by the CMA observation type and optionally by a list of CMA code types) thinning
is done independently from other types. For each observation the next gridpoint (in a
horizontal icosahedral grid specified by the partition parameter ni and a vertical grid with
aequidistand spacing dlev) is sought. All observations attributed to the same grid point
are ranked according to a number of criteria. The observation with the highest ranking
will be chosen and the others will be rejected.
Each criterium is represented by a number (in general between 0 and 1) there higher

values indicate a better quality of the data. For each criterium a lower bound is specfied;
data with a lower value of the respective criterium is rejected in any case. For each
criterium a weight is specified as well to be used in the rules described below. Default
values of weights and bounds are given in the table below:
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criterium weight bound description
center 1. 0. Horizontal distance parameter to the nearest grid point. A value

of 1 indicates that the observation is exactly at that grid point. A
value of 0 indicates that the observation is just in between two grid
points.

time 1. -3. Time difference to the analysis time (absolute value in hours). The
default value of the bound parameter of -3 denotes that all obser-
vations which exceed an assimilation winwow of + − 3 hours are
rejected.

sequence 1. 0. This is just the sequence number of the observation in the input
file. This criterium is generally applied as the last one in order to
allow a unique decision between observations not ditinguished by
any other criterium.

data 1. 0. Number of independent observations provided by a report. For
instance a SYNOP report providing pressure and wind information
will be ranked higher than a report with pressure information only.
(Note that thinning is performed on reports (TEMP,SYNOP), not
on observation types (pressure,wind) so far).

quality 1. -1. Observation type specific quality parameter. its value is generally
derived from the input (BUFR) file information provided by the
producer of the data. The default value of -1. asures that reports
without quality index (in this case the parameter is set to -0.01)
are used as well.

vertical 1. 0. Vertical distance parameter to the nearest gridpoint. A value of
1 indicates that the observation is exactly at that grid point. A
value of 0 indicates that the observation is just in between two grid
points.

status 1. 0. Status (eg. dismissed,rejected,active) of the report set by the 3D-
Var checks. This criterium makes sure that reports rejected by
obs-fg or other checks is not used any more.

pref_satids 1. 0. Preferences for specific satellite ids.
pref_center 1. 0. Preferences for generating centers.
pref_retrv 1. 0. Preferences for specific retrieval methods.

There are three namelist entries specifying preferences concerning satellites, processing
center or retrieval methods: pref_satids, pref_center, pref_retrv. These entries
must be given as pairs (satid, preference). For instance in order to favour NOAA-18 with
respect to NOAA-19 and both of them against other satellites write:

pref_satids = 209 2 ! NOAA-18
223 1 ! NOAA-19

A higher number for ’preference’ gives a higher preference for this ’satid’. ’satid’s not
in the list will get a preference of zero. The preferences (for satids, center, retrv) will be
added.
In order to rank the reports within each grid box a number of rules is used. Each rule

consists of a number of criteria which are added with the respective weights. If a rule
gives the same ranking for a pair of reports the next rule is used unless a decision can be
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made. The default sequence of rules are as follows:
rule criteria
1 ’status’
2 ’preference’
3 ’quality’
4 ’time’
5 ’center’ ’vertical’
6 ’data’
7 ’sequence’

By default first the best ranking of the 3D-Var checks (status) is selected. Afterwards
any preferences concerning satellites, generating centers or retrieval methods are con-
sidered, followed by the best ranking derived from external quality information. The
centering acording to the analysis time and to the underlying grid is taken into account
next. Finally the amount of data in the report and its sequence number in the input file
is checked. The latter rule cannot be overwritten by the namelist.
The meaning of the namelist variables is as follows:
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obstype string CMA observation type this rule applies to. (cf. Table
17.1)

codetype integer array List of CMA code types this rule applies to. If not spec-
ified the rule applies to all code types of the observation
type specified. (cf. Table 17.2)

dbkz integer array List of DWD data base id’s this rule applies to. If not
specified the rule applies to all id’s of the observation
type specified. (cf. Table 17.2)

ni integer Resolution (GME partitioning) parameter. The default
is the resolution used for the analysis. The distance
between observations is approximately 7054 km/ni. The
min., max. distance is (cf. GME documentation).
16: 440.5 - 526.0 km
24: 293.7 - 346.9 km
32: 223.3 - 263.2 km
48: 146.8 - 173.5 km
64: 110.1 - 131.6 km
96: 73.4 - 86.8 km
128: 55.1 - 65.8 km
192: 36.7 - 43.4 km
256: 27.6 - 32.9 km
384: 18.4 - 21.7 km
512: 13.8 - 16.5 km
768: 9.2 - 10.9 km

dlev real Vertikal distance between observations (hPa).
comment string Arbitrary comment to appear in the printout.
crit1 string,real,real Triplet: ’name’ weight bound. This parameters allows

to adjust the parameters weight and bound for each cri-
terium.

crit2..7 as crit1 for other criteria.
rule1 string array List of criteria used in a rule.
rule2..5 as rule1 for other rules.

As an example the following namelist entries are given:

&THINNING
obstype = ’AIREP’

/
&THINNING

obstype = ’SATOB’
ni = 64
dlev = 40
crit1 = ’center’ 1. 0.2
rule1 = ’quality’
rule3 = ’none’

/



228 DWD DA System Documentation March 4, 2019

The above namelist activates the thinning procedure for AIREPs with the default param-
eters:

obstype = AIREP
codetype = -1 0 0 0 0 0 0 0 0 0
ni = 192
nlev = 1
dlev(hPa)= 0

criterium weight bound
center 1.00 0.00
time 1.00 -3.00
sequence 1.00 0.00
data 1.00 0.00
quality 1.00 0.00
vertical 1.00 0.00
status 1.00 0.00

rule 1 : status
rule 2 : time
rule 3 : quality
rule 4 : center vertical
rule 5 : data
rule 6 : sequence

Thinning is activated for the AMVs (SATOBs) with some non-default parameters: The
thinning distance corresponds to ni=64, i.e. ≈120 km, and a vertical distance of 40 hPa.
All data whose ’enter’-parameter is less than 0.2 is rejected. This ensures a minimum
horizontal distance of 24 = 0.2 × 120 km. The ’status’ rule (rule 1) is replaced by the
’quality’ rule (formerly rule 3).

obstype = SATOB
codetype = -1 0 0 0 0 0 0 0 0 0
ni = 64
nlev = 26
dlev(hPa)= 40

criterium weight bound
center 1.00 0.20
time 1.00 -3.00
sequence 1.00 0.00
data 1.00 0.00
quality 1.00 0.00
vertical 1.00 0.00
status 1.00 0.00



DWD DA System Documentation March 4, 2019 229

rule 1 : quality
rule 2 : time
rule 4 : center vertical
rule 5 : data
rule 6 : sequence

16.11 /AMV_OBS/ (AMV observation operator)

Missing: Description of namelist /AMV_OBS/

16.12 /AIREP_OBS/ (AIREP observation operator)

Missing: Description of namelist /AIREP_OBS/

This namelist is defined in module :

!-------------------
! Namelist AIREP_OBS
!-------------------
logical :: black_t_nop = .false. ! blacklist t-obs. if pressure is missing
logical :: use_regnum = .true. ! use registration number, not flight no.
logical :: require_q = .false. ! require q for sufficient data
logical :: reject_q_0 = .true. ! reject zero value humidity observations
namelist /AIREP_OBS/ black_t_nop, use_regnum, require_q, reject_q_0

16.13 /GPS_RO/ (GPS Radio Occultations)

This namelist is defined in module :

!---------
! namelist
!---------
real(wp) :: ray_incr (10) = 0._wp ! increments between rays to pick up
real(wp) :: ray_levs (10) = 0._wp ! levels to define increments
logical :: smooth_eps = .true. ! smooth observed bending angles
logical :: skip_lowest = .false. ! skip lowest ray
logical :: skip_invalid = .true. ! skip invalid rays in subsequent iter.
logical :: corr_geoid = .true. ! correct for geoid in interpolation
namelist /GPS_RO/ ray_levs, ray_incr, smooth_eps, skip_lowest, skip_invalid, &

corr_geoid
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Namelist /GPS_RO/ is used to influence the behavior of the GPS Radio occultation
operator:

The parameters denote:
ray_incr (10) type: real(wp) ,default=0._wp

Increments between rays to use (km). Zero denotes no
further rays above that height.

ray_levs (10) type: real(wp) ,default=0._wp
Lower bounds (km) for increments.

smooth_eps type: logical ,default=.true.
Smooth observed bending angles. If set to .true., bend-
ing angles are smoothed with a window size according
to the selected spacing.

skip_invalid type: logical ,default=.true.
If .true., rays which are invalid during one iterations are
not used any more in subsequent iterations.

corr_geoid type: logical ,default=.true.
If .true., the geoid anomalies are accounted for.

For example the following sequence selects rays with a spacing of 300 m above 2 km,
500m above 5 km, and 1000m above 10 km height. No rays are selected below 2 km
height and above 20 km height. Height refers to values of impact parameter minus local
curvature radius.

&GPS_RO
ray_levs = 2.0, 5.0, 10., 20. ! levels (km)
ray_incr = 0.3, 0.5, 1., 0. ! spacing (km) above given levels

/

16.14 /RO_VDA/ (GPS Radio Occultation data files)
This namelist is defined in subroutine (module mo_occ) :

!-------------------
! namelist /RO_VDA/
!-------------------
integer :: ierr
character(len=64) :: file ! vda file names
namelist /RO_VDA/ file

Currently input file names (vda-format provided by the CT algorithm) are explicitely
specified by namelist group /RO_VDA/:

character(len=128) :: path ! path for reading vda files
character(len=64) :: file ! vda file names
namelist /RO_VDA/ path, file
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The namelist group is read repeatedly for different input files. A given path remains
valid for subsequently read filenames.
Example:

&RO_VDA path=’../../champ/vda/’/ ! directory to use
&RO_VDA file=’WO-AI-2-PD+2001_148_00_0001_cro1_001.dat’/ ! files to read
&RO_VDA file=’WO-AI-2-PD+2001_148_00_0002_cro1_001.dat’/ ! ...

16.15 /STD_OBS/ (GNSS slant delay operator)

Empty: GNSS Slant Total Delay operator namelist

This namelist is defined in module STD_operator :

!-----------------------------
! namelist STD_OBS
!-----------------------------
logical :: read_ascii = .false.! read ascii file
integer ,parameter :: mo = 12 ! max number of observation

! input files
integer ,parameter :: mf = 256 ! max length of file names
character (len=10) :: RefTimeStr = ’’ ! Reference time (analysis)

! yyyymmddhh
integer :: STDperiod = 0 ! STD period, minutes
integer :: NStepVertMod = 60 ! Number of vertical points

! inside the model
integer :: NStepVertTop = 80 ! Number of vertical points

! above the model
real (wp) :: Hmax = 150000. ! Maximum hight for STD

! integration in m
real :: HScaleP = 6500. ! air pressure scale hight

! (for scaling the point density along the slant)
real :: HScaleP2 = 25000. ! air pressure scale hight
real (wp) :: k1 = 77.60_wp ! refractivity coefficients
real (wp) :: k2 = 70.40_wp ! refractivity coefficients
real (wp) :: k3 = 3.739E5_wp ! refractivity coefficients
character(len=mf) :: SlantPath = ’’ ! Path to slant data
character(len=mf) :: std_obs_file (mo) =’’ ! STD observation input files
character(len=mf) :: HORIFile = ’stako_gps_SNX_G_12_HORI’

! GNSS station file
character(len=mf) :: DomesFile = ’smark_domes_SNX_RTT’

! GNSS station locations
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Parameter Default Description
NStepVertMod 60 Number of supporting points used for vertical integra-

tion inside the model, should be ≥ the number of verti-
cal grid nodes of the model. The number of supporting
points on the signal path is scaled with the elevation:
Nmod = NStepVertMod / (2 sin ε).

NStepVertTop 80 Number of supporting points used for vertical integra-
tion above the model top. NStepVertTop can usually be
smaller than NStepVertMod as the contributions from
the upper atmosphere is small. Like NStepVertMod this
is scaled with the elevation: Nup = NStepVertTop /
(2 sin ε). The total number of supporting points on the
signal path is Ntot = 1 + (NStepVertMod + NStepVert-
Top) / (2 sin ε).

Hmax 150000 The STD is integrated from the GNSS station up to
Hmax in m. 100000 ≤ Hmax ≤ 200000 (100 km . . . 200
km)

HScaleP 6500 Scale hight in m of a hypothetical pressure profile. This
profile is used to scale the density of supporting points
with height. Smaller numbers lead to more points in the
lower atmosphere. HScaleP is used for the signal path
inside the model.

HScaleP2 25000 Like HScaleP but used above the model top.
k1 77.60 Refractivity coefficient k1 [K hPa−1] used in the Smith

& Weintraub formula or the Thayer formular, default
according to Bevis, 1994.

k2 70.40 Refractivity coefficient k2 [K hPa−1], default according
to Bevis, 1994.

k3 3.739 · 105 Refractivity coefficient k3 [K2 hPa−1], default according
to Bevis, 1994.

The remaining namelist parameters are closely related to the preliminary data format
and will not be described here.
Refractivity coefficients according to differnt authors and their impact on a hypothetical

ZTD (last column):

Quelle k1 [K hPa−1] k2 [K hPa−1] k3 [K2 hPa−1] ZTD [m]
Smith & Weintraub 77.607 71.60 3.747 ·105 2.417459855
Thayer 77.604 64.79 3.776 ·105 2.417989384
Hasagawa 77.60 69.40 3.701 ·105 2.414152786
Bevis 77.60 70.40 3.739 ·105 2.416587827
Foelsche 77.650 65.99 3.777 ·105 2.419539541
Rueger 77.689 71.2952 3.75463 ·105 2.420170997

The refractivity coefficients suggested by Bevis seem to provide the best results and have
been chosen as default.
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Add references

16.16 /PSAS/ (PSAS specific parameters)
Physical Space Assimilation System (PSAS)
Missing: Description of namelist /PSAS/

This namelist is defined in module :

!=========
! namelist
!=========
integer :: bar_it = 0 ! barrier outer subiterations
integer :: bar_i = 1 ! barrier inner subiterations
real(wp) :: ckobg = 0.
character(len=8) :: prec = ’left’ ! precond:’left’,’right’,’both’,’no’
character(len=8) :: ptype = ’old’ ! precond: ’OLD’, ’JAC’, ’GS’, ’BGS’
logical :: lnonl = .true. ! nonlinear CG
logical :: linv = .false. ! return inverse matrix instead of R
!---------------
! general set up
!---------------
integer :: nboxes = 0 ! number of boxes
integer :: nobs_box = 500 ! approx. number of observations/box
integer :: nobs_fg = 5000 ! approx.number obs/box in fg-scan
integer :: idtwin = 0 ! 1:1, random
logical :: freeio = .false. ! no computations on I/O PE
logical :: fg_scan = .true. ! run first guess scan
logical :: ana_scan = .true. ! run analysis
integer :: fgaprx = PB_DIAG ! approximation of Pb in fg scan
integer :: anaprx = PB_FULL ! approximation of Pb in psas scan
logical :: sort_boxes= .true. ! sort boxes addording to distance
character(len=12):: lstat_ana = ’’ ! lowest status to keep
integer :: istat_ana = STAT_ACTIVE_0
logical :: init_seed = .false. ! init seed for random vectors
!----------------------
! control of inner loop
!----------------------
character(len=8) :: solver = ’nlpcg’ ! solver ’numrec’ or ’smlib’
character(len=8) :: solver1 = ’newton’ ! solver ’newton’, ’nlpcd’
integer :: min_it = 1 ! minimum number of cg iterations
integer :: max_it = 10 ! maximum number of cg iterations
real(wp) :: gtol = 1.e-6_wp ! stop criterium
real(wp) :: gtolo = 1.e-6_wp ! stop criterium outer loop
logical :: scal = .true. ! scaling
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!----------------------
! control of outer loop
!----------------------
integer,parameter:: mio = 300 ! max number of outer iterations
integer :: nitout = 10 ! number of outer iterations
logical :: fg_b (mio) ! start with first guess from bg
logical :: fg_o (mio) ! start with first guess from obs
logical :: new_R (mio) ! recalculate R
integer :: new_H (mio) = 0 ! recalculate H (and HPH)
integer :: new_Hls (mio) = 0 ! recalculate H in the line search
logical :: new_R_H (mio) ! recalculate preconditioner
logical :: linesrch (mio) ! perform line search
real(wp) :: vqcf (mio) ! variational quality control flag
logical :: xlnsrch = .true. ! flag for more exact line search
integer :: maxlnsrch = 5 ! stop if more steps in line search
!-----------------------
! control of line search
!-----------------------
real(wp) :: omega = 1._wp
!-------------------------------
! control of post-multiplication
!-------------------------------
integer :: ni_ana = 0 ! analyses grid resolution
logical :: l_int_fg = .true. ! interpolate analysis to fg resolt.
integer :: pes_post = 1 ! stride for Pes in post multiplic.
logical :: no_post = .false. ! skip post-multiplication
logical :: no_ps_inc = .false. ! no analysis increment on ps
logical :: no_tv_inc = .false. ! no analysis increment on tv
logical :: no_rh_inc = .false. ! no analysis increment on rh
logical :: no_uv_inc = .false. ! no analysis increment on uv
integer :: no_topinc = 0 ! no. top-levels with zero increment
integer :: lhskep = 0 ! keep lhs in post-multiplication
logical :: lnewpl = .false. ! analysis increment on new p.levels
logical :: lvint = .true. ! vertical interpolation of bg to "
!------------
! diagnostics
!------------
integer :: lplot = 0 ! write plot (GRADS/GMT)-Files
logical :: ldiag = .true. ! print diagnostics
logical :: grads_er = .true. ! write errors to GRADS file
logical :: out_anin = .false. ! write analysis increment
logical :: out_aninp = .false. ! write analysis increment on p-levs.
logical :: out_add = .false. ! write additional fields to analysis
integer :: test_ev = 0 ! test matrices B,R,B+R for pos.def.
integer :: fix_ev(3) =(/2,0,2/)! fix matrices B,R,B+R
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integer :: verb_ev = 2 ! verbosity in pos.def. test
logical :: tune_RB = .false. ! call tune_matrix
!------------
! Debug flags
!------------
logical :: luni = .false. ! univariate correlations
logical :: samg = .false. ! write SAMG (Algebraic Multigrid) file
logical :: samg_B = .false. ! write SAMG file (B only)
logical :: samg_R = .false. ! write SAMG file (R only)
logical :: norm_samg= .false. ! normalize matrices written to SAMG file
logical :: test_samg= .false. ! reread SAMG-file and test for pos.def.
logical :: mleak = .false. ! mark timing output for memory leak search
integer :: nsamg = huge(1) ! number of rows/columns to write
integer :: lerror_tq= 4 ! errors in tq_tvgh: 1..3:message, 4:abort
logical :: tight = .true. ! .true. for tight memory usage

namelist /PSAS/ nboxes, nobs_box, solver, solver1, min_it, max_it, &
nobs_fg, bar_it, bar_i, gtol, gtolo, ldiag, linv, &
samg, samg_B, samg_R, norm_samg, test_samg, nsamg, &
ckobg, idtwin, fgaprx, anaprx, &
lhskep, lplot, ni_ana, pes_post, l_int_fg, prec, ptype, &
omega, lnonl, scal, nitout, no_topinc, &
fg_b, fg_o, new_R, new_H, new_Hls, new_R_H, vqcf, linesrch, &
xlnsrch, maxlnsrch, no_post, freeio, lnewpl, lvint, &
no_ps_inc, no_tv_inc, no_rh_inc, no_uv_inc, tmu, tight, &
grads_er, out_anin, out_aninp, out_add, test_ev, fix_ev, &
verb_ev, fg_scan, ana_scan, lerror_tq, mleak, sort_boxes, &
lstat_ana, init_seed, tune_RB

16.17 /PSAS_MONITOR/ (monitor convergence)

Missing: Description of namelist /PSAS_MONITOR/

This namelist is defined in module :

!------------------------------------------
! parameters set by namelist /PSAS_MONITOR/
!------------------------------------------
logical :: mon_lnsrch = .false. !monitor gradients in line search
real(wp) :: delta_gev = 0.01_wp ! increment for gradient evaluation
real(wp) :: delta_fev = 0.10_wp ! increment for function evaluation
namelist /PSAS_MONITOR/ mon_lnsrch, delta_gev, delta_fev
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16.18 /TEST_OBS_OPR/ (test tangent linear operator)

Missing: Description of namelist /TEST_OBS_OPR/

This namelist is defined in module :

! Namelist /TEST_OBS_OPR/ : provide parameters for the test
! Subroutine read_nml_testobsopr : read this namelist
! Subroutine test_obsopr : to test operators
!
!
! Usage:
!
! Enable via namelist /TEST_OBS_OPR/.
! Examples:
!
! mode = ’on’ : Use one random increment dx
! ’scale’ : Use scaling factors 1.e0 .. 1.e-12
! ’operator’ : Seperately test all operators (TEMP, SYNOP, ..)
! ’quantity’ : Seperately test all quantities (tv,rh,u,v,..)
! ’iarg’ : Seperately test each argument
! operator = ’TEMP’,’SYNOP’: Test the given operators only
! quantity = ’u’,’v’ : Test the given quantities only
! scale = 1.e-5 : Use this scaling factor instead of 1.e-3
! iarg = 3 : Test 3rd argument of selected operator/quant.
!
!
! Output (example):
!
! mode : on ! selected mode
! scale : 1.0000000000000000E-03 ! selected scale factor
! operator : TOVS ! selected operator
! quantity : tv ! selected quantity
!
! arguments : 87 ! size of argument vector
! (active) : 43 ! no of arguments disturbed
! results : 24 ! size of result vector
!
! |dx| = 0.7185369056023909 ! norm of random increment (scaled)
! |du| = 1.0485202182687827 ! norm of result vector (fin. diff.)
! |dy| = 1.0507179991226590 ! norm of result vector (analytic)
! |du-dy| = 0.1438600848470013 ! difference (fin. diff. - analytic)
!
! The vector |du-dy| should be several orders of magnitude smaller than
! |du|, |dy|. This example test failed.
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!----------------------------
! Namelist (module) variables
!----------------------------
integer ,parameter :: mo = 10 ! max no operators, quantities
character(len=5) :: operator(mo) = ’’ ! operators to check (’TEMP’,..)
character(len=2) :: quantity(mo) = ’’ ! quantity to check (’tv’, ..)
real(wp) :: scale = 1.e-3_wp! scaling of the increment
integer :: iarg = 0 ! argument index
integer :: ires = 0 ! result index
character(len=8) :: mode = ’’ ! test mode
integer :: seed (10) = 0 ! seed for random number gener.
integer :: test_H = 0 ! 1=fg.test, 2=test if new H

namelist /TEST_OBS_OPR/ scale, mode, operator, quantity, iarg, ires, seed, &
test_H

logical :: namelist_read = .false.

16.19 /VARQC/ (Variational Quality Control)
This namelist is defined in module :

!=================
! Namelist /VARQC/
!=================
!-----------------------------------------------------------------------
! Namelist /VARQC/ is read by subroutine ’read_vqc_nml’. (Default values
! are set by subroutine ’set_vqc_def’. The namelist provides parameters
! specifying the general behaviour of the variational quality control
! routine, mainly the approximation strategies followed by subroutine
! ’vqc_corr’:
!
! ’iprint’ determines the level of printout (0: none, 1:short, 2: long).
! ’w_min’ is the minimum eigenvalue of the returned Hessian.
! ’iappr’ determines the approximation of the returned inverse Hessian
! 0: The inverse Hessian is not calculated
! 1: an approximation is used (allways positive semidefinit)
! 2: The exact Hessian (despite constraints on the eigenvalues
! is returned. Eigenvalues may be constrained as
! specified by parameter ’w_min’.
! 3: As 2, but eigenvalues of R^(-1)+B^(-1) are constrained.
! ’vqc_par’ Approximation strategies for subroutine ’vqc_corr’
!-----------------------------------------------------------------------
integer ,save :: iprint ! print flag
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real(wp) ,save :: w_min ! minimum singular value in Hessian
integer ,save :: iappr ! approximation level for R
type (t_vqc_par) ,save :: vqc_par(10) ! set of strategies

real(wp) :: svqc = 3._wp ! variational quality control sigma
integer :: mvqc = 3 ! max number of rejected observation
real(wp) :: gvqc = 0._wp
logical :: cvqc = .true. ! correlated observations in VQC

namelist /varqc/ w_min, iappr, vqc_par, iprint, &
svqc, mvqc, cvqc

/VARQC/ Variational-Quality-Control Namelist-Group
variable default description
iprint 0 level of printout:

0: none
1: short
2: long

w_min 10−2 minimum eigenvalue of the returned Hessian.
iappr 2 approximation level for R:

0: R is always given for yi − yo = 0.
1: an approximation is used.
2: the exact Hessian (despite constraints on the eigen-
values) is returned.

vqc_par see below approximation strategies for subroutine v̀qc_corŕ.
cvqc .true. account for correlated observations in VQC.
svqc 3. default cutoff bound (in terms of σo.
mvqc 3 default maximum number of rejected correlated obser-

vations.
The namelist /VARQC/ allows to modify the technical parameters of the Variational

Quality Control algorithm (Section 8.2). Observation type specific parameters shall be set
in the namelist group /RULES/. For the case that no observation type specific parameters
are given, the values of svqc and mvqc as provided here take effect.
In each outer iteration i of the PSAS algorithm, i.e. for each guessed minus observed

value yi − yo of an observed quantity, the VQC algorithm determines the contribution
to the observational cost function Jo as well as the first and second derivative of the
contribution. The matrix of the second derivatives is the so called Hessian matrix. In
case of fully rejected observations (large yi − yo) the derivatives approach zero.
The inverse of the Hessian matrix is required in the PSAS optimization algorithm (de-

noted as Ri). In order to remain invertible the eigenvalues of the returned Hessian are
restricted to remain higher than a minimum value w_min. In addition, the Hessian (respec-
tively Ri) may be calculated in different approximations (parameter iappr.) Changing
these two parameters may have an effect of the efficiency of the optimization algorithm
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but should not alter the final solution.
For correlated data (up to now only the geopotential height reports within each TEMP

observations are treated as correlated) for all combinations of accepted and rejected data
(levels) the observational cost function and its derivatives must be determined and added
with respect to their individual weights. In general (for a large number of correlated
observations) calculation of all combinations is not feasible and only the most probable
terms of the sum are considered. The strategy for finding these terms is determined by the
parameter vqc_par, which is an array of derived data type t_vqc_par. The components
of this data type are as follows:

/VARQC/ Variational-Quality-Control Namelist-Group
variable default description
dim_lim 0 limit on the number of dimensions (data).
n_full 0 up to this number of rejected all combinations are cal-

culated.
c_start ” start value for exploration.
c_final ” exploration strategy in final phase.
n_lev_s 0 number of levels to explore in start-phase.
n_lev_f 0 number of levels to explore in final-phase.

For instance, to evaluate all combinations of accepted and rejected observations (up to
1000 correlated observations) the parameter vqc_par should be specified as follows:

vqc\_par(1)\%dim\_lim = 1000
vqc\_par(1)\%n\_full = 1000
vqc\_par(2)\%dim\_lim = 0

The default setting is as follows:
dim_lim n_full c_start n_lev_s

vqc_par(1)% 10 10
vqc_par(2)% 20 5 ’mostprob’ 2
vqc_par(3)% 30 3 ’mostprob’ 2
vqc_par(4)% 50 2 ’mostprob’ 1
vqc_par(5)% 100 1 ’mostprob’ 1
vqc_par(6)% 1000 1

For up to 10 correlated observations all (210 = 1024) combinations of accepted and
rejected observations are computed. For up to 20 correlated observations all combinations
with less than or equal 5 rejected observations are calculated. For more than 5 rejected
observations only a subset of the combinations is accounted for in the sum. For higher
numbers of correlated observations the number of combinations is further reduced. For
more than 100 correlated observations only one of them (or all) may be rejected.

16.20 /PSCMODEL/ (background error model)
This namelist is defined in module :

!--------------------
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! namelist /PSCMODEL/
!--------------------
integer,parameter:: IFC_CL = 1 ! climatological error
integer,parameter:: IFC_CFC= 2 ! climatological fc error
integer,parameter:: IFC_AFC= 3 ! actual fc error
integer :: ifc = IFC_AFC ! flag for fg-error type
character(len=8) :: model = ’dwd-oi’ ! horizontal correlation model
logical :: rhcexp = .true. ! RH horiz. corr. = exp(-.5(L/L_q)**2)
integer :: irad = -1 ! radian or secant is argument to c.f.
real(wp) :: L_h = 0._wp ! horizontal length scale for height
real(wp) :: L_q = 0._wp ! horizontal length scale humidity
real(wp) :: a_h = 0._wp ! vertical tuning parameter height
real(wp) :: a_q = 0._wp ! vertical tuning parameter humidity
real(wp) :: a_x = 0._wp ! vertical tuning parameter vel.pot.
real(wp) :: t_h = 0._wp ! linear transformation coef. height
real(wp) :: t_q = 0._wp ! linear transformation coef. humidity
real(wp) :: t_x = 0._wp ! linear transformation coef. vel.pot.
real(wp) :: e_h = -1._wp ! height error
real(wp) :: e_q = -1._wp ! relative humidity error
real(wp) :: e_v = -1._wp ! wind error
real(wp) :: rnu = 0.1_wp ! e2_x / e2_v
real(wp) :: cut = 0._wp ! cutoff radius (multiple of L)
logical :: test_bl= .false. ! flag to test blockdiagonal of HBHt
integer :: fixbc = 1 ! fix bessel coefs.: d2c/dr2|r=1 = 0
real(wp) :: modcvx = 0.08_wp ! modified vertical corr. for div.wind
real(wp) :: a = 0._wp ! scale parameters for cov. models
real(wp) :: nw = na ! number of coefficients for wind corr.
logical :: thc = .false. ! transform horizontal coordinates
real(wp) :: lsvv = 0._wp ! largescale contrib. to wind-wind cor.
real(wp) :: scale = 1._wp ! scaling factor for background error
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Parameter Default Description
ifc 3 1: use climatological errors.

2: use climatological forecast errors
3: use actual forecast errors, modified due to the previ-
ous analysis error estimate.

model ’dwd-oi’ Horizontal correlation model for geopotential to. Valid
choices are: ’dwd-oi’, ’c5pr_12’, ’c5pr_inf’,
’csxoar1’, ’csxoar2’, ’gauss’

rhcexp .true. Apply exponential horizontal covariance model for rela-
tive Humidity (C = exp(−0.5(L/Lq)2)). Else the same
function as for geopotential is applied.

irad cf. text The radiand (irad=1) or secant (irad=0) of the distance
on the sphere is used as argument to the horizontal cor-
relation function. A default value of 0 is used for the
models ’c5pr_XX’ and ’csxoarX’, 0 elsewhere.

rnu 0.1 Contribution of divergent wind variance to total wind
variance (E2

x/e
2
v)

cut 0 Cutoff radius (given as a multiple of the horizontal
length scale L)

fixbc 0 1,2: Adjust Bessel function coefficients so that the sec-
ond derivative vanishes for the cutoff radius. 0 for no
adjustment.

nw 8.(all) Number of coefficients to use for the mass-wind correla-
tions. The value for the DWD-OI was 5.5 .

a 0. Additional parameter for the horizontal covariance mod-
els ’csxoar1’ and ’csxoar2’.

modcvx 0.08 parameter of the vertical correlation function for wind.
lsvv 0. additional large scale contribution to wind-wind correla-

tion. (required for stable operation of the global model
in the tropics.)

Debugging and test flags
L_h 0. Value of constant horizontal length scale for mass and

wind (m). 0 for variable length scale
L_q 0. Value of constant horizontal length scale for relative hu-

midity (m). 0 for variable length scale
a_h 0. Value of constant vertical mass correlation parameter a.

0 if variable.
a_q 0. Value of constant vertical relative humidity correlation

parameter a. 0 if variable.
a_x 0. Value of constant vertical wind correlation parameter a.

0 if variable.
t_h 0. Factor for vertical linear coordinate transformation of

mass. 0 for polinominal expansion.
t_q 0. Factor for vertical linear coordinate transformation of

relative humidity. 0 for polinominal expansion.
t_x 0. Factor for vertical linear coordinate transformation of

wind. 0 for polinominal expansion.
e_h -1. Value of constant geopotential height error (m). -1 if

variable.
e_q -1. Value of constant relative humidity error (0. . . 1). -1 if

variable.
e_v -1. Value of constant wind error (m/s). -1 if variable.
test_bl .false. flag to test block-diagonal of HBHt. Obsolete, use

test_ev in namelist /PSAS/ instead.
fixbc 1 modify bessel coefficients so that the second derivative

at the cutoff radius becomes zero.
thc .false. Apply horizontal coordinate transformation to model

variable length scales (currently only works for mass).
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Valid choices for model
’dwd-oi’ Bessel function expansion as in DWD OI.
’c5pr_12’ compactly supported 5th order piecewise rational function C0(a =

1/2), Gaspari and Cohn, QJRMS (1999),125,723-757
’c5pr_inf’ compactly supported function C0(a =∞).
’csxoar1’ compactly supporting function approximating SOAR, Gneiting,

QJRMS (1999),125,2449-2464
’csxoar2’ compactly supporting function approximating TOAR, Gneiting

16.21 /BG_ERROR_OPERATOR/ (wavelet based background
error model)

Missing: Description of namelist /BG_ERROR_OPERATOR/

This namelist is defined in module :

!=============================
! namelist /BG_ERROR_OPERATOR/
!=============================
!------------------------------
! number of gridpoints, bounds
!------------------------------
integer :: nz = 64 ! number of vertical levels
integer :: ny = 0 ! number of latitudinal gridpoints
integer :: nx = 0 ! number of longitudinal gridpoints
real(wp) :: pbot = 1070. ! bottom (surface) pressure (hPa)
!-----------------------------------
! specification of covariance model
!-----------------------------------
integer :: valid = 0 ! 1:content is valid 2:use cov.model
integer :: repr_2dh = 0 ! hor. operator repr: 1=test, 2=use
character(len=128):: file = ’’ ! input file name, NMC, vert.cov.
character(len=128):: file_2dh = ’’ ! input file name, NMC, hor. cov.
integer :: lclim = 2 ! 1:clim.err. valid 2:use clim.err.
real(wp) :: scale_rh = 1._wp ! scaling factor for rel.hum. fg.error
!--------------------------------
! covariance matrix manipulations (partly not implemented)
!--------------------------------
logical :: modify_cor= .true.! modify correlations, else variances
real(wp) :: lat_homog = 99._wp! latitudinal homogeneous covariances
real(wp) :: smooth_h = 0._wp ! smooth horizontally
real(wp) :: smooth_v = 0._wp ! smooth vertically
!---------
! details
!---------
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character :: transform = ’w’ ! ’w’avelet, ’n’one
character :: sqr = ’s’ ! ’s’ymmetric, ’c’holesky
integer :: nwv = 4 ! no.points in vertical interpolation
integer :: base = WV_CUB_LIFT_INT ! wavelet basis
logical :: h2psi = .true.! derive streamf. cov. from height
logical :: h2t =.false.! derive temperature.cov. from height
logical :: sqrtcor =.false.! derive sqrt from corr.,not cov.
logical :: sparse =.false.! sparse repres. of vertical matrices
integer :: n_av_pole = -1 ! average anal.incr. at poles (no.pts)
integer :: zonfilt(3)= (/2,2,3/) !no.Fourier coefs.in zonal filter
integer :: n_zonfilt = 2 ! no of latitudes near poles to filter
!-----------------------------
! First Guess error estimation
!-----------------------------
integer :: fger_iter = 25 ! no. iterations for bg-error estimate
logical :: fger_est =.false.! estimate first guess error
logical :: fger_Li1 =.false.! test apply_L_i with e_fi=1, abort
logical :: fger_seed = .true.! generate seed (for parallel run)
logical :: fger_write=.false.! write fg error to file
!-------
! tests
!-------
logical :: test_bg =.true. ! compare operator impl. with explicit
real(wp) :: test_bg_b = 1.e-5 ! bound for failure of test_bg
integer :: test_adj = 2 ! compare linear vs adjoint
logical :: ltrace =.false.! trace minval,maxval,variance
!----------
! debugging
!----------
integer :: horz_inp = 2 ! 1:next-neighbour, 2:bi-linear
integer :: vert_inp = 2 ! 1:next-neighbour, 2:interpolate
logical :: l_L_h = .true.! apply L matrix in the horizontal
logical :: l_W_h = .true.! apply W matrix in the horizontal
logical :: unit_v =.false.! apply unit matrix in the vertical

namelist /BG_ERROR_OPERATOR/ nx, ny, nz, pbot, file, transform, sqr, valid, &
base, nwv, h2psi, h2t, sqrtcor, sparse, lclim, &
scale_rh, test_bg, repr_2dh, file_2dh, &
modify_cor, lat_homog, smooth_h, smooth_v, &
test_adj, horz_inp, l_L_h, l_W_h, vert_inp, &
test_bg_b, unit_v, ltrace, &
fger_iter, fger_est, fger_seed, fger_write, &
fger_Li1, n_av_pole, zonfilt
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16.22 /ANAERROR/ (analysis error calculation)
This namelist is defined in subroutine in module mo_anaerr.

!-------------------
! Namelist Variables
!-------------------
integer :: anaerr = 1 ! calculate analysis error
real(wp) :: lat1 ! first latitude [degree]
real(wp) :: lon1 ! first longitude [degree]
real(wp) :: latd ! latitudinal increment [degree]
real(wp) :: lond ! longitudinal increment [degree]
integer :: nx ! no. grid points in x-direction
integer :: ny ! no. grid points in y-direction
real(wp) :: plevs(50) ! pressure levels [hPa]

namelist /ANAERROR/ anaerr, lat1, lon1, latd, lond, nx, ny

Namelist /ANAERROR/ is used to switch on or off analysis error calculations. Furthermore
the domain and grid-spacing of the analysis error grid may be specified. If a previous
analysis error was read (cf. parameter ifc in namelist /PSCMODEL/) the default grid
specifications are taken from that file. Otherwise they are derived from the domain of the
first guess fields, with a spacing of 6. degrees for the global domain and 1. degree for a
local area model.

Parameter Default Unit Description
anaerr 1 1: calculate analysis error

0: do not calculate analysis error
lat1 -87. / * degree First latitude value
lon1 0. / * degree First longitude value
latd 6. / 1. degree Latitude increment
lond 6. / 1. degree Longitude increment
nx 30 / * degree number of latitudes
ny 60 / * degree number of longitudes
plevs 10,50,100,200,300,500,1000 hPa pressure levels

16.23 /CNTRLVAR/ (control variable transformation)
This namelist is defined in module .

real(wp) :: rh0 = 0.03_wp ! lower bound for linear range (rel.hum)
real(wp) :: rh0fg = 0.01_wp ! lower bound for first guess rel.humidity
real(wp) :: q0fg = 1.25e-6_wp ! lower bound for first guess spc.humidity
real(wp) :: rhmax = 100._wp ! upper bound for relative humidity
real(wp) :: rh1 = 100._wp ! upper bound for linear range (rel.hum)
real(wp) :: rh1fg = 100._wp ! upper bound for first guess rel.humidity
integer :: version = 1 ! 1:exponential; 2:quadratic
namelist /CNTRLVAR/ rh0, rh0fg, q0fg, rhmax, rh1, rh1fg, version
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In order to constrain analysed humidity to values larger than zero a generalised trans-
formed conrol variable is used in the variational scheme. Above a threshold rh0 generalised
humidity is equal to relative humidity. Below it is modified so that generalised humidity
is allowed to take any finite value whereas relative humidity is constrained to values ≥ 0.
A similar mechanism may be activated to prevent super-saturation (rh > 1) as well by a
respective re-definition of generalised humidity in the vicinity of h ≈ 100%. Details are
given in the scientific documentation 8.3.3.

Parameter Default Unit Description
version 1 1 or 2 Choice of transformation from generalised humidity

1) rh ≈ exp(gh)
2) rh ≈ gh2

rh0 0.03 0. . . 1 Lower bound of region with rh = gh.
Set to 0 to disable generalised humidity transformation
for small humidities.

rh0fg 0.01 0. . . 1 First guess value of rh is constrained to be larger than
this value. (for version=1 only)

q0fg 1.25e-6 Kg/Kg First guess value of q is constrained to be larger than
this value. (for version=1 only)

rhmax 100. 0. . . 1 Upper bound of rh.
Set to ≈ 1 to prevent supersaturation.

rh1 100. 0. . . 1 Upper bound of region with rh = gh.
Set to < rh1 to enable generalised humidity transforma-
tion for values close to supersaturation.

rh1fg 100. 0. . . 1 First guess value of rh is constrained to be smaller than
this value. (for version=1 only)

16.24 /HUM_ANA/ (humidity analysis)

Missing: Description of namelist /HUM_ANA/

This namelist is defined in module :

!--------------------
! namelist parameters
!--------------------
real(wp) :: strat_q = 4.0e-6_wp ! stratospheric humidity
real(wp) :: hum_ana_top = 25000._wp ! top of humidity analysis
real(wp) :: e_hum_top = 0.01_wp ! nominal FG error above hum_ana_top
real(wp) :: ln_hum_ana_top

namelist /HUM_ANA/ strat_q, hum_ana_top, e_hum_top
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16.25 /OBSERR/ (observation error model)

Missing: Description of namelist /OBSERR/

This namelist is defined in module :

!--------------------------------------
! namelist parameters (free atmosphere)
!--------------------------------------
character(len=8) :: obstype ! observation type (’TEMP’,’PILOT’,etc.)
integer :: codetype (ncde) ! code type (numeric)
character(len=8) :: quantity ! quantity (’uv’,’tv’, ’rh’)
character(len=8) :: table ! ’OI’ or ’IFS’
real(wp) :: scale(nlev) ! rescaling factor
real(wp) :: err (nlev) ! externally specified obs. errors

!-------------
! set defaults
!-------------

obstype = ’’
codetype = -1
quantity = ’’
table = ’’
scale = -1._wp
scale(1) = 1._wp
err = -HUGE (0._wp)

16.26 /PROFILES/ (write profiles of atmospheric param-
eters)

Missing: Namelist PROFILES

Missing: Description of namelist /PROFILES/

16.27 /ENKF/ (Ensemble Kalman Filter specific
namelist)

This namelist is defined in module mo_letkf:

!===================================
! Variables in Namelist Group /ENKF/
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!===================================
integer :: k_enkf = 0 ! ensemble size
logical :: gen_ens = .false. ! generate random forecast ensemble

!----------------------------------------------------------------------
! steering of atmospheric parameters
! (which of them take from ensemble, mean, deterministic forecast etc.)
!----------------------------------------------------------------------
integer :: src_fc = 0 ! fc from 0:mean 1:psas fc
character(len=256) :: par_read = ’ ’! parameters to read (fc) ’ps t q u ..’
character(len=256) :: par_fc_en = ’ ’! parameters to take from fc ensemble
character(len=256) :: par_fc_mn = ’ ’! parameters to take from forecast mean
character(len=256) :: par_fc_det= ’ ’! parameters to take from determ.run
character(len=256) :: par_trans = ’ ’! parameters to transform ’ps t q u..’
character(len=256) :: par_ana = ’ ’! parameters to take from analysis
character(len=256) :: par_fce = ’ ’! parameters to take from fc ensemble
character(len=256) :: par_fcm = ’ ’! parameters to take from forecast mean
character(len=256) :: par_write = ’ ’! parameters to write
character(len=256) :: par_diagn = ’ ’! parameters for diagnostics
integer :: det_run = 0 ! deterministic run

!-----------------------------
! input / output specification
!-----------------------------
character(len=256) :: path_diag = ’’ ! path for diagnostics
character(len=256) :: ane_fname = ’gaf_ANA_TIMEMM_.ens’! an. ensemble basename
character(len=256) :: fce_fname = ’gff_FCR_TIMEMM_.ens’! fc. ensemble basename
character(len=256) :: invar_ens = ’’ ! invariant field file
character(len=256) :: ana_file = ’gaf_ANA_TIMEMM_’ ! det. an. filename
character(len=256) :: ana_read = ’’ ! analysis to compare with
character(len=256) :: grid_file = ’’ ! grid metadata (ICON)
character(len=64) :: fof_prefix(mfof) = ’’ ! prefix for ’fof’ files
logical :: rename_diag=.false. ! temporary: rename rho_local,diag..

!-----------------------
! coarse grid resolution
!-----------------------
integer :: rf = 1 ! horizontal coarsening factor
integer :: rni = 1 ! reduced ni-resolution (GME only)
integer :: nzr = 1 ! number of height levels (coarse grid)

!-------------
! localisation
!-------------
real(wp) :: lh = 0._wp ! hor.lengthscale for obs.weights(km)
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real(wp) :: lh_min = 0._wp ! hor.lengthscale for obs.weights(km)
real(wp) :: lh_max = 0._wp ! hor.lengthscale for obs.weights(km)
real(wp) :: lv = 0._wp ! ver.lenghtscale for obs.weights
real(wp) :: lv_surf = 0._wp ! min.ver.lenghtscale for obs.weights
real(wp) :: lv_top = 0._wp ! max.ver.lenghtscale for obs.weights
real(wp) :: lvrad = 0._wp ! ver.lenghtscale for radiances
logical :: adap_loc = .false. ! use adapt. localization
real :: nobs_gp = 100.0 ! numb. of eff. obs/gridp.(adap loc)

!--------------------------------------------
! additive model error (from 3D-Var B-matrix)
!--------------------------------------------
real(wp) :: mf = 0.25 ! B-amplitude for model error
real(wp) :: mf0 = 0.25 ! B-amplitude for model error (mean)
real(wp) :: mfgen = 0.5 ! B-amplitude for ensemble generation
integer :: m_flag = 0 ! flag for model error to mean
integer :: moderr_fc = 0 ! 1:add mod err to fg, 0: to ana

!----------
! inflation
!----------
real(wp) :: rho = 1._wp ! covariance inflation factor
logical :: adap_rho = .false.! adaptive inflation
integer :: apply_rho = 1 ! apply inflation 1:in LETKF 2:on W
real(wp) :: adap_rho_l = 0.9 ! lower bound for adap rho
real(wp) :: adap_rho_u = 10.0 ! upper bound for adap rho
real(wp) :: rho_max(4) = 10._wp ! max. rho (at 1,10,100,1000 hPa)
real(wp) :: kappa = 1.05 ! factor for growth of forecast. cov. infl. err.
real(wp) :: va = 1.0 ! error off (analysed) rho-estimate
real(wp) :: alpha = 0.0 ! weight of new adaptive computed rho

!---------------------
! adaptive model error
!---------------------
logical :: adap_R = .false. ! use adap. R-corr.(local, ens space)
real(wp) :: adap_R_l = 0.5 ! lower bound for adap R
real(wp) :: adap_R_u = 10.0 ! upper bound for adap R

!------------
! diagnostics
!------------
integer :: grid_diag = 0 ! diagn. on coarse grid 0: no , 1: yes
integer :: rms_diag = 0 ! rms-stat 0: no, 1: for fg 2: for ana
integer :: diag_type = 0 ! rms-stat for 0: det-run 1: mean
integer :: gp_mat = 0 ! grid point output (W-matrices)
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integer :: gp_ind(4,ngp_max) = -1 ! W-matrix output grid indices (coarse grid)
integer :: norm_flag = 0 ! 0:standard norm, 1: energy norm
logical :: write_mean =.true. ! write mean and spread (GRIB-files)
logical :: write_gain =.true. ! write gain matrix (i.e. W Y)
logical :: out_prof =.false.! printout of profiles

!--------------
! miscellaneous
!--------------
integer :: ensbc_weights = 0 ! apply weights at boundaries (ens bc only)
integer :: fix_plev = 0 ! interpolate to common p-levels
logical :: q_bound = .true. ! apply bounds to humidityvariables
logical :: no_ps_inc = .false. ! no surface pressure increment
logical :: no_tv_inc = .false. ! no tv increment
logical :: no_rh_inc = .false. ! no rh increment
logical :: no_uv_inc = .false. ! no uv increment
logical :: sat_ad = .false. ! satur. adj. of ana-incr
logical :: hyd_bal = .false. ! hydrost. balanc. of ana_incr
integer :: bal_var = 0 ! 0: balance p; 1 balance t

The namelist /ENKF/ sets up the option for the Ensemble Kalman Filter (Section 9) of
KENDA. The following table describes the entries and links them to specific Sections in
the scientific documentation.

ENKF-Namelist description needs to be completed!

ENKF-Namelist: Check for undocumented features!

/ENKF/-Namelist (1/5): LETKF-Algorithm Settings
variable default description
k_enkf 0 number of ensemble members (L in Chapter 9)
gen_ens .false. instead of assimilation, generate random forecast ensem-

ble (only GME, see Section 9.1.5)
rf 1 horizontal coarsening factor fhor,r for regular analysis

grid (Section 9.2.2)
rni 1 number of diamonds ni: reduced resolution for GME

(not implemented yet! – analysis weights computed
on full horizontal resolution)

nzr 1 number of analysis grid height level (nzr in Section 9.2.2)
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lh 0. km horizontal lengthscale for R-localisation (lh in Section
9.2.1)

what happens if you choose lh=0? -> Hendrik
checkt Code

lv 0. ln(p) vertical lengthscale for R-localisation (lv)
lv_surf 0. ln(p) value of lv at model surface height (lsurfv )
lv_top 0. ln(p) value of lv at model top height (ltopv )
lv_rad 0. ln(p) vertical lengthscale for radiance observations (cf. also

Section 9.2.5)
adap_loc .false. Use adaptive horizontal localization (only COSMO) (cf.

Section 9.2.1) – overwrites effect of lh
nobs_gp 100. adap_loc: Neff number of effective observations per

grid point: Eq. (9.27)
lh_min 0. adap_loc: lminh lower bound for lh
lh_max 0. adap_loc: lmaxh upper bound for lh
rho 1. Covariance inflation factor (ρ in Section 9.2.4)
apply_rho 1 apply inflation

1: on background ensemble perturbations - Eq. (9.31)
2: on analysis ensemble perturbation weights - Eq.
(9.30)

adap_rho .false. adaptive covariance inflation (cf. Section 9.2.4)
adap_rho_l 0.9 adap_rho: lower bound for ρ
adap_rho_u 10. adap_rho: upper bound for ρ
rho_max (10.,10.,10.,10.) adap_rho: max ρ at 1,10,100,1000 hPa
kappa 1.05 adap_rho: factor for growth of fc. cov. infl. err (dep-

recated)
va 1.05 adap_rho: error of (analysed) rho-estimate (depre-

cated)
alpha 0. adap_rho: weight of new adaptive rho
adap_R .false. use adaptive R-correction (cf. Section 9.3.2)

adaptive R-correction: not documented!

adap_R_l 0.5 adap_R: lower bound
adap_R_u 10. adap_R: upper bound
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ensbc_weights 0 apply additional relaxing weights [1. to 0.] in COSMO-
boundary zone (only for COSMO-KENDA, see routine
weights_ensbc)
0: no
1: yes

ensbc_weights: not documented. see routine
weights_ensbc in mo_letf

fix_plev 0 interpolate members to common pressure-levels before
assimilation
(specific to global LETKF for hydrostatic GME/ICON)

fix_plev not documented!

q_bound .true. apply positivity constraints on humidity variables (Sec-
tion 9.2.6)

sat_adj .false. apply saturation adjustment (Section 9.2.6)
hyd_bal .false. hydrostatic balancing of pressure increments (only

COSMO, Section 9.2.6)
bal_var 0 hyd_bal: variable to balance hydrostatically:

0: pressure
1: temperature (not implemented)

no_ps_inc .false. gen_ens: no increments on surface pressure (only during
noise-generation for GME-LETKF)

no_tv_inc .false. no increments on virtual temperature (–""–)
no_rh_inc .false. no increments on relative humidity (–""–)
no_uv_inc .false. no increments on horizontal winds (–""–)
det_run 0 use deterministic run

0 (DET_NONE): none
1 (DET_UPDATE): update det. run with EnKF-gain (only
COSMO, Section 9.1.6)
2 (DET_HYBRID): VarEnKF (only GME, Section 10)
3 (DET_3DVAR): independent 3dVar analysis (only GME,
Section 7)

/ENKF/-Namelist (2/5): Additive Model Error (only global LETKF)
mf 0.25 B-amplitude for model error proxy (fadd in Eq. (9.43))
mf0 0.25 B-amplitude for model error (mean)

mf0 fuer twin-experimente. Noch undokumentiert!

mfgen 0.5 gen_ens: B-amplitude for ensemble generation (fgen in
Eq. (9.18)
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m_flag 0 flag for model error to mean

m_flag fuer twin-experimente. Noch undokumen-
tiert!

moderr_fc 0 mf: add model error to 0: forecast ensemble
1: analysis ensemble

/ENKF/-Namelist (3/5): Steering of atmospheric parameters
src_fc 0 fc from 0:mean, 1:psas fc

src_fc undokumentiert

par_read " " Parameters to read from GRIB-files
COSMO:
"pp t u v w q qcl qci tsurf
z0 plcov lai rootdp vio3 hmo3
t_s t_snow w_i qv_s w_snow t_so w_so
freshsnw for_e for_d rho_snow" + par_read
GME:
"ps t tsurf q u v qcl qci" + par_read
ICON:
"pf t tsurf q u v qcl qci" + par_read

par_fc_en " " par_read: Parameters to take from forecast ensemble
COSMO:
"pp t q u v w qcl qci tsurf t_s t_snow
t_so w_so w_i w_snow" + par_fc_en
GME (also apply H):
"ps t tsurf q u v qcl qci" + par_fc_en
ICON (also apply H):
"pf t tsurf q u v qcl qci" + par_fc_en

par_fc_mn " " par_read: Parameters to take from forecast mean
COSMO: None + par_fcm
GME / ICON (also apply H): None + par_fcm

par_fcm " " Parameters to take from forecast mean
COSMO: None + par_fcm
GME / ICON: None + par_fcm

UNKLAR: welcher dieser beiden Parameter ist
gueltig? Welcher macht was???

par_fc_det " " par_read: Parameters to take from deterministic run
(only COSMO with det-update)
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par_trans " " Parameters to update (transform) in analysis (LETKF
and VarEnKF, Section 9.2.3)
COSMO:
"pp t q u v w qcl qci" + par_trans
GME:
"ps geoh tsurf q u v qcl qci" + par_trans
ICON:
"pf t tsurf q u v qcl qci" + par_trans

par_ana " " Parameters to take from analysis

par_ana possibly deprecated

par_fce " " Parameters to non-update (take from forecast ensemble
and pass) in analysis (Section 9.2.3)

par_fce not documented

COSMO:
"qr qs qg" + par_fce
GME / ICON:
"qr qs" + par_fce

par_write " " Parameters to write in output GRIB-files
COSMO:
"pp t u v w q qcl qci tsurf
z0 plcov lai rootdp vio3 hmo3
t_s t_snow w_i qv_s w_snow t_so w_so
freshsnw for_e for_d rho_snow" + par_write
GME:
"ps t q u v qcl qci" + par_write
ICON:
"pf t q u v qcl qci" + par_write

par_diagn " " Parameters for diagnostics (see subtable (5/5) below)
COSMO:
"pp t u v w q qcl qci tsurf qr qs qg
z0 plcov lai
rootdp vio3 hmo3 t_s t_snow w_i qv_s
w_snow t_so w_so
freshsnw for_e for_d rho_snow" + par_diagn
GME:
"ps t tsurf q u v qcl qci" + par_diagn
ICON:
"pf t tsurf q u v qcl qci" + par_diagn

/ENKF/-Namelist (4/5): Input/Output
path_diag " " path for diagnostics
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fce_fname specific forecast ensemble file basename
COSMO-KENDA: lff_FCR_TIMEMMSS_
GME/ICON-(Var)EnKF: gff_FCR_TIME_

ane_fname specific analysis ensemble file basename
COSMO-KENDA: laf_ANA_TIMEMMSS_
GME/ICON-(Var)EnKF: gaf_ANA_TIME_

ana_file specific deterministic analysis file basename
COSMO-KENDA: laf_ANA_TIMEMMSS_
GME/ICON-(Var)EnKF: gaf_ANA_TIME_

invar_ens " " invariant field file (ICON?)

invar_ens: UNDOKUMENTIERT

ana_read " " 3dVar analysis to compare with (deprecated)

ana_read: Deprecated parameter. Delete here when
removed from fortran-code

grid_file " " grid metadata (ICON)
fof_prefix " " prefix for additional feedback files apart from default

fof-files
recommended value: "fof"
takes stringlist as value, e.g. "fof rad"

rename_diag .false. (deprecated)
/ENKF/-Namelist (5/5): Diagnostics

grid_diag 0 diagnose on coarse grid
0: no
1: yes

rms_diag 0 RMSE-Statistics in observation space (deprecated)
0: no
1: for first guess
2: for analysis

rms_diag: Deprecated parameter. Delete here when
removed from fortran-code

diag_type 0 (deprecated) RMSE-Statistics for
0: deterministic run
1: mean

diag_type: Deprecated parameter. Delete here when
removed from fortran-code
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gp_mat 0 binary grid point output of Wa

0: no
1: yes

gp_ind -1 gp_mat: Wa-output grid indices (coarse grid)
norm_flag 0 (possibly deprecated)

0: standard norm
1: energy norm

write_mean .true. write ensemble mean and spread as GRIB-files
(forecast and analysis)

write_gain .true. write gain matrix (WaYb) as NetCDF-file
out_prof .false. printout of profiles (cf. Section 16.26)

16.28 /RADAR_OBS/ (Radar observation operator)
This namelist is defined in module mo_radar .

!---------------------
! Namelist /RADAR_OBS/
!---------------------
integer :: use_refl = STAT_ACTIVE ! radar reflectivity usage flag
integer :: use_radvel = STAT_ACTIVE ! radial velocity usage flag
integer :: iprintout = 0 ! steering of printout
logical :: split_rprt = .true. ! temporarily split reports
logical :: join_rprt = .true. ! join reports again
logical :: dealias_fg = .true. ! dealias radial wind (by first guess)
real(wp) :: chk_alias = 2._wp ! check dealiasing (compare to spread)
real(wp) :: ofg_alias = 0.7_wp ! check dealiasing (compare to o-fg)
!------------------------------------------------
! +++ CURRENTLY not used: min/max_range/xdist +++
!------------------------------------------------

! real(wp) :: min_range = 0._wp ! minimum range (km)
! real(wp) :: max_range = 999._wp ! maximum range (km)
! real(wp) :: min_hdist = 0._wp ! minimum hor. distance between rays
! real(wp) :: min_vdist = 0._wp ! minimum vert. distance between rays
! real(wp) :: min_rdist = 0._wp ! minimum distance within a ray (km)

The namelist group defines parameters specific to the volume radar observation opera-
tor. This namelist and observation operator is used only in the COSMO-LETKF, not in
the 3dVar.

/RADAR_OBS/-Namelist
variable default description
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use_refl STAT_ACTIVE use radar reflectivity (flag)
use_radvel STAT_ACTIVE use radar radial velocity (flag)
iprintout 0 printout of radar-obs-processing (0: no / 1: yes)
split_rprt .true. temporarily split reports
join_rprt .true. temporarily join reports again

radar: split_rprt und join_rprt undokumentiert

dealias_fg .true. dealias radial wind (by first guess)

radar: dealiasing (und checks!) undokumentiert!

chk_alias 2. check dealiasing (compare to spread)
ofg_alias 0.7 check dealiasing (compare to obs minus first guess)

16.29 /FOF_INPUT/ (Interpretation of fof-file input from
COSMO)

This namelist is defined in module mo_fdbk_in :

!---------------------
! namelist /FOF_INPUT/
!---------------------
logical :: flag_dataset = .false. ! set FL_DATASET for rejected data
logical :: rm_fg_check = .false. ! remove first guess check
real(sp) :: ps_obs_error = 0. ! <0: factor on, >0: value of PS obs.
error
real(sp) :: uv_obs_error = 0. ! <0: factor on, >0: value of wind
obs.error
real(sp) :: radvel_obs_error= 0. ! <0: factor on, >0: value of radial wind
oe
real(sp) :: t_obs_error = 0. ! <0: factor on, >0: value of
temp.obs.error
real(sp) :: rh_obs_error = 0. ! <0: factor on, >0: value of wind
obs.error
real(sp) :: rh2m_obs_error = 0. ! <0: factor on, >0: value of
temp.obs.error

The namelist group defines how the ensemble feedback files in the COSMO-LETKF are
interpreted. This namelist and observation operator is used only in the COSMO-LETKF,
not in the 3dVar.
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/FOF_INPUT/-Namelist
variable default description
ps_obs_error 0. if 6= 0.: set value for surface pressure observation er-

ror standard deviation σobs,used for R (Section 9.3) using
method a) or b):
a) ps_obs_error > 0.:
set absolute standard deviation σobs,used =
ps_obs_error
b) ps_obs_error < 0.:
factor on the σobs,fof of the feedback file:
σobs,used = σobs,fof · (− ps_obs_error )

uv_obs_error 0. horizontal wind observation error:
as for ps_obs_error. also:

radvel_obs_error 0. radial velocity (from radar observations)
t_obs_error 0. temperature
rh_obs_error 0. relative humidity
rh2m_obs_error 0. relative humidity at surface
flag_dataset .false. for debugging: set all checks to FL_dataset, so that any

degradation of the state variable present in the input file
may be traced back

rm_fg_check .false reset the effect of the first guess check

rm_fg_check: the effect of WHICH first guess check
is reset??
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Chapter 17

Observation Handling

Observation handling chapter: Maybe put it into better context?

17.1 Classification of Observations
In order to classify observation types the following identifiers are specified in the ob-
servational data structures: observation-type, data-base-identifier, BUFR-type,
BUFR-subtype, code-type, and module-type.

ID obstype module type Comment
1 SYNOP SYNOP/COSMO
2 AIREP AIREP/COSMO Aircraft observations
3 SATOB AMV Atmospheric wind vectors.
4 DRIBU SYNOP
5 TEMP TEMP/COSMO
6 PILOT TEMP/COSMO
7 SATEM –
8 PAOB SYNOP Southern Hemispheric bogus observations,

available until 2009
9 SCATT SYNOP Scatterometer data.
10 RAD TOVS Satellite radiance observations.
11 GPSRO GPSRO GNSS Radio occultations (bending angles).
12 GPSGB GPSGB/COSMO GNSS Ground based observations.
13 RADAR RADAR Volume radar observations.
14 POWER – Renewable energy data (wind, solar power).

Table 17.1: (CMA) Report Type Identifiers used in the DWD 3dVar.

In the 3dVar observations are classified according to their observation-type (cf. Table
17.1) and data-base-identifier (‘Datenbankkennzahlen’). Observation type identifiers
1 to 7 are identical with whose formally used in the Optimum Interpolation scheme. At
ECMWF (and therefore in the ECMWF ODB tables) observations are classified according
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to observation-type and code-type. Observation types 1-9 correspond with whose used
in the 3dVar. In addition, observations may be classified according to their BUFR type
(WMO specification) and BUFR subtype. Finally a module-type is defined, specifying
which (Fortran-90-)module holds the observation type specific code. This information
is only used within the 3dVar. Some observation types may be associated alternatively
with the module COSMO. In this case the formulation of the COSMO model (nudging or
KENDA/LETKF) is used for verification purposes (MEC). These formulation does not
provide the adjoint code and thus cannot be used in the variational scheme.
Tables of values of the identifiers are defined within the 3dVar in the tables and modules:

: observation-types; : data-base-identifier; : BUFR-type; : BUFR-subtype and
and code-type as well as mappings between data-base-identifier, BUFR-subtype and
code-type.
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DWD BUFR BUFR CMA CMA 3Dvar
dbkz type subtype obstype codetype module description
0 0 1 1 11 1 surface, SYNOP Sect.1-4 manual+PAST
1 0 140 1 140 1 surface, METAR
2 0 1 1 11 1 surface, SYNOP Sect.5
3 0 - - - 0 climatol.data, SYNOP, DWD only
4 0 - - - 0 surface, WEHI (DWD)
5 0 1 1 11 1 surface, SYNOP Sect.5, from 1.4.2001
9 0 - - - 0 surface, PSEUDO-SYNOP (from TEMP)
11 0 - - - 0 agr.met. AGRO
12 0 - - - 0 agr.met. PHAEN
13 0 - - - 0 agr.met. PHYTOPAT
16 10 - - - 0 radioact. RADI
17 10 - - - 0 radioact. RADA
32 0 - - - 0 verification, SYNOP or SHIP obs-ana
33 0 - - - 0 verification, Pseudo-SYNOP - ana
64 0 - - - 0 climatol.data, CLIMAT
65 0 - - - 0 climatol.data, EILKLIMA
66 0 - - - 0 climatol.data, CLIMAT Sect. 1-4
67 0 - - - 0 climatol.data, CLIMAT Sect. 5
128 0 3 1 14 1 surface, SYNOP Sect 1-3 autom.
256 1 9 1 21 1 SHIP manuell
320 1 - - - 0 climatol.data, CLIMAT SHIP
384 1 13 1 24 1 SHIP, autom.
385 1 21 4 165 1 BUOY
386 253 164 8 180 1 PAOB
400 1 - 1 - 0 verification, DRIBU
512 2 91 6 32 2 upper-air, PILOT Part A
513 2 91 6 32 2 upper-air, PILOT Part B
514 2 91 6 32 2 upper-air, PILOT Part C
515 2 91 6 32 2 upper-air, PILOT Part D
520 2 101 5 35 2 upper-air, TEMP Part A
521 2 101 5 35 2 upper-air, TEMP Part B
522 2 101 5 35 2 upper-air, TEMP Part C
523 2 101 5 35 2 upper-air, TEMP Part D
528 4 - 2 41 2 upper-air, CODAR
529 4 144 2 144 2 upper-air, AMDAR
530 4 142 2 - 2 upper-air, AIREP
531 3 - - - 0 upper-air, TEMP from SATEM
532 4 145 2 145 2 upper-air, ACARS Lufthansa
533 4 145 2 145 2 upper-air, ACARS USA
534 4 145 2 145 2 upper-air, ACARS Europe (Bracknell)
535 4 145 2 145 2 upper-air, ACARS other
536 2 101 5 35 2 upper-air, merged TEMP, PILOT
537 2 - - - 0 Pseudo TEMPS, Pseudo TEMPS, land
544 2 - - - 0 verification, TEMP obs-ana
545 2 - - - 0 verification, PILOT obs-ana
546 2 - - - 0 verification, TEMP obs-ana
547 4 - - - 0 verification, Aircraft obs-ana
552 2 - - - 0 wind profiler, USA
553 2 - - - 0 wind profiler, Eu/Linddbg. u,v
554 2 - - - 0 wind profiler, Eu/Linddbg. t.w
555 2 - - - 0 wind profiler, Japan
560 2 - - - 0 verification, wind profiler obs-ana
600 6 - - - 0 radar, OPERA
640 6 - - - 0 radar, wind
650 6 - - - 0 radar, DX-composit
768 2 92 6 33 2 upper-air, PILOT SHIP A
769 2 92 6 33 2 upper-air, PILOT SHIP B
770 2 92 6 33 2 upper-air, PILOT SHIP C
771 2 92 6 33 2 upper-air, PILOT SHIP D
776 2 102 5 36 2 upper-air, TEMP SHIP A
777 2 102 5 36 2 upper-air, TEMP SHIP B
778 2 102 5 36 2 upper-air, TEMP SHIP C
779 2 102 5 36 2 upper-air, TEMP SHIP D
780 2 103 5 135 2 upper-air, TEMP DROP A
781 2 103 5 135 2 upper-air, TEMP DROP B
782 2 103 5 135 2 upper-air, TEMP DROP C
783 2 103 5 135 2 upper-air, TEMP DROP D
792 2 102 5 36 2 upper-air, merged TEMP/PILOT SHIP
- - - - - 0 ?

800 2 - - - 0 verification, TEMP SHIP obs-ana
801 - - - - 0 verification, DROP
1664 3 61 7 - 0 satellite, SATEM A
1666 3 62 7 - 0 satellite, SATEM B
1672 5 83 3 88 2 satellite, SATOB Sect.2
1673 5 83 3 88 2 satellite, SATOB Sect.3
1674 12 - 9 - 1 satellite, SATOB Sect.4
1675 5 - 3 - 2 satellite, SATOB Sect.5
1677 5 - 3 - 2 satellite, SATOB Sect.6
1680 3 - - - 0 verification, SATEM obs-ana
1681 5 - - - 0 verification, SATOB obs-ana
1688 3 - - - 0 satellite, proviles USA
1689 3 55 - 210 4 satellite, ATOVS HIRS
1690 3 55 - 210 4 satellite, ATOVS AMSU-A
1691 3 55 - 210 4 satellite, ATOVS AMSU-B
1692 3 - - - 0 satellite, AVHRR
1696 12 - 9 - 1 satellite, ERS
1697 12 - 9 - 1 satellite, QUICKSCAT
1704 5 87 3 90 2 satellite, AMV, EUMETSAT
1705 5 87 3 90 2 satellite, AMV, GOES
1706 5 87 3 90 2 satellite, AMV, MODIS
10000 0 1 1 11 1 surface, SYNOP

Table 17.2: Corresponding DWD, CMA and BUFR types and subtypes
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17.2 Steering of Observation Handling

General parameters (area, hight and time range, bounds for first guess check, etc.) which
are applicable to each observation type are specified by namelist /REPORT/ (Section 16.2).
More complex rules may be specified by namelist /RULES/ (Section 16.3). Thinning is
steered by /THINNING/. Observation type specific Parameters are set by the namelists
/SYNOP_OBS/ (16.8), /TEMP_OBS (16.7), /GPS_RO/ (16.13), /RO_VDA/ (16.14), /TOVS_OBS
(16.9), /AMV_OBS (16.11),/AIREP_OBS (16.12). Data type specific settings are given below.

17.2.1 SATOB (AMV) - parameter settings

name sat.id. code dbkz thinning (h) (v) QI area time method
Eumetsat 1704 ni=48: ca. 160 km 40 hPa 0.5 +− 1 : 30h
GOES 1705 ni=48: ca. 160 km 40 hPa 0.5 +− 1 : 30h
Modis 1706 ni=128: ca. 60 km 40 hPa % +− 1 : 30h

*2 *2 *2 *1
specified by (namelist)

*1 /REPORT/
*2 /THINNING

QI is the required quality index (per cent confidence) reported in the AMV BUFR file.

Computational method (method) is:

1 Wind derived from cloud motion observed in the infrared channel
2 Wind derived from cloud motion observed in the visible channel
3 Wind derived from motion observed in the water vapour channel
4 Wind derived from motion observed in a combination of spectral

channels
5 Wind derived from motion observed in the water vapour channels

in clear air
6 Wind derived from motion observed in the ozone channel
7 Wind derived from cloud motion observed in water vapour channel
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17.3 Bookkeeping

17.4 Processing

17.4.1 Input

17.4.2 First Guess Check

17.4.3 Analysis

17.4.4 Feedback

17.4.5 Specific Observation Operators

TOVS (Satellite Radiances)

TOVS (Satellite Radiances)

The processing of the TOVS satellite radiances is performed by the RTTOV-7 fast radia-
tive transfer model. The model performs simulations of radiances for satellite infrared and
microwave nadir scanning radiometers. The simulated radiance depends on atmospheric
profiles of temperature and gas concentrations and on surface and cloud properties, which
are provided for in put as arrays (state vector). For RTTOV-7, the only variable gas com-
ponents are water vapor and ozone. The coefficients and the profiles are specified on 43
pressure levels. The RTTOV-7 model also provides the Jacobean, i.e. the gradient of
the radiance with respect to the state vector variables for the values of the input state
vector values. It describes the change of the radiance of each individual channel to be
measured at the top of the atmosphere with respect to a unit perturbation of any level of
the input profile or the surface and cloud parameters. The value of the gradient indicates
for each channel in which atmospheric levels changes in the atmospheric quantity affects
the radiance most. The RTTOV model can simulate both clear sky and cloudy radiance,
using an approximate form of the radiative transfer equation (Actually, all ATOVS data
are supposed to be clear-sky data). The essential quantities to be approximated within
the radiative transfer equation are the transmittances and the emissivities. The transmit-
tances are obtained from the variables of the input profile vector by linear regression in
optical depth. The emissivities, two two fast surface emissivity routines are implemented:
ISEM for infrared channels and FASTEM-1 and FASTEM-2 for the microwave channels,
with FASTEM-2 making a better correction for the reflected radiation at the surface. The
FASTEM model requires the 2m vector wind speed to be specified in the state vector. At
the current state of implementation, the wind speed is set to zero in all channels.
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Generalized humidity

Negative values of the relative humidity are a problem
that might arise within the 3dVar. Besides describing
an unphysical situation, it generally causes a failure of
the subroutines that convert the 3dVar physical units to
the units required by the RTTOV package. This prob-
lem is avoided by introduction of a generalized humidity,
which is allowed to have negative values. For a value of
relative humidity larger than a certain value rh0 (to be
specified in the namelist /CNTRLVAR/) relative humid-
ity equals generalized humidity. In case the generalized
humidity is smaller than rh0 or even negative, the corre-
sponding value of the relative humidity is adapted expo-
nentially, allowing positive values only. The transition
between the linear and exponential dependence is done
in a smooth way.
The correspondence between relative humidity and generalized humidity is unique, which
allows a transformation of the humidity variables in both ways: To be consistent, the first
guess relative humidity profiles are converted to generalized humidity by subroutine gh_rh
in mo_cntrlvar. Thus, even when the original profile has positive humidity values only, the
resulting profile of generalized humidity may have negative values. Within the variational
algorithm of 3dvar itself, negative values of the generalized humidity cause no difficulties.
The transformation of the generalized humidity to relative humidity is performed just
before the conversion of the units of the atmospheric variables (i.e. conversion of relative
humidity and virtual temperature to specific humidity and temperature) in mo_tovs. For
the transformation to relative humidity in particular of first guess profiles the lower bound
rh0 of the linear range can additionally be specified, either as relative or specific humidity
(rh0fg, q0fg). This option is necessary, as the relative humidity in the tropics can be quite
small. In order not to unnecessarily distort the profile, the smallest value of the lower
bound in terms of relative or specific humidity is applied.

Dummy variables

The RTTOV-operator requires atmospheric columns of specific humidity and temperature
up to a pressure level of 0.1hP . This pressure level is beyond the upper edge of the GME
model ( 10hPa) and also higher than the levels for which the humidity is assimilated
within the 3dVar (≈ 250hPa). Therefore input values for the RTTOV-routine have to
be specified for the temperature between 10hPa and 0.1hP as well as for the specific
humidity between 250hPa and 0.1hP . This specification is done as dummy variables:
For the pressure levels mentioned above, 1DVAR profiles of temperature and specific
humidity are used as a background. The variable var% av which contains the 3dVar
profiles of virtual temperature and relative humidity for the lower pressure levels is loaded
with a Gaussian distribution around this background. The width of this distribution
equals the background error of temperature and specific humidity, respectively. Its values
can be specified in the namelist /TOVS_OBS/ and are actually estimated from the
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background error covariance matrix as used by the UK-Met-office. For the pressure levels
simulated by dummy variables, the 3dVar background error covariance matrix B is a
unit diagonal. To provide a background error covariance matrix in physical space HBHt

with an appropriate specification of the background errors of the dummy variables, the
corresponding entries of the tangential operator H are multiplied with the background
errors of temperature and specific humidity, respectively. The specification of background
errors for the specific humidity has a peculiarity: To circumvent the problem of negative
humidity, the error is specified to be in ln(q), resulting in an asymmetric distribution for
q which suppresses values smaller than the 1D-Var background. A third quantity treated
as a dummy variable is the surface temperature. Its background value is provided by
the 1D-Var and background errors for different types of surfaces (land, sea, ice) can be
specified in the namelist TOVS_OBS. The values of the dummy variables are modified
consistently with the regular, non-dummy values within the variational algorithm of the
3dVar, but are not fed back to the analysis.

Change of variables

For the forward calculation of radiances the RTTOV-7 package uses atmospheric columns
of temperature and specific humidity. The units of the corresponding control variables
of the 3dVar, virtual humidity and relative (resp. generalized) humidity therefore have
to be converted to RTTOV units. The transformation has to be applied both to the
atmospheric columns that are the input of the RTTOV package as well as to the tangent-
linear observation operator as output. For pressure levels with no dummy atmospheric
variables present and for the surface variables (t_2m, q_2m,tv_2m,rh_2m) the trans-
formation both of the columns and the tangent-linear is performed by the subroutine
tq_tvgh in mo_cntrlvar. In the top atmosphere pressure levels, both specific humidity
and temperature are dummy variables, therefore a conversion of units is not necessary
in these levels. For certain intermediate pressure levels the specific humidity is the only
atmospheric dummy variable with only the virtual temperature to be transformed. The
conversion is performed by the function t_tv_q (forward calculation) and by the sub-
routine t_tv_q_adj (tangent linear calculation). For the determination of the tangent
linear operator in 3dVar units one has to take the conversion of physical units into ac-
count. Therefore, the Jacobean provided as output by RTTOVK is to be multiplied by
the appropriate derivatives. At this point, it has to be taken into account that the back-
ground error for the specific humidity is specified in ln(q), whereas the tangent linear
matrix H contains derivatives with respect to q.

Selection of channels

The selection of TOVS instruments and channels to be processed within 3dVar can be
done in different ways:

• instrument channel number

• ECMWF channel number, identifying all channels on a given platform

• selection of the ECMWF channels by 1D-Var
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• selection of the 1D-Var channels within 3dVar (specified in namelist /TOVS_OBS/)

HIRS channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ECMWF channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1DVar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
example: selection from 1DVar - 1 2 3 4 5 6 7 - 8 9 10 11 12 13

MSU channel number 2 3 4
ECMWF channel number 22 23 24
1DVar 14 15 16
example: selection from 1DVar - - -

SSU channel number 1 2 3
ECMWF channel number 25 26 27
1DVar 19 20 21
example: selection from 1DVar - - -

AMSU-A channel number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ECMWF channel number 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
1DVar 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
example: selection from 1DVar - - 14 15 16 17 18 19 20 21 22 23 24 - -

AMSU-B channel number 1 2 3 4
ECMWF channel number 43 44 45 46
1DVar 37 38 39 40
example: selection from 1DVar - - - -
The above example selection corresponds to the entry

ionly = 2,3,4,5,6,7,8,10,11,12,13,14,15,24,25,26,27,28,29,30,31,32,33,34
inot = 1,9,35,36,37,38,39,40

in the namelist /TOVS_OBS/.

Routine RTTOVI

The package RTTVI is the initialization routine for the radiance forward and tangent-
linear operators RTTOV and RTTVK. It is called only once for all platforms, satellites
and instruments. A few essential parameters of the RTTOV-routines are set in the module
RTTOV7_MOD_CPARAM in 3dvar/rttov7/rttov7src/ This includes
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parameter value content
jplev 43 number of pressure levels
jpch 2378 maximal number of tovs channels
jpchpf jppf*jpchus maximal number of channels*profiles
jpnsat 9 maximal number of sensors to be used
jpnav 4 maximal number of profile variables (temperature, spe-

cific humidity, ozone, liquid water)
jpnsav 5 number of surface air variables (2m temperature, 2m

specific humidity, surface pressure, 2m u wind, 2m v
wind)

jpnssv 6 number of skin variables (radiative skin temperature +
5 FASTEM-2 land coefficients)

jpncv 2 number of cloud variables (cloud top pressure, cloud
fractional cover)

The type of radiance measurement is specified by the numbers platform id, satellite id,
and sensor id. The platform id labels the different satellite types (e.g. NOAA) that
can be simulated by RTTOV. The satellite id specifies the individual satellites of a type
(e.g. NOAA 16), the instrument id the measurement instrument itself (e.g. HIRS). To
produce a series of NRTTOVID radiance simulations of different instruments, the first
NRTTOVID entries of the input vectors PLATFORM, SATELLITE and INSTRUMENT
have to be specified in the desired way. The sizes if the input arrays are determined by
jpnsat, jpch (both read from RTTOV7_MOD_CPARAM), jppf, nlev (to be specified,
actual values are jppf=1, nlev=jplev=43). The output of RTTVI consists of:

• lower and upper bounds for the profiles of temperature, specific humidity and ozone

• number of profiles to be processed in one call of RTTOV simultaneously

• number of sensors available

• number of pressure levels of the input profiles

• number of channels available

• number of profile variables, surface skin and cloud variables

The field IVCH(jpch,jpnsat) is initialized to zero on input. As output, IVCH(jpch,jpnsat)
contains the respective valid channels numbers for each of the sensors 1...jpnsat. The
actual values of the optional parameter NIU1 are initialized to zero. Nonzero values of
this parameter define the Fortran unit numbers of through which the coefficient files are
read in. Actually, the ozone profile used in 3dVar is an updated reference profile (Roger
Saunders Jan 2000) and is read from rt_coef_fmt.dat in /3dvar/data/rttov6/rttovdata/.
Regarding the profile of the specific humidity, the upper limits of the first 18 pressure
levels have been modified in order to guarantee the correct evaluation of the tangent
linear operator. For further details of RTTVI, see RTTOV-7 users guide.
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Routine RTTOV

The routine RTTOV determines the top atmosphere simulated radiances and brightness
temperatures, given the profiles and surface values of several atmospheric variables and
parameters. The routine has to be called for every sensor in the sequence used when
calling the initialization routine RTTVI before. The input sequence number KSAT refers
to this sequence (KSAT=1,2,3,...). Other input parameters are

• number KNPF of profiles to be processed within one call of RTTOV (actual value
KNPF=1)

• solar angles

• surface type index

• arrays of profiles, surface 2m values, surface skin values, and clouds

The surface skin array contains the radiative skin temperature (actually modeled by a
dummy variable with different background errors for sea, land and ice) and five FASTEM-
2 land coefficients. The values assigned to these coefficients correspond to the surface type
’summer land surface’, ’open grass’ as listed in Table 3, RTTOV-7 Science and Validation
Report. The cloud array is not determined by model variables, but set to default values:
Cloud top pressure (hPa): PCV(1,:) = 500 and cloud fractional cover : PCV(2,:) =
0 (prossing clear sky observations only). The output includes brightness temperatures,
radiances, surface to space transmittance and radiances related to overcast data (overcast
cloudy radiance, overcast radiance from cloud top, and layer to space transmittances).
At the present state of development, only cloud-free observations are processed, therefore
the RTTOV quantities related to overcast profiles is not relevant at the moment.
The input parameter PEMIS describes the surface emissivity. Its value is set to zero for

infrared channels (for the actual setting: HIRS channels with the RTTOV series number
KSAT=1), and PEMIS=-1 for microwave channels (for the actual setting: AMSU-A and
AMSU-B channels with the RTTOV series number KSAT=2 and 3, respectively). These
values for PEMIS cause the use of ISEM coefficients for the calculation of infrared channels
and the use of FASTEM-2 coefficients for the calculation of microwave data, as described
in Table 4 of the RTTOV-7 Users Guide.

Routine RTTVK

The routine RTTVK, too, simulates the top atmosphere radiances and brightness tem-
peratures, additionally it contains the tangent linear operator to determine the gradients
of the brightness temperature or radiance in each instrument channel with respect to the
input atmospheric, 2m- ,surface and cloud variables. The interfaces basically resembles
the interface of the routine RTTOV, but is augmented by the output arrays of the matrix
of derivatives. An additional switch (KINRAD) determines whether this array refers to
radiances or brightness temperatures. The input values of the surface emissivity array
PEMIS_D are the same as for the forward routine RTTOV. The array of the gradients
with respect to the surface emissivity PEMIS is initialized to zero.
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Interpolation of surface and 2m variables

The input of the RTTOV routine includes the 2m values of temperature, specific humidity
and the surface pressure. The value of the surface pressure at the observation points is
actually read from 1D-Var feedback file. The 2m temperature and 2m specific humidity
are interpolated linearly if the surface pressure is sandwiched by two pressure level of the
RTTOV: The ratio of the upper and lower pressure differences is the weight for the linear
combination of the temperature and humidity values of the corresponding two pressure
levels. In case of a surface pressure higher than that of the lowest RTTOV model level,
the corresponding values of the lowest RTTOV pressure level are taken as approximations
to the surface values.
The surface temperature is modeled as a dummy variable around a 1D-Var background

with an background error depending on the type of surface (sea, land, ice). The size of
these errors can be specified in the namelist /TOVS_OBS/. Within RTTOV, the 2m
vector wind speed (u,v) is used by the FASTEM-1/2 model to simulate the microwave sea
surface emissivity. In case this emissivity is not computed (which is the actual setting),
the wind vector is set to zero as input to RTTOV.

Bounds of variables (incl. additional limits for q )

The transmittance calculations of the RTTOV-
7 routine are valid only if the values of the in-
put profile are within a certain range: The pro-
files of temperature, specific humidity and ozone
are limited by lower and upper bounds. These
bounds are specified for each pressure level and
are provided as output of the initialization routine
RTTVI (OTMIN, OTMAX, OQMIN, OQMAX,
OOZMIN, OOZMAX, respectively). Before call-
ing the forward and tangent linear operator with
the actual profiles of temperature, specific humid-
ity and ozone, the lower and upper bounds of the
respective profile are checked in the subroutine rt-
tov_bounds in mo_rttov. In case a value exceeds
the lower or upper bounds, it is reset to the corre-
sponding limit, and the resulting H matrix is mod-
ified by assuming zero gradient for the correspond-
ing pressure level.
The upper limit of the specific humidity, however, has to be handled more strict

than recommended by the RTTOV-7 manual. Gradient tests of the tangent linear
observation operator with a constant profiles of the specific humidity scanning the
recommended range show inaccurate results for the Jacobian for values of the specific
humidity considerable less the given upper limit. This deviation affects the channels
HIRS 7, 8, 10, 11, 12, 13, 14 and AMSU-A 10, 11, 12, 13, 14 and the pressure levels
1 to 18. To guarantee the correct calculation of the tangent model, the upper limit of
the specific humidity (specified in call_rttvi in mo_rttov after calling the initialization
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routine RTTVI) is changed in the following way:

level number pressure (hPa) Qmax kg/kg (RTTOV-7) Qmax kg/kg(corrected)
1 0.1 4.38e-05 1.0e-05
2 0.3 4.65e-05 1.0e-05
3 0.7 4.61e-05 0.9e-05
4 1.4 4.51e-05 0.9e-05
5 2.6 4.29e-05 0.9e-05
6 4.4 4.26e-05 0.9e-05
7 7.0 4.36e-05 0.9e-05
8 10.4 4.35e-05 0.9e-05
9 14.8 4.01e-05 0.9e-05
10 20.4 4.03e-05 1.0e-05
11 27.3 4.18e-05 1.0e-05
12 35.5 3.62e-05 1.4e-05
13 45.3 3.43e-05 1.4e-05
14 56.7 3.33e-05 1.5e-05
15 70.0 3.23e-05 1.4e-05
16 85.2 3.01e-05 1.4e-05
17 102.1 2.90e-05 1.4e-05
18 122.9 3.58e-05 1.6e-05

Use of 1dvar profiles

For consistency checks with the 1D-Var the 1D-Var background read from the 1D-Var
feedback file can be used instead of the interpolated GME columns by setting the flag
use_1dvar_fg in namelist /TOVS_OBS/ to .TRUE. By doing this, the consistent simu-
lation of radiances within the 1D-Var and 3dVar can be checked.

Background error fields

Horizontal plots of the background error in the physical space of TOVS radiance data can
be generated by setting the value of nlat in namelist DEF_OBS_NML to a nonzero value.
The value of nlat is the number of grid points of the field in N-S direction, i.e. nlat=18
generates the background error field on a 10 by 10 degree grid. The output file is a grads
data file fg_err_tovs.grads and a grads control file fg_err_tovs_all.grads.ctl (path is
specified in code). In the data file, the background error values related to the different
TOVS channels are arranged as the z levels of the grads data field. The contribution of
individual background error components can be estimated by all other background error
components to zero value.

Gradient test

To perform the variational algorithm within the 3dVar, it is necessary to correctly calcu-
late the nonlinear background error matrix in the physical space. For the case of TOVS
radiance data, this is accomplished by the tangent linear observation operator(Jacobi
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matrix). Its performance can be tested by comparison with the gradient obtained by
finite differences. The finite differences increment is a normal distributed random num-
ber scaled by the background error times a small scaling factor, to be specified as ’scale’
in the namelist /TEST_OBS_OPR/. The scaling factor can either be kept as a fixed
value (mode = ’on’) or it can be scaled to small values iteratively (mode = ’scale’). If no
value for the parameter scale in /TEST_OBS_OPR/ is given, a scale factor of 1.e− 3 is
used. The operators (SYNOP, TEMP, TOVS, GPSRO, AMV, OP_X, ..) and quantities
(tv,rh,h,u,v,hs,..) to be tested are to be specified. With the entry mode=’operator’ and
mode=’quantity’ in the namelist, the gradient test is performed to all of them. To test the
tangent operator for a particular operator or quantity, an assignment like e.g. operator =
’TEMP’ or quantity = ’u’ has to be done in the namelist. To test individual arguments
of a given operator and quantity, e.g. the value of TEMP virtual temperature tv of a
particular pressure level, the specification mode = ’iarg’ in the namelist is possible. The
number of the argument to be tested (the pressure level in the example) is then to be
given as value of the parameter iarg in the namelist. As output the routine returns

• the norm of the random increment vector |dx|,

• the norm of the resulting finite difference gradient vector in physical space |du|

• the norm of the analytically determined gradient vector in physical space |dy|

• the norm of the difference vector of the two gradient vectors |du− dy|

The result of the gradient test is considered to be positive in case |du−dy| is several orders
of magnitude smaller than |du| and |dy|. In case mode=’scale’ is set, a series of output
data with decreasing scale factors is produced. If the analytical gradient is calculated
correctly, the series of output values for |du− dy| decreases until it reaches a value small
compared to |du| and |dy|,
until it reaches a value determined by the numerical inaccuracy.
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Sketch of information flow

Assignment of tasks to types of observations for processing:
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Task function SYNOP TEMP TOVS GPSRO AMV OP_X value
TSK_INIT initialize modules: Set

and allocate module
variables. Read files
and namelists.

x x x x 1

TSK_READ read observations x 2
TSK_SETUP_DIMS setup dimensions of

PSAS-space: Determine
number of indepen-
dent observations.
Determine type of inde-
pendent observations.

4

TSK_SETUP_COLS setup
columns:Determine
size of interpolation
space. Determine type
of interpolated quanti-
ties. Determine model
columns required by the
operator.

x x x 8

TSK_SETUP_FUL0 setup description of
PSAS-space: Allocate
interpolation space.
Determine levels of
interpolated quantities.
Set R (observational
error covariance).

x x 16

TSK_SETUP_FULL setup description of
PSAS-space: Allocate
interpolation space.
Determine levels of
interpolated quantities.
Set R (observational
error covariance).

x x x x 32

TSK_QC_CONS quality con-
trol:consistency

x 64

TSK_QC_BLACK quality con-
trol:blacklisting

x 128

TSK_QC_CLIM quality con-
trol:climatological

x 256

TSK_QC_FC quality control:obs-fc x 512
TSK_QC_ANA quality control:obs-ana x 1024
TSK_Y Run nonlinear forward

model
2048

TSK_J evaluate J, dJ/dx,. x x x x 4096
TSK_H run tangent linear oper-

ator
x x x x 8192

TSK_K Set H (tangent-linear
observation operator)

x x 16384

TSK_XK broadcast H x x x x 32768
TSK_FC evaluate J, dJ/dx,..,

forecast
x 65536

TSK_ANA evaluate J, dJ/dx,..,
analysis

x 131072

TSK_FEEDBACK write feedback x x x x 262144
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Documentation, RTTOV-6

Further documentation: RTTOV-7 Users Guide, RTTOV-
7 Technical Report, RTTOV-7 Science and Validation Report,
www.metoffice.com/research/interproj/nwpsaf/rtm/index.html for profile datasets,
code and coefficient files updates, documentation, bug reports Version 6 of the RTTOV
operator is also implemented and is applied by setting rttov_version = 7 in namelist
TOVS_OBS.

17.5 Single Observation Experiments

Currently there is no mechanism to generate artificial observations of arbitrary type at
arbitrary locations. The simplest approach for single observation experiments is to use real
data, restrict the data usage in the assimilation procedure to one (or a few) observations,
and to modify the observed value if required. Suitable namelist settings for these purposes
are described below.

17.5.1 Restriction of observation usage

It is recommended to only read the observational data actually used and remove unused
data from the lists of observation input files. These lists are passed in namelist group
/OBSERVATIONS/:

bufr_files = list of BUFR input file names.
obs_files = list of NetCDF input files converted from BUFR format by the

bufrx2netcdf tool.
fdb_files = list of feedback (input) files (from COSMO or a previous run of the

assimilation system).
The list of satellite radiance data from SATPP is provided in namelist group /TOVS_OBS/:

feedbk_files = satellite radiance data from SATPP.

There are 2 namelist groups for the steering of observational use:
/REPORT/ works on the observation type level.
/RULES/ works on the single observation level (temperature / wind / pressure

level).
If

these namelist groups appear multiple times, the latter overwrite any settings of the
prior ones. (There are already a lot of them in the default setup).
In order to select a certain observation type (lets say TEMP), a namelist group /RE-

PORT/ which disables all observations can be added after the other groups of this type.
Then another one which only enables the TEMP observation type has to be added:

&REPORT use=’forget’ ! don’t process any obstype
&REPORT type=’TEMP’ use=’active’ ! use TEMP reports

Afterwards it is recommended to disable all observed quantities:
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&RULES
comment = ’disable all observed quantities’
type = 2 ! modtype TEMP
gp%use = 4 ! DISMISS geopotential height observations
t%use = 4 ! DISMISS temperature observations

uv%use = 4 ! DISMISS wind observations
q%use = 4 ! DISMISS humidity observations
p%use = 4 ! DISMISS pressure observations
o%use = 4 ! DISMISS other observations

/

Temperature observations within selected pressure bounds may be enabled again:

&RULES
comment = ’enable temperature within pressure bounds’
type = 2 ! modtype TEMP
plim = 499 501 ! pressure level range (hPa)
t%use = 11 ! ACTIVE

/

Finally all observations outside a lat-lon box may be disabled:

&RULES
comment = ’exclude everything outside this box’
xlonlat = T ! exclude observations outside this box
lon = 36.74 36.76
lat = -1.31 -1.29
use = ’dismiss’

/

Be aware that not the observation type, but the module type is currently used to identify
observations in namelist group /RULES/.
Further entries for steering of radiance data on the level of single instruments and

channels can be found in the namelist group /TOVS_OBS_CHAN/.

17.5.2 Modification of observation input

For single observation studies or double twin experiments it is often rec-
ommended not to use the values actually observed, but specific devia-
tions from the true observations or the first guess. This can be achieved
by entries ’...%prc’ in the namelist group /RULES/. Valid entries are:
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PRC_ADD_1 = 1 add 1 to the observation
PRC_ADDFG = 2 add the first guess to the observation..

PRC_ADDOBSER = 4 add random (normally distributed) error (with standard
deviation of the nominal observational error).

PRC_ADDOBSE2 = 8 add random (normally distributed) error (with standard
deviation of the nominal observational error divided by
sqrt(2)).

PRC_OBS_FG = 16 set observation to the first guess.
PRC_ADD_R = 32 add the nominal observational error to the observation.
PRC_SUB_R = 64 subtract the nominal observational error to the observa-

tion.

Different values can be added bit-wise. So ’...%prc = 48’ would set the observation to
the first guess value plus the nominal observational error.
Example:

&RULES
comment = ’set artificial TEMP temperature observations (fg + obs.error)’
type = 2 ! modtype TEMP
t%prc = 48 ! ACTIVE

/

17.5.3 Diagnostics

For single observation experiments it is desirable to inspect analysis increments as they
are proportional to the the background error covariances between observations and back-
ground state. This can be done on the bases of the model grid output with respective
visualisation tools (plot_grib). In addition it is possible to interpolate first guess, anal-
ysis, and analysis increment to specified pressure levels or to extract profiles from the
respective model fields on the fly after the assimilation step.
For the global (variational) assimilation system the relevant variables in namelist

group /PSAS/ are:
logical out_aninp write analysis increment on pressure levels.
logical out_anp write analysis on pressure levels.
logical out_fgp write first guess on pressure levels.
integer lev_aninp(50) pressure levels (in hPa).

Profiles are specified in namelist /PROFILES/:
real lat_lon up to 20 latitude / longitude pairs.
integer ih horizontal interpolation flag:

1 = nearest neighbour
2 = linear interpolation (default)
3 = area average

In case of area averaging (up to 10) pairs of latitude / longitude pairs must be specified.
In case of the LETKF writing of profiles must be explicitly activated by setting

’out_prof’ in namelist /ENKF/ to true. Namelist /PROFILES/ and ’out_aninp’ from
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/PSAS/ are used as well.
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Chapter 18

1D-Var

1D-Var chapter: Maybe put it into better context?

Currently the 3dVar uses a separable background error covariance model. The covari-
ances consists of a product of a horizontal correlation and a vertical covariance matrix.
By using only the vertical covariances, observations at different horizontal locations be-
come uncorrelated and the program can be regarded as a set of independent 1D-Var
assimilations for eachreport (eg. TEMP report or satellite field of view).
The method may be used for the development of observation operators, as a 1D-Var

assimilation allows to assess the responce of the analysis system to do the observations
at a given field of view independently from other observations. It is valuable for testing
the introduction of new additional control variables (as cloud top, cloud temperature and
emissivity models) for adjustable parameters.
In a future setup the 3dVar may be modified so that a 1D-Var is preceeding the 3-

dimensioal assimilation. This would allow to obtain first guess values (not necesaryly
background values) for additional control parameters for strongly nonlinear processes.

18.1 1D-Var Setup
The 1dvar test mode is activated my setting parameter var1d in namelist
/BG_ERROR_OPERATOR/ to .true. . This implicitly modifies the following parameters:

Switch off horizontal covariances
Horizontal covariances have to be represented by the old, strictly separable covari-
ance model. Only here the horizontal covariances can be set to zero by the var1d
flag.

&BG_ERROR_OPERATOR
...
repr_2dh = 0 ! 0: old covariance model

/ ! 2: new horizontal wavelet based model

Horizontal covariances in the preconditioning are switched off by setting the respec-
tive namelist variable:
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&PSAS
...
anaprx = 3 ! 3=PB_1DVAR: no correlations between reports

/

Switch off analysis error estimation
Estimation of the analysis error does not make sense in a 1D-Var context and should
be switched off:

&ANAERROR
anaerr = 0 ! switch off analysis error estimation

/

Skip the post-multiplication
In the 3dVar PSAS scheme optomisation is performed in observational space. The
final projection of the analysis increments on the model grid is performed in the
post-multiplication step. This does not make sense in a 1D-Var context and should
be switched off:

&PSAS
...
no_post = T ! skip post multiplication

/



Chapter 19

Computation Environment

This Chapter serves a collection for the description of

19.1 the NUMEX computation environment at DWD

19.2 the Utilities and Test programs within the var3d-software package
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19.1 DWD Experimentiersystem

DWD Experimentiersystem: Add information about standalone version of the DWD
Da Suite?
The interfaces the 3dVar is very similar to the OI. For that reason setting up a 3dVar

assimilation cycle is very much similar to an OI cycle. After setting up an assimilation
cycle (with mox), the ’Steuerdatei’ has to be changed as indicated below:

Run script
The run script ga3_mwh is prepared to run the 3dvar instead of the OI. The following
variables must be changed to activate the 3dvar and pass the number of tasks
(processors, here 96) to use:

ga3_mwh 2 parm - ntasks_3dvar 96 instead of ntasks.

ga3_mwh 2 parm - mode 3dvar instead of mode
ana.

Constant data
The 3dVar requires several files with constant data. They are passed in the directory
/uhome/arhodin/NUMEX/const/3dvar. The following line has to be added:

all - var - DIR_3DVAR_CONST
cos5:/uhome/arhodin/NUMEX/const/3dvar

Namelist files
The facilities of the Experimentiersystem to change namelist variables does not work
with the 3dVar namelists (because in the 3dVar namelist groups may appear more
than once). Thus changed namelist-files (and for completeness databank request
files) must be provided in a dedicated directory (for instance for experiment 5017
in /uhome/arhodin/NUMEX/5017/const/:

ga3_mwh - var - ROU_CONST cos5:/uhome/arhodin/NUMEX/5017/const

The original (unchanged) files may be copied from . . . .

Binary
The 3dVar is not yet in the DWD version control system. For that reason the binary
(var3d) must be provided explicitely, for example:

ga3_mwh - var - MODUL_3DVAR /uhome/arhodin/NUMEX/5017/bin/var3d

Feedback files
Feedback information is currently not encoded in BUFR format. Instead a different
format (NetCDF, cf. Section 20.3) is used as a replacement for the cof-files and
BUFR feedback files.

The verification mode is not yet implemented.

An example script to acess the output of the 3dVar has beed placed in the subdirectory
3dvar/scripts/ of the source tree:
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#!/usr/bin/csh

#==============================================================================
#
# example script to extract 3D-Var output from experiment-database:
#
# oa_ga3_mwh.YYYYMMDDHH Job output
# ass_ga3_mwh_cofXXXXX.YYYYMMDDHH NetCDF feedback files for obstype XXXXX
# ass_ga3_mwh_diag.tar.YYYYMMDDHH Diagnostic output. Content:
# monXXXXX.nc Monitoring files for obstype XXXXX
#
#==============================================================================

#--------------------------------------------------
# set experiment number, assimilation date and hour
#--------------------------------------------------

set exp = 4859
set date = 20040901

foreach hour (00 03 06 09 12 15 18 21)

#-------------
# extract data
#-------------

exp_rou_info -e $exp ${date}${hour} # get info

exp_rou_get -e $exp ${date}${hour} ga3_mwh # get analysis stdout

exp_cof_rou_info -e $exp ${date}${hour} # get info on cof-files

exp_cof_rou_get -e $exp ${date}${hour} ga3_mwh ass # get cof-files

end
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19.2 Utility and Test Programs

Besides the 3dVar program itself a number of utility programs have been written (source
code in 3dvar/prog). The purpose of these programs is either to provide utilities to pre-
or postprocess and investigate input or output of the 3dVar program or to test program
components (modules) of the 3dVar. Programs marked as test are not intended to be
matured applications and may undergo frequent changes if required. Programs marked
as obsolete are currently not used in the context of the 3dVar.
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File Purpose Description
var3d 3dVar 3dVar main program.
statistics Utility Post-processing-Routine to prepare statistics from feedback files

(NetCDF or ASCII format).
print_grad Utility Gather information on the convergence of the PSAS-3dVar from

the Experiment output and write it to a file suitable for plotting.
Author: Oliver Schmid.

Utility Convert the 3dVar feedback files (NetCDF format) to the former
(ASCII) file format convention.

bufr2cof Utility Convert the OI feedback files (BUFR format) to 3dVar feedback
files (ASCII format). Used to compare the usage of reports in the
OI and 1D-Var, respectively.

plot_grib Utility Plot or investigate GRIB files.
post_grib Utility Convert GRIB-files.
post_solver Utility Post-processing program to monitor the performance of the solver of

the set of nonlinear PSAS-equations. (Files solver.inf, solver.dat).
This program must be rewritten because the file format changed to
NetCDF.

post_lnsrch Utility Post-processing program to monitor the line search (files solver.inf
solver.dat)

test_bufr Utility Investigate the content of a BUFR (observation input) file. This
program makes use of the Fortran 90 interface defined in the 3dVar.

tune_errors Utility Plot artificial TOVS data. Author: Detlef Pingel.
interpolate_soil_flake Utility Interpolate surface and soil variables to a different (lower) model

resolution with special treatment for soil and flake variables.
(19.2.2)

diffgrib Test Compare two GRIB-files
test_fg_cov Test Test and plot various aspects of the covariance model.
vqc Test Test the VQC (Variational Quality Control) implementation.
post_psas Test Empty program template for arbitrary purposes.
test_physics Test Empty program template for arbitrary purposes.
my_psas_driver Obsolete Apply the SAMG algorithm to the DWD-3Dvar B+R matrix. Au-

thor: Tanja Clees, Fraunhofer Gesellschaft.
post_samg Obsolete Convert 3dVar feedback files (ASCII-format) to the SAMG (Fraun-

hofer Gesellschaft) format.
test_samg Obsolete Test various aspects of the B matrix (SAMG file format)
printgauaw Obsolete Print Gaussian grid latitudes (used for spectral models).
scalprod Obsolete Test scalar product definitions in spectral space.

The configure script currently does not recognize new programs in this directory.
If a program is added the Makefile has to be adapted by hand. Modify the file
3dvar/obj-Makefile for that purpose.
By default, all programs (executables) are linked. If only the 3dVar or a subset of the

utilities is required the Makefile (3dvar/build/Platform/obj/Makefile) may be modified
accordingly (e.g. add a line prog = ../bin/var3d).
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19.2.1 Test of the covariance model - test_fg_cov

This program performs tests on the covariance model. Parameters are read from a file
’nml_test_fg’ in the actual directory. This file contains namelist groups /RUN/ to specify
the analysis date (yyyymmddhh_ana) and a path (input) to the analysis error file (of the
previous forecast) as well as a namelist group /PSCMODEL/ to modify parameters of the
covariance model.
Subsequent tests are steered interactively by reading from standard input. One out of

4 tests is chosen by typing one of the characters:

v: Calculate vertical correlations .

h: Calculate horizontal correlations .

H: Calculate horizontal correlations (2-D-fields on pressure levels) .

c: The horizontal correlations are calculated directly as a function of the distance nor-
malized by the length scale Lh .
The values are written to a file suitable for plotting by gnuplot. In detail the columns
of the table denote:

1. row index.

2. r: distance normalized by the length scale Lh.

3. c: correlation function for geopotential height.

4. dc/dr: first derivative (geop.-wind correlation, analytically).

5. −1
r
dc/dr (analytically).

6. −d2c/dr2: second derivative (transversal wind-wind correlation, analytically).

7. dc/dr (finite differences).

8. −1
r
dc/dr (finite differences).

9. −d2c/dr2 (finite differences).

19.2.2 Interpolate soil and surface - interpolate_soil_flake

Interpolates surface and soil variables to a different (in general lower) model resolution
with special treatment for soil and flake variables.
The program is not parallelised an expects a namelist file

’namelist.interpolate_soil_flake’ in the working directory. Example:

&interpolate
file_s = ’fg_2015051500_r3b07.grb’ ! source GRIB file name
file_d = ’fg_2015051500_r2b06.soil’ ! output GRIB file name
ifile_s = ’invar_0026v5_R3B7N8_DOM01.grb’ ! invariant file (source)
ifile_d = ’invar_0024v4_R2B6N7_DOM01.grb’ ! invariant file (output)
gfile_s = ’icon_grid_0026_R03B07_G.nc’ ! grid-file (source)
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gfile_d = ’icon_grid_0024_R02B06_G.nc’ ! grid-file (output)
grid_d = ’icon’ ! destination grid (icon, gme, latlon)
var = ’T_SO W_SO W_SO_ICE Z0 T_G T_ICE H_ICE FR_ICE QV_S W_I W_SNOW RHO_SNOW

H_SNOW FRESHSNW T_SNOW T_MNW_LK T_WML_LK H_ML_LK T_BOT_LK C_T_LK’
! variables to interpolate

fr_lake = 0.5 0.5 ! lower bound for fr_lake (source, destination)
! nx = ! resolution parameter for grid_d=’latlon’
! ni = ! resolution parameter for grid_d=’gme’
/

This example namelist was used to interpolate ICON soil fields from the operational
deterministic resolution (13 km) to that of the ensemble data assimilation system (40 km).
The File ’file_s’ holds the fields to be interpolated. Results will be stored in file ’file_d’.
Files ’ifile_s’ and ’ifile_d’ hold invariant fields for source and destination resolution, re-

quired by the interpolation routine, i.e. HHL (for ICON / COSMO), FR_LAND, HSURF,
FR_LAKE, SOILTYP, and DEPTH_LK. ’ifile_s’ is not required if the respective fields
are contained in ’file_s’.
’gfile_s’ und ’gfile_d’ are the grid description files for ICON (not required for other

models).
’var’ is the list of fields to interpolate (GRIB short-names or 3dvar internally used

names). The following groups of variables are handled seperately:

Surface fields ( T_SO W_SO W_SO_ICE )

For each destination grid-point a point of the surrounding neighbours (3 to 4 de-
pending on the grid) on the source grid with corresponding surface type is sought.
If found, the nearest grid-point is used.

If no corresponding grid-point is found the closest land point (excluding rock or ice)
is taken. In the case of W_SO the soil moisture index (normalised by pore volume and
air dryness point) is interpolated. In case of W_SO_ICE interpolation is performed,
normalising by W_SO.

Flake model fields ( T_MNW_LK T_WML_LK H_ML_LK T_BOT_LK C_T_LK ), land sur-
face fields ( FRESHSNW T_SNOW RHO_SNOW W_SNOW H_SNOW Z0 T_G QV_S W_I ),
and sea surface fields ( T_ICE H_ICE FR_ICE )

For each destination grid-point a corresponding point of the surrounding neigh-
bours (3 to 4 depending on the grid) on the source grid is sought. Points falling
within the same category of ’sea’, ’land’ or ’lake’ are regarded as corresponding.
Points are classified as ’lake’ if the invariant field ’FR_LAKE’ is larger than rhe
respective threshold specified in the namelist (should be 0.05 with and 0.5 with-
out tile approach). In the category ’lake’ the point with the most similar depth
(DEPTH_LK) is chosen. For other categories the closest point is taken.

If no corresponding grid-point is found the closest point of the same categorie is
used.

For the ’flake’ fields a consistency check (taking into account DEPTH_LK) is per-
formed.
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Remaining (atmospheric) fields

For all remaining fields horizontal bi-linear interpolation is used, keeping the vertical
model level.

19.3 Utility Scripts



Chapter 20

File formats

20.1 nlpcg.info (convergence of CG algorithm)
This output file (ASCII) monitors the convergence of the Newton / CG algorithm in
observation space:

column name description
1 it total iteration number.
2 inl nonlinear iteration number.
3 il linear iteration number.
4 r.dot.y this scalar product should be zero.
5 J_b background cost function.
6 J_o observational cost function.
7 J total cost function (J_b + J_o).
8 J_cg cost function minimized by the CG algorithm.
9 delta_J increment of J in this step.
10 delta_J_cg increment of J_cg in this step.
11 resid norm of the residuum of the CG algorithm.
12 dJ/dx norm of the gradient of J.
13 mark ’#ITNL’ to mark starting conditions of inner loop.

20.2 psas.info (feedback file - ASCII)
This file holds a subset of the NetCDF feedback file information on the analysis step
in ASCII format. Writing of this file can be enabled by setting the parameter info in
namelist /PSAS/. A similar file moni.info holds information on the monitoring step.
The ASCII content can also be derived by the utility program .

Usage:
netcdf2asci <<EOF
filename.nc
EOF

Each line of the ASCII table gives information on a single observed quantity. The
columns denote:
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entry example description

n 3 consecutive observation count
obs_nr 1 consecutive report count
box -99 preconditioning box in 3D-Var/PSAS
name 2AAY7 station name
otyp 1 observation type (classification of observation)
bft 1 BUFR type (classification in BUFR input file)
sbt 1 BUFR subtype (classification in BUFR input file)
varno U variable number (specification of observed quantity)
lat 56.50 latitude [degree] (location of observation)
lon 2.10 longitude [degree] (location of observation)
lev 101960. level [unit depends on observation type] (height of observation)
fc 5.7766190 forecasted quantity
o-fc -6.6622247 observation minus forecast
a-fc -0.1571989 analysis minus observation (preliminary value in 3D-VAR PSAS)
af_f -0.1283722 analysis minus observation (final value)
bcor 0.0000000 bias correction (currently for radiances and aircrafts)
e_bg 1.3741624 assumed background error
e_o 2.5200000 prescribed observation error
w_qc 0.3988838 weight assigned in the Variational Quality Control
date 20130109000000 observation date YYYYMMDDHHMMSS
obs_id 374877 unique report Id used within the assimilation system
dbkz 256 ’Datenbankkennzahl’ (classification of the entry in the DWD data base)
code 21 code type (classification of observation in addition to otyp)
state ACTIVE status of the observation in the assimilation (active, passive, rejected,..)
check RULE reason for above classification (first guess check, blacklist, ..)
mdlsfc 10 model surface characteristic
pcc 0 additional classification of the observation (type dependent)

20.3 cofXXXXX.nc (feedback file - NetCDF)
Different feedback files are written for each of the observation types (cf. Table 17.1, XXXXX
in the file name is replaced by SYNOP, TEMP, . . . ). The feedback file is writen in NetCDF.
Its structure reflects the internal structure of the 3dVar and that of a future ODB feedback
file format.
Arrays in the NetCDF file are either of dimension n_hdr (entries of table ’hdr’ for each

report) or n_body (entries of table body for eeach observed/assimilated quantity).

header-table entries
name type description units
i_body int index to the data of the report. This and the next entry

are used to associate ’hdr’-table entries with ’body’-table
entries.

l_body short number of data items of the report.



DWD DA System Documentation March 4, 2019 291

obstype short (CMA) observation type. Table 17.1
codetype short (CMA) observation code type. Table 17.2
dbkz short DWD ‘Datenbankkennzahl’. Table 17.2
bufrtype short WMO BUFR type. Table 17.2
subtype short ECMWF BUFR subtype. Table 17.2
time short observation - analysis time. minutes
instype int station type or satellite instrument.
retrtype int station retrieval type.
lsf int station land/sea flag.
clf int station cloud flag.
pro int station processing center.
lat float latitude of observation. degree
lon float longitude of observation. degree
statid char(8) station id in character form.
r_state byte 3dVar report state. Values are given in the attribute

’flag_meanings’. Valid values are at least: PASSIVE,
REJECTED, ACTIVE, ACCEPTED.

r_check byte Check that caused the above state. Values are given
in the attribute ’flag_meanings’. Valid values are:
BLACKLIST, FG, . . .

r_flags int This is a bit-fields of flags with the same meaning as
r_check indicating all triggered checks.

body-table entries
level float observation level (in general pressure). (hPa)
obt int observed quantity type, currently 3dVar specific, con-

ventions of the ECMWF ODB shall be used in the fu-
ture.

SI units

bg double first guess (background). as bg
o-bg float observation - background. as bg
a-bg float analysis - background. as bg
e_bg float background error. as bg
e_o float observational error. as bg
w_qc float VCQ weight. as bg
af_f float final analysis - forecast. as bg
state byte as r_state, but referring to the individual observation.
check byte as r_check, but referring to the individual observation.
flags byte as r_flags, but referring to the individual observation.

Example (monSYNOP.nc):

netcdf cofSYNOP {
dimensions:
n_hdr = 40 ;
n_body = 118 ;
len8 = 8 ;
variables:

http://inet.dwd.de/ti/ti1/ti12/ti12b/DB-Params2.pdf
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int i_body(n_hdr) ;
i_body:long_name = "index to the data of the report" ;
short l_body(n_hdr) ;
l_body:long_name = "number of data items of the report" ;
short obstype(n_hdr) ;
obstype:long_name = "(CMA) observation type" ;
short codetype(n_hdr) ;
codetype:long_name = "(CMA) observation code type" ;
short bufrtype(n_hdr) ;
bufrtype:long_name = "BUFR type" ;
short subtype(n_hdr) ;
subtype:long_name = "BUFR subtype" ;
short dbkz(n_hdr) ;
dbkz:long_name = "DWD data base id" ;
short time(n_hdr) ;
time:units = "minute" ;
time:long_name = "observation - analysis time" ;
int instype(n_hdr) ;
instype:long_name = "station type or sat. instrument" ;
int retrtype(n_hdr) ;
retrtype:long_name = "station retrieval type" ;
int lsf(n_hdr) ;
lsf:long_name = "station land/sea flag" ;
int clf(n_hdr) ;
clf:long_name = "station cloud flag" ;
int pro(n_hdr) ;
pro:long_name = "station processing center" ;
float lat(n_hdr) ;
lat:units = "degree" ;
lat:long_name = "latitude of observation" ;
float lon(n_hdr) ;
lon:units = "degree" ;
lon:long_name = "longitude of observation" ;
char statid(n_hdr, len8) ;
statid:long_name = "station id in character form" ;
byte r_state(n_hdr) ;
r_state:long_name = "3D-Var report state" ;
r_state:flag_meanings = "ABORT FORGET MERGED DISMISS NOTUSED USED PASSIVE REJECTED ACTIVE_0 ACTIVE_0I ACTIVE ACTIVE_1I ACTIVE_1 ACCEPTED INVALID" ;
byte r_check(n_hdr) ;
r_check:long_name = "3D-Var report check" ;
r_check:flag_meanings = "NONE NOIMPL OBSTYP SUBTYP CORR CORRERR MERGE DBLSTAT DBLERR DBLCRD INSDAT TIME AREA HEIGHT THIN RULE MAXPR MAXACT SURF DATASET CLOUD FG OBS_ERR BLACKLIST WHITELIST FINAL" ;
int r_flags(n_hdr) ;
r_flags:long_name = "3D-Var report flags" ;
float level(n_body) ;
level:long_name = "observation level" ;
int obt(n_body) ;
obt:long_name = "observed quantity type" ;
double bg(n_body) ;
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bg:long_name = "first guess (background)" ;
float o-bg(n_body) ;
o-bg:long_name = "observation - background" ;
float a-bg(n_body) ;
a-bg:long_name = "analysis - background" ;
float e_bg(n_body) ;
e_bg:long_name = "background error" ;
float e_o(n_body) ;
e_o:long_name = "observational error" ;
float w_qc(n_body) ;
w_qc:long_name = "VCQ weight" ;
float af_f(n_body) ;
af_f:long_name = "final analysis - forecast" ;
byte state(n_body) ;
state:long_name = "3D-Var datum state" ;
byte check(n_body) ;
check:long_name = "3D-Var datum check" ;
int flags(n_body) ;
flags:long_name = "3D-Var datum flags" ;

// global attributes:
:experiment = 0 ;
:runtype = 3 ;
:run_time = "2004120114" ;
:analysis_time = "2004100100" ;
:reference_time = "2004093021" ;
:forecast_hours = 3 ;
}
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Chapter 21

Program output (stdout)

program-output chapte: Need to check how up-to-date it is!

An excerpt of the program output is presented below. It stems from Experiment 5836
(conventional observations and ATOVS), analysis time 2006-07-20 18UT.

21.1 Namelist processing

First a couple of namelist groups are read. Resulting parameter settings are written to
stdout.

21.1.1 Namelist /RUN/

This namelist specifies analysis date, paths and file names, as well as the partitioning in
a parallel environment.

0:--------------------------------------------------------------------------
0:
0: General Parameters (namelist /RUN/) :
0:
0: run time (gmt) = 200610130401
0: host = p010et01
0: user = loadl
0:
0: nex = 5836
0: run_type = 2
0: runtype = forecast
0: method = PSAS
0: interactive = F
0: nproc1 = 8
0: nproc2 = 12
0:
0: reference time = 2006072015
0: analysis time = 2006072018
0: forecast hours = 3
0:
0: data path = ./
0: input path = ./
0: output path = ./
0: aux path = ./
0:
0: fg_file = ./i_ifg_grb
0: oldanerr = ./i_ga3_err
0: ana_err_file = ./o_ga3_err
0: ana_file = ./o_ian_grb
0: output = ./out_2006072018
0: pass_fields = T
0:
0:--------------------------------------------------------------------------

295
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21.1.2 Namelist /BLACKLIST/

According to the specification in namelist group /BLACKLIST/ a blacklist is read from
a file. The number of entries is reported for each observation type.

0:--------------------------------------------------------------------------
0:
0: Reading Blacklists
0:
0: reading: ./blklsttmp
0: 1228 lines read.
0:
0: type entries
0: 1 765
0: 4 134
0: 5 203
0: 6 126
0:
0:--------------------------------------------------------------------------

21.1.3 Namelist /REPORT/

Report type specific parameters as specified by namelist groups /REPORT/ are printed.
In particular report types may be used in the analysis step (ACTIVE), in the monitoring
step (PASSIVE) or be dismissed (DISMISS), (FORGET) at all. The anticipated effects
of the different quality and consistency checks are reported, as well as spatial bounds and
other conditions used for data selection.

0:--------------------------------------------------------------------------
0:
0: read namelist /REPORT/:
0:
0: type = TOVS ,use = active
0: type = SYNOP ,use = active
0: type = DRIBU ,use = active
0: type = PAOB ,use = active
0: type = SCATT ,use = passive
0: type = TEMP ,use = active
0: type = PILOT ,use = active
0: type = SATOB ,use = active
0: type = AIREP ,use = active
0:
0: final settings:
0: type : SYNOP AIREP SATOB DRIBU TEMP PILOT SATEM PAOB SCATT GPSRO unused TOVS
0: max_proc : ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******
0: max_act : ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******
0: ni : 0 0 0 0 0 0 0 0 0 0 0 0
0: deriv_p : 0 1 0 0 0 1 0 0 0 0 0 0
0: height_t : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0: height_b : 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0 1100.0
0: lat_nb : 90.0 90.0 90.0 90.0 90.0 90.0 90.0 -20.0 90.0 90.0 90.0 90.0
0: lat_sb : -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0
0: lon_eb : 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0
0: lon_wb : -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0 -180.0
0: time_b : 1630 1630 1630 1730 1630 1630 1630 1630 1630 1630 1730 1630
0: time_e : 1930 1930 1930 1830 1930 1930 1930 1930 1930 1930 1830 1930
0: fr_land : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0: fr_sea : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 1.0
0: fr_noice : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0: checks :
0: NONE : ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE FORGET ACTIVE PASSIVE FORGET ABORT ACTIVE
0: NOIMPL : ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT
0: OBSTYP : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: SUBTYP : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: CORR : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: CORRERR : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: MERGE : MERGED MERGED MERGED MERGED MERGED MERGED MERGED MERGED MERGED MERGED MERGED MERGED
0: DBLSTAT : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: DBLERR : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: DBLCRD : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: INSDAT : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: TIME : FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET
0: AREA : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: HEIGHT : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: THIN : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: RULE : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: MAXPR : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: MAXACT : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: SURF : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: DATASET : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
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0: CLOUD : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: FG : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: OBS_ERR : DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS DISMISS
0: BLACKLIST: REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: WHITELIST: ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1 ACTIVE_1
0: ARTIFICIA: PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE
0: QI : REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED REJECTED
0: NOTUSED : PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE PASSIVE
0: FINAL : ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED ACCEPTED
0: DOMAIN : FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET FORGET
0:
0:--------------------------------------------------------------------------

21.1.4 Namelist /RULES/

More specific parameter settings which do not refer to the complete report but only to
some of its parts (for instance observation types t,u,v,..) are specified by namelist groups
/RULES/. The settings for the example run are given below.
Each ‘rule’ is reported in the program output. It consists of a selection part which

determines weather the rule shall be applied to a specific observation, and a specification
part for selecting the parameters. If more than one rule is applicable to an observation
the settings of the last rule remain valid.

0:--------------------------------------------------------------------------
0:
0: Rules for observation processing
0:
0: 1 Filter: forbid everything
0:
0: 3D-Var-type = *****
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl =
0:
0: Optional Filter:
0: Latitude bounds = ********** **********
0: Longitude bounds = ********** **********
0: Exclude area = F
0: Pressure bounds = ********** **********
0: Pressure below surf.= **********
0: Pressure above surf.= **********

The selection part of the first rule above does not hold any valid criterium (indicated by
****). Thus it applies to all reports which are not covered by any other of the subsequent
rules.
The specification part only holds the flag ‘use=4’, indicating that the respective obser-

vations are not used at all:

0:
0: Flags:
0: Use flag = 4
0: Verbosity flag = 9
0:
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t 4 ***** ********** ********** ********** **********

********** ********** ******
0: gp 4 ***** ********** ********** ********** **********

********** ********** ******
0: uv 4 ***** ********** ********** ********** **********

********** ********** ******
0: q 4 ***** ********** ********** ********** **********

********** ********** ******
0: p 4 ***** ********** ********** ********** **********

********** ********** ******

Subsequent rules specify valid data base identifiers (Datenbankkennzahlen). The cor-
responding 3dvar module type is given. The use flag is set to 13 indicating that the
observations shall be used for assimilation.
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0:
0: 2 Filter: define "Kennzahlen" for TEMP
0:
0: 3D-Var-type = 2
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = 512 513 514 515 520 521 522 523 776

777
0: 778 779
0:
0: Optional Filter:
0: Latitude bounds = ********** **********
0: Longitude bounds = ********** **********
0: Exclude area = F
0: Pressure bounds = ********** **********
0: Pressure below surf.= **********
0: Pressure above surf.= **********
0:
0: Flags:
0: Use flag = 13
0: Verbosity flag = *****
0:
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0:
0: 3 Filter: define "Kennzahlen" for SYNOP
0:
0: 3D-Var-type = 1
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = 0 128 256 384 385 386 1697
0:
. . .
0:
0: 4 Filter: define "Kennzahlen" for AMV
0:
0: 3D-Var-type = 16
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = 1672 1673 1674 1675 1677 1704 1705 1706 1707
0:
. . .
0:
0: 5 Filter: define "Kennzahlen" for AIREP
0:
0: 3D-Var-type = 64
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = 529 530 533 534
0:
. . .
0:
0: 6 Filter: define "Kennzahlen" for TOVS
0:
0: 3D-Var-type = 4
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = -1
0:
. . .
0:
0: 7 Filter: define "Kennzahlen" for GPSRO
0:
0: 3D-Var-type = 8
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl = -1
0:
. . .

Providing a data base identifier (Datenbankkennzahl) equal to -1 causes any number to
be valid for the respective module type. This is the case for ATOVS data (preprocessed
by the 1dvar) and GPS radio occultations. These observations are currently not stored
in the DWD data base.
Subsequent rules set parameters specific to certain observation type (t, gp, q, p for tem-

perature, geopotential height, humidity, pressure): usage and quality control flags. Further
restrictions may be applied (spatial bounds, pressure bounds) in the specification section.

0: 8 Filter: specific parameters for TEMP gp,rh
0:
0: 3D-Var-type = 2
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
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0: Databank-Kennzahl =
0:
0: Optional Filter:
0: Latitude bounds = ********** **********
0: Longitude bounds = ********** **********
0: Exclude area = F
0: Pressure bounds = ********** **********
0: Pressure below surf.= 10000.00
0: Pressure above surf.= **********
0:
0: Flags:
0: Use flag = *****
0: Verbosity flag = 0
0:
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0: gp 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0: q 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0: p 4 ***** ********** ********** ********** **********

********** ********** ******
0:
0: 9 Filter: specific parameters for TEMP wind
0:
0: 3D-Var-type = 2
. . .
0: Pressure below surf.= 2500.00
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: uv 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0: p 4 ***** ********** ********** ********** **********

********** ********** ******
0:
0: 10 Filter: specific parameters for AMV
0:
0: 3D-Var-type = 16
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: uv 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0:
0: 11 Filter: specific parameters for AIREP
0:
0: 3D-Var-type = 64
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0: uv 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0:
0: 12 Filter: specific parameters for GPSRO
0:
0: 3D-Var-type = 8
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: o 13 3 1.000 5.000 ********** 0.000

********** 2.000 ******
0:
0: 13 Filter: added by namelist /RULES/
0:
0: 3D-Var-type = *****
0: BUFR-message-type = *****
0: BUFR-message-subtype = *****
0: Databank-Kennzahl =
0:
. . .
0:
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t ***** ***** ********** 3.000 ********** **********

********** 2.000 ******
0: gp ***** ***** ********** 3.000 ********** **********

********** 2.000 ******
0: uv ***** ***** ********** 3.000 ********** **********

********** 2.500 ******
0: q ***** ***** ********** 3.000 ********** **********

********** 1.200 ******
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0:
0: 14 Filter: specific parameters for SYNOP Land
0:
0: 3D-Var-type = 1
0: BUFR-message-type = 0
. . .
0: Pressure below surf.= 5000.00
0: Pressure above surf.= 5000.00
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t 4 ***** ********** ********** ********** **********

********** ********** ******
0: gp 11 ***** ********** ********** ********** **********

********** ********** 1
0: uv 11 ***** ********** ********** ********** **********

********** 2.000 ******
0: q 11 ***** ********** ********** ********** **********

********** ********** ******
0: p 4 ***** ********** ********** ********** **********

********** ********** ******
0:
0: 15 Filter: specific parameters for SYNOP Sea
0:
0: 3D-Var-type = 1
0: BUFR-message-type = 1
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: t 4 ***** ********** ********** ********** **********

********** ********** ******
0: gp 11 ***** ********** ********** ********** **********

********** ********** 1
0: uv 11 ***** ********** ********** ********** **********

********** 2.000 ******
0: q 11 ***** ********** ********** ********** **********

********** ********** ******
0: p 4 ***** ********** ********** ********** **********

********** ********** ******
0:
0: 16 Filter: Quality control for AMV
0:
0: 3D-Var-type = 16
. . .
0: Parameter specific:
0: use m_rej sgm_o sgm_fg_p sgm_fg_i0 sgm_fg_a

sgm_fg_i1 sgm_vq frm_vq
0: uv ***** ***** ********** ********** ********** **********

********** 2.000 ******
0:
0:--------------------------------------------------------------------------

21.1.5 Namelist /THINNING/

Thinning criteria are specified by namelist /THINNING/, namely horizontal distance
parameter (ni), vertical distance (dlev), weights and bounds for different criteria as well
as priorities of the criteria.
Thinning rules are related to the reports by matching obstypes, codetypes and data

base identifiers.

0:--------------------------------------------------------------------------
0:
0: thinning rules:
0:
0: TOVS
0:
0: obstype = TOVS
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 48 147.km
0: nlev = 1
0: dlev(hPa)= 0
0:
0: criterium weight bound
0: center 1.00 0.00
0: time 1.00 -3.00
0: sequence 1.00 0.00
0: data 1.00 0.00
0: quality 1.00 -1.00
0: vertical 1.00 0.00
0: status 1.00 0.00
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0:
0: rule 1 : status
0: rule 2 : time
0: rule 3 : quality
0: rule 4 : center vertical
0: rule 5 : data
0: rule 6 : sequence
0:
0: AMV: Eumetsat, GOES
0:
0: obstype = SATOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = 1704 1705 0 0 0 0 0 0 0 0
0: ni = 32 220.km
0: nlev = 11
0: dlev(hPa)= 100
0:
0: criterium weight bound
0: center 1.00 0.00
0: time 1.00 -3.00
0: sequence 1.00 0.00
0: data 1.00 0.00
0: quality 1.00 0.50
0: vertical 1.00 0.00
0: status 1.00 0.00
. . .
0:
0: AMV: Modis
0:
0: obstype = SATOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = 1706 0 0 0 0 0 0 0 0 0
0: ni = 128 55.km
0: nlev = 11
0: dlev(hPa)= 100
0:
0: criterium weight bound
0: center 1.00 0.00
0: time 1.00 -3.00
0: sequence 1.00 0.00
0: data 1.00 0.00
0: quality 1.00 -1.00
0: vertical 1.00 0.00
0: status 1.00 0.00
. . .
0:
0: AIREPs
0:
0: obstype = AIREP
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 192 37.km
0: nlev = 11
0: dlev(hPa)= 100
0:
. . .
0:
0: PAOBs
0:
0: obstype = PAOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 48 147.km
0: nlev = 1
0: dlev(hPa)= 0
0:
. . .
0:
0: QuickSCATT
0:
0: obstype = SCATT
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 64 110.km
0: nlev = 1
0: dlev(hPa)= 0
0:
. . .

21.1.6 Namelists /SYNOP_OBS/ /TOVS_OBS/
/TOVS_OBS_CHAN/ /GPS_RO/ /AMV_OBS/
/AIREP_OBS/

A couple of report type specific namelists are read without further printout.



302 DWD DA System Documentation March 4, 2019

21.2 Parallel input of observations

21.2.1 Scan of obervation input files

First the meta data of all observation files is scanned. Conventional data is read in BUFR
format while ATOVS and GPSRO data is read in NetCDF format. The content of the
BUFR files is printed:

0:--------------------------------------------------------------------------
0:
0: BUFR file : ./mld_file.1
0:
0: type,subt:records comment
0: 2, 0: 305 ( VERT_SOUND )
0:
0: DB-Kennz.:records comment
0: 512: 75 - In-Situ Beob., PILOT, PART A
0: 513: 90 - In-Situ Beob., PILOT, PART B
0: 514: 11 - In-Situ Beob., PILOT, PART C
0: 515: 11 - In-Situ Beob., PILOT, PART D
0: 520: 26 - In-Situ Beob., TEMP, PART A
0: 521: 28 - In-Situ Beob., TEMP, PART B
0: 522: 24 - In-Situ Beob., TEMP, PART C
0: 523: 24 - In-Situ Beob., TEMP, PART D
0: 776: 6 - In-Situ Beob., TEMP, SHIP, PART A
0: 777: 6 - In-Situ Beob., TEMP, SHIP, PART B
0: 778: 2 - In-Situ Beob., TEMP, SHIP, PART C
0: 779: 2 - In-Situ Beob., TEMP, SHIP, PART D
0:
0:
0: BUFR file : ./mld_file.2
0:
0: type,subt:records comment
0: 3, 0: 6014 ( VERT_S_SAT )
0:
0: DB-Kennz.:records comment
0: 1664: 3007 - Satellitenbeob, SATEM, PART A
0: 1666: 3007 - Satellitenbeob, SATEM, PART C
0:
0:
0: BUFR file : ./mld_file.3
0:
0: type,subt:records comment
0: 2, 0: 7923 ( VERT_SOUND )
0: 4, 4: 2120 ( SINGL_LEV )
0: 4, 255: 1103 ( SINGL_LEV )
0:
0: DB-Kennz.:records comment
0: 529: 3981 - In-Situ Beob., AMDAR
0: 530: 3942 - In-Situ Beob., AIREP
0: 533: 2120 - In-Situ Beob., ACARS-Daten USA
0: 534: 1103 - In-Situ Beob., ACARS-Daten EUROPA (Bracknell)
0:
0:
0: BUFR file : ./mld_file.4
0:
0: type,subt:records comment
0: 5, 6: 78 ( SINGL_SAT )
0: 5, 10: 455 ( SINGL_SAT )
0: 5, 87: 182 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 573 - Satellitenbeob, AMV, Eumetsat
0: 1705: 142 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.5
0:
0: type,subt:records comment
0: 5, 6: 73 ( SINGL_SAT )
0: 5, 10: 410 ( SINGL_SAT )
0: 5, 87: 250 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 550 - Satellitenbeob, AMV, Eumetsat
0: 1705: 183 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.6
0:
0: type,subt:records comment
0: 5, 6: 49 ( SINGL_SAT )
0: 5, 10: 481 ( SINGL_SAT )
0: 5, 87: 292 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
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0: 1704: 575 - Satellitenbeob, AMV, Eumetsat
0: 1705: 247 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.7
0:
0: type,subt:records comment
0: 5, 6: 30 ( SINGL_SAT )
0: 5, 10: 246 ( SINGL_SAT )
0: 5, 87: 220 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 326 - Satellitenbeob, AMV, Eumetsat
0: 1705: 170 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.8
0:
0: type,subt:records comment
0: 5, 6: 44 ( SINGL_SAT )
0: 5, 10: 316 ( SINGL_SAT )
0: 5, 87: 260 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 425 - Satellitenbeob, AMV, Eumetsat
0: 1705: 195 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.9
0:
0: type,subt:records comment
0: 5, 6: 54 ( SINGL_SAT )
0: 5, 10: 523 ( SINGL_SAT )
0: 5, 87: 122 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 650 - Satellitenbeob, AMV, Eumetsat
0: 1705: 49 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.10
0:
0: type,subt:records comment
0: 5, 6: 44 ( SINGL_SAT )
0: 5, 10: 431 ( SINGL_SAT )
0: 5, 87: 104 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 548 - Satellitenbeob, AMV, Eumetsat
0: 1705: 31 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.11
0:
0: type,subt:records comment
0: 5, 6: 120 ( SINGL_SAT )
0: 5, 10: 1044 ( SINGL_SAT )
0: 5, 87: 251 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1704: 1320 - Satellitenbeob, AMV, Eumetsat
0: 1705: 95 - Satellitenbeob, AMV, GOES (NOAA/NESDIS)
0:
0:
0: BUFR file : ./mld_file.12
0:
0: type,subt:records comment
0: 0, 0: 4598 ( SURF_LAND )
0:
0: DB-Kennz.:records comment
0: 0: 1243 - Bodenmeldungen, SYNOP, Sect. 1-4, manuell+PAST
0: 5: 1297 - Bodenmeldungen, SYNOP, Section 5
0: 9: 7 - Bodenmeldungen, PSEUDO-SYNOP (aus TEMP)
0: 128: 2051 - Bodenmeldungen, SYNOP, Sect. 1-3, autom.
0:
0:
0: BUFR file : ./mld_file.13
0:
0: type,subt:records comment
0: 0, 0: 5808 ( SURF_LAND )
0:
0: DB-Kennz.:records comment
0: 0: 1581 - Bodenmeldungen, SYNOP, Sect. 1-4, manuell+PAST
0: 5: 1846 - Bodenmeldungen, SYNOP, Section 5
0: 9: 6 - Bodenmeldungen, PSEUDO-SYNOP (aus TEMP)
0: 128: 2375 - Bodenmeldungen, SYNOP, Sect. 1-3, autom.
0:
0:
0: BUFR file : ./mld_file.14
0:
0: type,subt:records comment
0: 0, 0: 5107 ( SURF_LAND )
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0:
0: DB-Kennz.:records comment
0: 0: 3054 - Bodenmeldungen, SYNOP, Sect. 1-4, manuell+PAST
0: 5: 773 - Bodenmeldungen, SYNOP, Section 5
0: 9: 15 - Bodenmeldungen, PSEUDO-SYNOP (aus TEMP)
0: 128: 1265 - Bodenmeldungen, SYNOP, Sect. 1-3, autom.
0:
0:
0: BUFR file : ./mld_file.15
0:
0: type,subt:records comment
0: 0, 0: 29427 ( SURF_LAND )
0: 1, 0: 6246 ( SURF_SEA )
0:
0: DB-Kennz.:records comment
0: 1: 29424 - Bodenmeldungen, METAR
0: 4: 3 - Bodenmeldungen, METAR, WEHI
0: 256: 881 - Bodenmeldungen, SHIP, manuell
0: 265: 6 - Bodenmeldungen, PSEUDO-SHIP (aus TEMP-SHIP)
0: 384: 1149 - Bodenmeldungen, SHIP, automatisch
0: 385: 4210 - Bodenmeldungen, BUOY
0:
0:
0: BUFR file : ./mld_file.16
0:
0: type,subt:records comment
0: 1, 0: 8730 ( SURF_SEA )
0: 5, 0: 280 ( SINGL_SAT )
0:
0: DB-Kennz.:records comment
0: 1697: 8730 - Satellitenbeob, QUICKSCAT (als DRIBU)
0: 1706: 280 - Satellitenbeob, AMV, MODIS
0:
0:--------------------------------------------------------------------------

21.2.2 Assignment of observations to processors
The total number of records and subsets and their distribution over input files is counted:

0:--------------------------------------------------------------------------
0:
0: obstype records subsets in file no.
...987654321

0: SYNOP 46939 46939
000000000000000000000000000000000000000000000000111100000000000

0: AIREP 11146 31364
000000000000000000000000000000000000000000000000000000000000100

0: SATOB 6359 192590
000000000000000000000000000000000000000000000001000011111111000

0: DRIBU 4210 4210
000000000000000000000000000000000000000000000000100000000000000

0: TEMP 118 118
000000000000000000000000000000000000000000000000000000000000001

0: PILOT 187 187
000000000000000000000000000000000000000000000000000000000000001

0: SATEM 6014 6014
000000000000000000000000000000000000000000000000000000000000010

0: PAOB 0 0
000000000000000000000000000000000000000000000000000000000000000

0: SCATT 8730 8730
000000000000000000000000000000000000000000000001000000000000000

0: GPSRO 0 0
000000000000000000000000000000000000000000000000000000000000000

0: unused 0 0
000000000000000000000000000000000000000000000000000000000000000

0: TOVS 154258 154258
000000000000000000000000000000000000000000001110000000000000000

0:
0:--------------------------------------------------------------------------

The file names associated with the file numbers are printed:

0:--------------------------------------------------------------------------
0: Observation input files:
0:
0: 1 mld_file.1
0: 2 mld_file.2
0: 3 mld_file.3
0: 4 mld_file.4
0: 5 mld_file.5
0: 6 mld_file.6
0: 7 mld_file.7
0: 8 mld_file.8
0: 9 mld_file.9
0: 10 mld_file.10
0: 11 mld_file.11
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0: 12 mld_file.12
0: 13 mld_file.13
0: 14 mld_file.14
0: 15 mld_file.15
0: 16 mld_file.16
0: 17 sat_206_2006072018-dt.nc
0: 18 sat_207_2006072018-dt.nc
0: 19 sat_784_2006072018-dt.nc
0:--------------------------------------------------------------------------

The work of reading and decoding the observations is shared by the processor elements
(here 96). Based on the number of records and subsets present in the files, the range of
subsets to be read by individual processors is determined:

0:--------------------------------------------------------------------------
0:
0: Distribution of reports for input
0:
0: pe SYNOP AIREP SATOB DRIBU TEMP PILOT SATEM

PAOB SCATT GPSRO unused TOVS
0:
0: 0 start : 0 0 0 0 0 0 0
0 0 0 0 0
0: 0 end : 0 325 2006 44 118 0 63
0 87 0 0 1557
0: 0 used : F T T T T F T
F T F F T
0:
0: 1 start : 0 325 2006 44 0 0 63
0 87 0 0 1557
0: 1 end : 0 640 4012 88 0 187 126
0 174 0 0 3129
0: 1 used : F T T T F T T
F T F F T
0:
0: 2 start : 0 640 4012 88 0 0 126
0 174 0 0 3129
0: 2 end : 46939 640 4012 88 0 0 126
0 174 0 0 3129
0: 2 used : T F F F F F F
F F F F F
0:
. . .
0:
0: 94 start : 0 29578 186558 4092 0 0 5859
0 8182 0 0 151277
0: 94 end : 0 29896 188564 4136 0 0 5922
0 8270 0 0 152905
0: 94 used : F T T T F F T
F T F F T
0:
0: 95 start : 0 29896 188564 4136 0 0 5922
0 8270 0 0 152905
0: 95 end : 0 31364 192590 4210 0 0 6014
0 8730 0 0 154258
0: 95 used : F T T T F F T
F T F F T
0:
0:--------------------------------------------------------------------------

TEMP, PILOT and SYNOP observations are read from one PE only, because merging
of reports and processing of correction reports - which is handled by the BUFR input
routine - requires the respective obsevations to be present on the same processor.
For each processor a list of the subsets to be read from each file is generated (shown

exemplarily for PE0):

0:--------------------------------------------------------------------------
0:
0: file SYNOP AIREP SATOB DRIBU TEMP PILOT SATEM

PAOB SCATT GPSRO unused TOVS
0:
0: 1 subsets: 0 0 0 0 118 187 0
0 0 0 0 0
0:
0: 2 offset : 0 0 0 0 118 187 0
0 0 0 0 0
0: 2 subsets: 0 0 0 0 0 0 6014
0 0 0 0 0
0:
0: 3 offset : 0 0 0 0 118 187 6014
0 0 0 0 0
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0: 3 subsets: 0 31364 0 0 0 0 0
0 0 0 0 0

0:
0: 4 offset : 0 31364 0 0 118 187 6014
0 0 0 0 0

0: 4 subsets: 0 0 25246 0 0 0 0
0 0 0 0 0

0:
0: 5 offset : 0 31364 25246 0 118 187 6014
0 0 0 0 0

0: 5 subsets: 0 0 25355 0 0 0 0
0 0 0 0 0

0:
0: 6 offset : 0 31364 50601 0 118 187 6014
0 0 0 0 0

0: 6 subsets: 0 0 26370 0 0 0 0
0 0 0 0 0

. . .
0: 15 offset : 15485 31364 183642 0 118 187 6014
0 0 0 0 0

0: 15 subsets: 31454 0 0 4210 0 0 0
0 0 0 0 0

0:
0: 16 offset : 46939 31364 183642 4210 118 187 6014
0 0 0 0 0

0: 16 subsets: 0 0 8948 0 0 0 0
0 8730 0 0 0

0:
0: 17 offset : 46939 31364 192590 4210 118 187 6014
0 8730 0 0 0

0: 17 subsets: -46939 -31364 -192590 -4210 -118 -187 -6014
0 -8730 0 0 63753

0:
0: 18 offset : 0 0 0 0 0 0 0
0 0 0 0 63753

0: 18 subsets: 0 0 0 0 0 0 0
0 0 0 0 55453

0:
0: 19 offset : 0 0 0 0 0 0 0
0 0 0 0 119206

0: 19 subsets: 0 0 0 0 0 0 0
0 0 0 0 35052

0:
0:--------------------------------------------------------------------------

The list of files to be opened by each processor is:

0:--------------------------------------------------------------------------
0:
0: 1 2 3 4
0: 1234567890123456789012345678901234567890
0: 0 :

TTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0: 1 :

TTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0: 2 :

FFFFFFFFFFFTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0: 3 :

FTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0: 4 :

FTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
. . .
0: 94 :

FTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0: 95 :

FTTTTTTTTTTFFFTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0:
0:--------------------------------------------------------------------------

Finally the observations are read by the respective processors. GPSRO data (not used
in this example) currently is read only by processor 0.

21.3 Input of atmospheric background fields

The GRIB input file with the background fields (preceeding forecast) is scanned. Its
inventory is printed twice, with parameter names given in GME convention and var3d
convention, respectively.
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0:--------------------------------------------------------------------------
0:
0:inventory of grib file: ./i_ifg_grb
0:
0: rec adress name date time tab cnt sub prc cde lvt

levelvl runtype ni grd nlev
0: 1| 0|PS |2006-07-20|18:00:00| 2| 78|255|174| 1| 1|

0| 0|forecast|192|192| 1
0: 2| 745426|T_G |2006-07-20|18:00:00| 2| 78|255|174| 11| 1|

0| 0|forecast|192|192| 1
0: 3| 1490852|T_2M |2006-07-20|18:00:00| 2| 78|255|174| 11|105|

2| 0|forecast|192|192| 1
0: 4| 2236278|TD_2M |2006-07-20|18:00:00| 2| 78|255|174| 17|105|

2| 0|forecast|192|192| 1
0: 5| 2981704|U_10M |2006-07-20|18:00:00| 2| 78|255|174| 33|105|

10| 0|forecast|192|192| 1
0: 6| 3727130|V_10M |2006-07-20|18:00:00| 2| 78|255|174| 34|105|

10| 0|forecast|192|192| 1
0: 7| 4472556|U |2006-07-20|18:00:00| 2| 78|255|174| 33|110|

1| 2|forecast|192|192| 40
0: 47| 34289596|V |2006-07-20|18:00:00| 2| 78|255|174| 34|110|

1| 2|forecast|192|192| 40
0: 87| 64106636|T |2006-07-20|18:00:00| 2| 78|255|174| 11|110|

1| 2|forecast|192|192| 40
0: 127| 93923676|QV |2006-07-20|18:00:00| 2| 78|255|174| 51|110|

1| 2|forecast|192|192| 40
0: 167| 123740716|QC |2006-07-20|18:00:00|201| 78|255|174| 31|110|

1| 2|forecast|192|192| 40
0: 207| 153557756|QI |2006-07-20|18:00:00|201| 78|255|174| 33|110|

1| 2|forecast|192|192| 40
0: 247| 183374796|FIS |0001-01-01|00:00:00| 2| 78|255|173| 6| 1|

0| 0|analysis|192|192| 1
0: 248| 184119894|FR_LAND |0001-01-01|00:00:00| 2| 78|255|173| 81| 1|

0| 0|analysis|192|192| 1
0:
0: rec adress name date time tab cnt sub prc cde lvt

levelvl runtype ni grd nlev
0: 1| 0|ps |2006-07-20|18:00:00| 2| 78|255|174| 1| 1|

0| 0|forecast|192|192| 1
0: 2| 745426|tsurf |2006-07-20|18:00:00| 2| 78|255|174| 11| 1|

0| 0|forecast|192|192| 1
0: 3| 1490852|t2m |2006-07-20|18:00:00| 2| 78|255|174| 11|105|

2| 0|forecast|192|192| 1
0: 4| 2236278|td2m |2006-07-20|18:00:00| 2| 78|255|174| 17|105|

2| 0|forecast|192|192| 1
0: 5| 2981704| |2006-07-20|18:00:00| 2| 78|255|174| 33|105|

10| 0|forecast|192|192| 1
0: 6| 3727130| |2006-07-20|18:00:00| 2| 78|255|174| 34|105|

10| 0|forecast|192|192| 1
0: 7| 4472556|u |2006-07-20|18:00:00| 2| 78|255|174| 33|110|

1| 2|forecast|192|192| 40
0: 47| 34289596|v |2006-07-20|18:00:00| 2| 78|255|174| 34|110|

1| 2|forecast|192|192| 40
0: 87| 64106636|t |2006-07-20|18:00:00| 2| 78|255|174| 11|110|

1| 2|forecast|192|192| 40
0: 127| 93923676|q |2006-07-20|18:00:00| 2| 78|255|174| 51|110|

1| 2|forecast|192|192| 40
0: 167| 123740716|qcl |2006-07-20|18:00:00|201| 78|255|174| 31|110|

1| 2|forecast|192|192| 40
0: 207| 153557756|qci |2006-07-20|18:00:00|201| 78|255|174| 33|110|

1| 2|forecast|192|192| 40
0: 247| 183374796|geosp |0001-01-01|00:00:00| 2| 78|255|173| 6| 1|

0| 0|analysis|192|192| 1
0: 248| 184119894|slm |0001-01-01|00:00:00| 2| 78|255|173| 81| 1|

0| 0|analysis|192|192| 1
0:
0:--------------------------------------------------------------------------

The files are read and stored into variables of derived data type t_grid for the grid
information and t_atm for the atmospheric fields. The content of the variables is printed,
showing minimum and maximum values of each parameter and model level:

0:--------------------------------------------------------------------------
0:
0: read_atm_state: reading ps
0: read_atm_state: reading psr
0: read_atm_state: reading tsurf
0: read_atm_state: reading t
0: read_atm_state: reading u
0: read_atm_state: reading v
0: read_atm_state: reading q
0: read_atm_state: reading qcl
0: read_atm_state: reading qci
0: read_atm_state: reading t2m
0: read_atm_state: reading td2m
0:
0: (t_atm)
0: time% (t_time)
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0: time% days : 2453937
0: time% secs : 64800
0: time% yyyymmddhhmmss:20060720180000
0: ref_time% (t_time)
0: ref_time% days : 2453937
0: ref_time% secs : 54000
0: ref_time% yyyymmddhhmmss:20060720150000
0: grid% (t_grid) :
0: grid% grid : 192
0: grid% levtyp: 110
0: grid% nx : 193
0: grid% ny : 193
0: grid% ngl : 0
0: grid% nn : 0
0: grid% nz : 40
0: grid% rot : F
0: grid% cyc_x : F
0: grid% poly : F
0: grid% global: T
0: grid% la1 : 0.00
0: grid% lo1 : 0.00
0: grid% di : 0.00
0: grid% dj : 0.00
0: grid% a : 6371229.00
0: grid% g : 9.81
0: grid% size : 14899600
0: grid% dlon : (1),(n)= 0.00 0.00
0: grid% dlat : (1),(n)= 0.00 0.00
0: grid% lon(1): (1),(n)= 0.00 -0.628
0: grid% lat(1): (1),(n)= 1.57 0.459
0: grid% rlon : min,max= -3.14 3.14 | -180. 180. [degree]
0: grid% rlat : min,max= -1.57 1.57 | -90.0 90.0 [degree]
0: grid% slm : min,max= 0.00 1.00
0: grid% geosp : min,max= -963. 0.595E+05 | -98.2 0.607E+04 [m]
0: grid% geo_sh: not associated!
0: grid% geoid : min,max= -107. 85.2
0: grid% k= 1 ak= 0.0000 bk= 0.0000 akf= 1000.0000 bkf= 0.0000
0: grid% k= 2 ak= 2000.0000 bk= 0.0000 akf= 3000.0000 bkf= 0.0000
0: grid% k= 3 ak= 4000.0000 bk= 0.0000 akf= 5000.0000 bkf= 0.0000
0: grid% k= 4 ak= 6000.0000 bk= 0.0000 akf= 7000.0000 bkf= 0.0000
0: grid% k= 5 ak= 8000.0000 bk= 0.0000 akf= 8988.0684 bkf= 0.0002
. . .

0: grid% k=35 ak= 855.3618 bk= 0.9518 akf= 661.3477 bkf= 0.9597
0: grid% k=36 ak= 467.3335 bk= 0.9676 akf= 338.8637 bkf= 0.9737
0: grid% k=37 ak= 210.3939 bk= 0.9797 akf= 138.1415 bkf= 0.9840
0: grid% k=38 ak= 65.8892 bk= 0.9883 akf= 36.6284 bkf= 0.9911
0: grid% k=39 ak= 7.3677 bk= 0.9940 akf= 3.6838 bkf= 0.9958
0: grid% k=40 ak= 0.0000 bk= 0.9976 akf= 0.0000 bkf= 0.9988
0: grid% k=41 ak= 0.0000 bk= 1.0000
0: lb : 0 1 1 1
0: ub : 23 16 40 10
0: size: 940800
0: ps gg(: min,max=) 0.488E+05 0.104E+06 1 2
0: psr gg(: min,max=) 0.488E+05 0.104E+06 1 2
0: t gg(: min,max=) 176. 318. 11 2
0: t k= 1 176. 243.
0: t k= 2 182. 234.
0: t k= 3 183. 231.
0: t k= 4 184. 232.
0: t k= 5 187. 232.
. . .
0: t k=35 221. 316.
0: t k=36 217. 317.
0: t k=37 214. 317.
0: t k=38 210. 317.
0: t k=39 208. 318.
0: t k=40 207. 318.
0: u gg(: min,max=) -46.9 96.5 33 2
0: u k= 1 -31.0 90.9
0: u k= 2 -29.3 79.3
0: u k= 3 -29.9 69.6
0: u k= 4 -34.0 59.5
0: u k= 5 -40.7 55.7
. . .
0: u k=35 -33.4 29.3
0: u k=36 -30.4 26.2
0: u k=37 -27.1 24.0
0: u k=38 -25.7 23.1
0: u k=39 -24.0 21.4
0: u k=40 -21.1 18.8
0: v gg(: min,max=) -68.3 67.9 34 2
0: v k= 1 -18.3 23.1
0: v k= 2 -23.3 25.8
0: v k= 3 -26.3 25.4
0: v k= 4 -22.3 26.8
0: v k= 5 -23.2 29.7
. . .
0: v k=35 -32.0 40.8
0: v k=36 -30.0 36.3
0: v k=37 -27.8 27.5
0: v k=38 -26.5 26.0
0: v k=39 -24.7 24.1
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0: v k=40 -21.5 21.0
0: q gg(: min,max=) 0.100E-11 0.259E-01 51 2
0: q k= 1 0.126E-05 0.402E-05
0: q k= 2 0.131E-05 0.413E-05
0: q k= 3 0.918E-06 0.406E-05
0: q k= 4 0.883E-06 0.422E-05
0: q k= 5 0.100E-11 0.527E-05
. . .
0: q k=35 0.100E-11 0.235E-01
0: q k=36 0.100E-11 0.241E-01
0: q k=37 0.100E-11 0.245E-01
0: q k=38 0.100E-11 0.252E-01
0: q k=39 0.100E-11 0.255E-01
0: q k=40 0.100E-11 0.259E-01
0: qcl gg(: min,max=) 0.00 0.161E-02 31 201
0: qcl k= 1 0.00 0.00
0: qcl k= 2 0.00 0.00
0: qcl k= 3 0.00 0.00
0: qcl k= 4 0.00 0.00
0: qcl k= 5 0.00 0.00
. . .
0: qcl k=35 0.00 0.404E-03
0: qcl k=36 0.00 0.409E-03
0: qcl k=37 0.00 0.348E-03
0: qcl k=38 0.00 0.337E-03
0: qcl k=39 0.00 0.327E-03
0: qcl k=40 0.00 0.399E-03
0: qci gg(: min,max=) 0.00 0.814E-03 33 201
0: qci k= 1 0.00 0.00
0: qci k= 2 0.00 0.00
0: qci k= 3 0.00 0.00
0: qci k= 4 0.00 0.139E-10
0: qci k= 5 0.00 0.170E-08
. . .
0: qci k=35 0.00 0.187E-04
0: qci k=36 0.00 0.173E-04
0: qci k=37 0.00 0.196E-04
0: qci k=38 0.00 0.241E-04
0: qci k=39 0.00 0.193E-04
0: qci k=40 0.00 0.171E-04
0: tke gg(: not ALLOCATED!)
0: cl gg(: not ALLOCATED!)
0: ph gg(: not ALLOCATED!)
0: pf gg(: not ALLOCATED!)
0: rh gg(: not ALLOCATED!)
0: t2m gg(: min,max=) 200. 319. 11 2
0: rh2m gg(: not ALLOCATED!)
0: geoh gg(: not ALLOCATED!)
0: geof gg(: not ALLOCATED!)
0: tsurf gg(: min,max=) 192. 321. 11 2
0: td2m gg(: min,max=) 198. 302. 17 2
0: tv gg(: not ALLOCATED!)
0: psi gg(: not ALLOCATED!)
0: chi gg(: not ALLOCATED!)
0: size = 940800
0:
0:--------------------------------------------------------------------------

21.4 Further namelist processing

21.4.1 Namelist /ANAERROR/

Parameters for the analysis error estimation. Currently no Output is written to stdout
for namelist /ANAERROR/.

21.4.2 Namelist /PSAS/

Parameters for the solver of the analysis equation. Currently no Output is written to
stdout for namelist /PSAS/.

21.4.3 Namelist /VARQC/

Parameters for Variational quality control:
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0:--------------------------------------------------------------------------
0: Variational Quality Control Parameters
0:
0: w_min = 0.10E-01 : minimum singular value in Hessian
0: iappr = 2 : approximation level for R
0: iprint = 0 : print flag
0: vqc_form = 4 : formulation of obs-costfunction
0:

The value of ‘vqc_form=4’ denotes a Huber norm like specification of the observational
cost function with continuous derivatives. The other parameters have no effect for this
choice.
Subsequent parameters are applicable to correlated observations only and currently not

used.
0:
0: vqc_par( 1) :
0:
0: dim_lim = 10
0: n_full = 10
0: c_start =
0: c_final =
0: n_lev_s = 0
0: n_lev_f = 0
0:
0: vqc_par( 2) :
. . .
0: vqc_par( 6) :
0:
0:--------------------------------------------------------------------------

21.4.4 Namelist /HUM_ANA/

Parameters regarding the humidity analysis. Currently no Output is written to stdout
for namelist /HUM_ANA/.

21.4.5 Namelist /CNTRLVAR/

Parameters regarding the specification of control variables. No Output is written to stdout
for namelist /CNTRLVAR/.

21.4.6 Namelist /TEST_OBS_OPR/

Parameters for testing the tangent linear (Jacobi matrix) of the observation operators by
comparing the analytical gradients with finite differences. The finite differences increment
is a normal distributed random number scaled by the background error times a small
scaling factor. The test was switched off for this experiment (test_H=0).

0:--------------------------------------------------------------------------
0: Namelist /TEST_OBS_OPR/ read
0: operator =
0: quantity =
0: scale = 0.1E-02
0: argument = 0
0: result = 0
0: mode = on
0: seed = 0 0 0 0 0 0 0 0 0 0
0: test_H = 0
0:--------------------------------------------------------------------------

21.4.7 Namelist /BG_ERROR_OPERATOR/

Specification of the operator representation of background error covariance matrices. The
parameters are written twice: First after processing of the namelist and a second time
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after the coefficients were read from an external file. Parameters may be modified due to
the specification in the file. In this example the grid and domain sizes (ny: number of
meridional points, pbot: pressure at lowest level) changed:

0:--------------------------------------------------------------------------
0:
0: reading namelist /BG_ERROR_OPERATOR/
0:
0: nx = 512
0: ny = 0
0: nz = 64
0: pbot = 1000.
0: file = /uwork0/arhodin/nmc_gme/200507/vertcov
0: transform = w
0: sqr = s
0: valid = 4
0: lclim = 2
0: base = 12
0: nwv = 4
0: h2psi = T
0: h2t = T
0: sqrtcor = T
0: sparse = F
0:
0:
0: cov_from_nmc
0:
0: modified parameters:
0:
0:
0: nx = 512
0: ny = 256
0: nz = 64
0: pbot = 1070.
0: file = /uwork0/arhodin/nmc_gme/200507/vertcov
0: transform = w
0: sqr = s
0: valid = 4
0: lclim = 2
0: base = 12
0: nwv = 4
0: h2psi = T
0: h2t = T
0: sqrtcor = T
0: sparse = F

Some tables with vertical covariance coefficients are printed: Square root of the diago-
nals of the covariance matrix at ca. 60 degree South.

0: set_bg_err_op: sqrt(diag) of covariance matrices at -61.0588235294117609
0:
0: pressure level height streamfunction veloc.pot.

temperature rel.hum.
0: 1 10.000 97.435 97.435 1907642.124

2.186 0.014
0: 2 10.770 93.979 93.979 1778234.747

2.119 0.014
. . .
0: 55 548.873 39.772 39.772 622161.377

1.803 0.255
0: 56 591.132 38.362 38.362 656415.275

1.846 0.265
0: 57 636.644 37.147 37.147 683479.561

1.869 0.273
0: 58 685.661 36.143 36.143 682565.230

1.894 0.277
0: 59 738.451 35.323 35.323 663584.024

1.948 0.282
0: 60 795.306 34.840 34.840 673482.433

2.034 0.271
0: 61 856.538 34.765 34.765 666619.355

2.285 0.228
0: 62 922.484 35.272 35.272 697799.088

2.367 0.165
0: 63 993.508 36.546 36.546 761425.169

2.037 0.080
0: 64 1070.000 38.485 38.485 718855.179

2.007 0.070

Diagonals of correlation matrices at ca. 60 degree South (should be all 1):
0: set_bg_err_op: diagonals of correlation matrices at -61.0588235294117609
0: pressure level height streamfunction veloc.pot.

temperature rel.hum.
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0: 1 10.000 1.000 1.000 1.000
1.000 1.000

0: 2 10.770 1.000 1.000 1.000
1.000 1.000

. . .
0: 63 993.508 1.000 1.000 1.000

1.000 1.000
0: 64 1070.000 1.000 1.000 1.000

1.000 1.000

Errors at ca. 60 degree South:

0: set_bg_err_op: Errors
0:
0: pressure level h rh t

xi v
0: 1 10.000 97.435 0.014 2.186

1907642.124 5.115
0: 2 10.770 93.979 0.014 2.119

1778234.747 4.884
. . .
0: 55 548.873 39.772 0.255 1.803

622161.377 5.783
0: 56 591.132 38.362 0.265 1.846

656415.275 5.543
0: 57 636.644 37.147 0.273 1.869

683479.561 5.354
0: 58 685.661 36.143 0.277 1.894

682565.230 5.214
0: 59 738.451 35.323 0.282 1.948

663584.024 5.121
0: 60 795.306 34.840 0.271 2.034

673482.433 5.099
0: 61 856.538 34.765 0.228 2.285

666619.355 5.204
0: 62 922.484 35.272 0.165 2.367

697799.088 5.375
0: 63 993.508 36.546 0.080 2.037

761425.169 3.855
0: 64 1070.000 38.485 0.070 2.007

718855.179 3.652

Errors at level 56, (approx. 600 hPa):

0: latitudinal dependence at k= 56 591.131701268327447
0:
0: set_bg_err_op: Errors:
0: latitude h rh t

xi v
0: 1 -90.000 31.102 0.136 1.859

530648.604 4.111
0: 2 -89.294 31.224 0.136 1.919

537585.310 4.281
. . .
0: 37 -64.588 39.591 0.252 1.881

649915.157 5.537
0: 38 -63.882 39.619 0.256 1.905

650639.298 5.561
0: 39 -63.176 39.472 0.265 1.915

651764.587 5.570
. . .
0: 131 1.765 4.464 0.137 0.652

954960.503 2.151
0: 132 2.471 4.449 0.142 0.647

954165.232 2.141
0: 133 3.176 4.453 0.144 0.638

954268.046 2.125
. . .
0: 234 74.471 17.801 0.226 1.166

511708.141 2.854
0: 235 75.176 17.864 0.229 1.163

511240.381 2.848
0: 236 75.882 17.832 0.230 1.164

509893.169 2.797
. . .
0: 255 89.294 13.359 0.205 0.889

505970.011 2.372
0: 256 90.000 12.877 0.185 0.891

510536.324 2.382
0:
0:--------------------------------------------------------------------------



DWD DA System Documentation March 4, 2019 313

21.5 Monitoring step
Monitoring is performed with all data selected so far: Innovations are derived, the first
guess check and thinning of data is performed.

21.5.1 Assignment of observations to processors

In order to achieve a better load balance the observations are redistributed over the
processors. In this example 396 161 reports were read. Assignment to boxes is performed
so that the estimated amount of computing load (here 1 188 483) is distributed evenly
over the PEs.

0:--------------------------------------------------------------------------
0:
0: set_boxes : estimated total cost = 1188483
0: set_boxes : number of spots used = 396161
0: set_boxes : number of boxes = 192
0:
0: box pe observations reports
0: proc. goal left
0: 1 0 6192 6190 394097
0: 2 0 12381 12380 392034
0: 3 1 18570 18570 389971
0: 4 1 24762 24760 387907
. . .
0: 188 93 1163724 1163723 8253
0: 189 94 1169913 1169913 6190
0: 190 94 1176105 1176103 4126
0: 191 95 1182294 1182293 2063
0: 192 95 1188483 1188483 0
0:
0:--------------------------------------------------------------------------

21.5.2 Input of previous analysis error

The estimated analysis error for wind components and geopotential height from the previ-
ous assimilation cycle is read from a GRIB file. The fields are stored on a coarse grid with
6 degree spacing on 7 pressure levels. The printout is similar to that of the atmospheric
background fields:

0:--------------------------------------------------------------------------
0:
0: reading analysis error:
0:
0: content of grib file ./i_ga3_err
0:
0: rec adress name date time tab cnt sub prc cde lvt

levelvl runtype ni grd nlev
0: 1| 0|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

10|analysis| 60| 0| 7
0: 2| 3746|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

50|analysis| 60| 0| 7
0: 3| 7492|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

100|analysis| 60| 0| 7
0: 4| 11238|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

200|analysis| 60| 0| 7
0: 5| 14984|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

300|analysis| 60| 0| 7
0: 6| 18730|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

500|analysis| 60| 0| 7
0: 7| 22476|VAR_U |2006-07-20|15:00:00|202| 78|255|195| 41|100|

1000|analysis| 60| 0| 7
0: 8| 26222|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

10|analysis| 60| 0| 7
0: 9| 29968|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

50|analysis| 60| 0| 7
0: 10| 33714|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

100|analysis| 60| 0| 7
0: 11| 37460|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

200|analysis| 60| 0| 7
0: 12| 41206|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

300|analysis| 60| 0| 7
0: 13| 44952|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|
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500|analysis| 60| 0| 7
0: 14| 48698|VAR_V |2006-07-20|15:00:00|202| 78|255|195| 42|100|

1000|analysis| 60| 0| 7
0: 15| 52444|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

10|analysis| 60| 0| 7
0: 16| 56190|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

50|analysis| 60| 0| 7
0: 17| 59936|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

100|analysis| 60| 0| 7
0: 18| 63682|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

200|analysis| 60| 0| 7
0: 19| 67428|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

300|analysis| 60| 0| 7
0: 20| 71174|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

500|analysis| 60| 0| 7
0: 21| 74920|VAR_FI |2006-07-20|15:00:00|202| 78|255|195| 40|100|

1000|analysis| 60| 0| 7
0:
0: reading grid information:
0:
0:
0:read_atm_grid: p_readgrib = 0
0:
0:
0: reading analysis errors:
0:
0: (t_atm)
0: time% (t_time)
0: time% days : 2453937
0: time% secs : 54000
0: time% yyyymmddhhmmss:20060720150000
0: ref_time% (t_time)
0: ref_time% days : 0
0: ref_time% secs : 0
0: grid% (t_grid) :
0: grid% grid : 0
0: grid% levtyp: 100
0: grid% nx : 60
0: grid% ny : 30
0: grid% ngl : 0
0: grid% nn : 0
0: grid% nz : 7
0: grid% rot : F
0: grid% cyc_x : F
0: grid% poly : F
0: grid% global: F
0: grid% la1 : -87.00
0: grid% lo1 : 0.00
0: grid% di : 6.00
0: grid% dj : 6.00
0: grid% a : 6371229.00
0: grid% g : 9.81
0: grid% size : 12600
0: grid% dlon : (1),(n)= 0.00 354.
0: grid% dlat : (1),(n)= -87.0 87.0
0: grid% lon(1): (1),(n)= 0.00 6.18
0: grid% lat(1): (1),(n)= -1.52 1.52
0: grid% rlon : min,max= 0.00 6.18 | 0.00 354. [degree]
0: grid% rlat : min,max= -1.52 1.52 | -87.0 87.0 [degree]
0: grid% slm : not associated!
0: grid% geosp : not associated!
0: grid% geo_sh: not associated!
0: grid% geoid : not associated!
0: grid% k= 1 ak= 0.0000 bk= 0.0000 akf= 1000.0000 bkf= 0.0000
0: grid% k= 2 ak= 0.0000 bk= 0.0000 akf= 5000.0000 bkf= 0.0000
0: grid% k= 3 ak= 0.0000 bk= 0.0000 akf= 10000.0000 bkf= 0.0000
0: grid% k= 4 ak= 0.0000 bk= 0.0000 akf= 20000.0000 bkf= 0.0000
0: grid% k= 5 ak= 0.0000 bk= 0.0000 akf= 30000.0000 bkf= 0.0000
0: grid% k= 6 ak= 0.0000 bk= 0.0000 akf= 50000.0000 bkf= 0.0000
0: grid% k= 7 ak= 0.0000 bk= 0.0000 akf= 100000.0000 bkf= 0.0000
0: grid% k= 8 ak= 0.0000 bk= 0.0000
0: lb : 1 1 1 1
0: ub : 60 30 7 1
0: size: 37800
0: ps gg(: not ALLOCATED!)
0: psr gg(: not ALLOCATED!)
0: t gg(: not ALLOCATED!)
0: u gg(: min,max=) 0.329 7.10 41 202
0: u k= 1 0.439 4.60
0: u k= 2 0.329 2.92
0: u k= 3 0.362 3.61
0: u k= 4 0.600 5.90
0: u k= 5 0.573 7.10
0: u k= 6 0.425 5.79
0: u k= 7 0.399 3.48
0: v gg(: min,max=) 0.329 7.07 42 202
0: v k= 1 0.441 4.46
0: v k= 2 0.329 2.91
0: v k= 3 0.361 3.61
0: v k= 4 0.583 5.88
0: v k= 5 0.587 7.07
0: v k= 6 0.423 5.69
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0: v k= 7 0.397 3.43
0: q gg(: not ALLOCATED!)
0: qcl gg(: not ALLOCATED!)
0: qci gg(: not ALLOCATED!)
0: tke gg(: not ALLOCATED!)
0: cl gg(: not ALLOCATED!)
0: ph gg(: not ALLOCATED!)
0: pf gg(: not ALLOCATED!)
0: rh gg(: not ALLOCATED!)
0: t2m gg(: not ALLOCATED!)
0: rh2m gg(: not ALLOCATED!)
0: geoh gg(: not ALLOCATED!)
0: geof gg(: min,max=) 0.810 85.1 40 202
0: geof k= 1 4.69 85.1
0: geof k= 2 2.65 39.3
0: geof k= 3 2.57 31.7
0: geof k= 4 3.26 38.1
0: geof k= 5 2.85 45.9
0: geof k= 6 2.36 39.2
0: geof k= 7 0.810 32.6
0: tsurf gg(: not ALLOCATED!)
0: td2m gg(: not ALLOCATED!)
0: tv gg(: not ALLOCATED!)
0: psi gg(: not ALLOCATED!)
0: chi gg(: not ALLOCATED!)
0: size = 37800
0:--------------------------------------------------------------------------

21.5.3 Derivation of background error

The background error is determined for the observed quantities. Only the diagonal terms
of HBHT are required for the first guess check to give an estimate of the expected size
of the innovations. For technical reasons observations are stored in ‘boxes’ (4000 to
10000 per box). The progress of the background error calculation is reported and the
sparsity pattern of the matrix (here diagonal) is printed. Alltogether 1 707 654 individual
observations are processed in the monitoring step of this example. A similar printout will
appear later for the partitioning of HBHT in the analysis step.

0:----------------------------------------------------------
0: set_Pb: block 1 / 192 processed.
0: set_Pb: block 2 / 192 processed.
0: set_Pb: block 3 / 192 processed.
. . .
0: set_Pb: block 190 / 192 processed.
0: set_Pb: block 191 / 192 processed.
0: set_Pb: block 192 / 192 processed.
0:
0: pe block m n nonzero total % min max

distance
0:
0: 0 1 1 4132 4132 4132 17073424 0.02 0.000

0.000
0: 0 2 2 4143 4143 4143 17164449 0.02 0.000

0.000
0: 1 3 3 4160 4160 4160 17413929 0.02 0.000

0.000
. . .
0: 94 190 190 4134 4134 4134 17106496 0.02 0.000

0.000
0: 95 191 191 4127 4127 4127 17032129 0.02 0.000

0.000
0: 95 192 192 4126 4126 4126 17023876 0.02 0.000

0.000
. . .
0: 94 total 8321 -200610268 100.00
0: 95 total 8253 -200610268 100.00
0: all total 1707654 -200610268 100.00
0:
0:
0:

-------------------------------------------------------------------------------
0:
0: Matrix Block encoding:
0:
0: : all elements are zero
0: + : full n x m representation
0: x : only lower triangle is stored
0: - : compressed sparse row storage
0: | : compressed sparse column storage
0: . : not stored due to symmetry
0:
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0: PE
0: 0 \
0: 0 \
0: 1 \
0: 1 \
0: 2 \
0: 2 \
0: 3 \
0: 3 \
0: 4 \
0: 4 \
0: 5 \
0: 5 \
0: 6 \
0: 6 \
0: 7 \
0: 7 \
0: 8 \
0: 8 \
0: 9 \
0: 9 \
0: 10 \
0: 10 \
. . .
0:

-------------------------------------------------------------------------------
0:
0: Matrix Block usage
0:
0: 0 : empty
0: 1 : <= 10 % filled
0: ...
0: 9 : <= 90 % filled
0: * : > 90 % filled
0:
0: PE
0: 0

00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 0
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 1
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 1
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 2
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 2
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 3
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 3
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 4
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 4
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 5
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

0: 5
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000

. . .
0:

-------------------------------------------------------------------------------
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21.5.4 Blacklisting

Blacklisting is applied. Blacklisted observations are reported.
0:------------------------------------------------------------------------------
-

0:
0: process BLACKLIST
0:
0:blacklisted SYNOP 63333 63333
0: height 0 110000
0:blacklisted PILOT 41715 41715
0: wind 0 110000
0:blacklisted PILOT 42339 42339
0: wind 0 110000
0:blacklisted SYNOP 40835 40835
0: height 0 110000
. . .
0: height 0 110000
0:blacklisted SYNOP VQGQ4 VQGQ4
0: height 0 110000
0:blacklisted SYNOP VRZL3 VRZL3
0: height 0 110000
0:blacklisted SYNOP 76055 76055
0: height 0 110000
0:blacklisted SYNOP 9VVN 9VVN
0: height 0 110000

0:------------------------------------------------------------------------------
-

21.5.5 Thinning

Thinning is applied. The criteria for thinning are reported as well as the number of
processed, accepted and rejected reports.
0:------------------------------------------------------------------------------
-

0:
0: thinning:
0:
0: TOVS
0:
0: obstype = TOVS
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 48 147.km
0: nlev = 1
0: dlev(hPa)= 0
0:
0: criterium weight bound
0: center 1.00 0.00
0: time 1.00 -3.00
0: sequence 1.00 0.00
0: data 1.00 0.00
0: quality 1.00 -1.00
0: vertical 1.00 0.00
0: status 1.00 0.00
0:
0: rule 1 : status
0: rule 2 : time
0: rule 3 : quality
0: rule 4 : center vertical
0: rule 5 : data
0: rule 6 : sequence
0:
0: processed = 80944
0: rejected = 74674
0: accepted = 6270
0:
0: AMV: Eumetsat, GOES
0:
0: obstype = SATOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = 1704 1705 0 0 0 0 0 0 0 0
0: ni = 32 220.km
0: nlev = 11
0: dlev(hPa)= 100
. . .
0: processed = 83663
0: rejected = 76334
0: accepted = 7329
0:
0: AMV: Modis
0:
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0: obstype = SATOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = 1706 0 0 0 0 0 0 0 0 0
0: ni = 128 55.km
0: nlev = 11
0: dlev(hPa)= 100
. . .
0: processed = 5633
0: rejected = 2914
0: accepted = 2719
0:
0: AIREPs
0:
0: obstype = AIREP
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 192 37.km
0: nlev = 11
0: dlev(hPa)= 100
. . .
0: processed = 29862
0: rejected = 19880
0: accepted = 9982
0:
0: PAOBs
0:
0: obstype = PAOB
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 48 147.km
0: nlev = 1
0: dlev(hPa)= 0
. . .
0: processed = 0
0: rejected = 0
0: accepted = 0
0:
0: QuickSCATT
0:
0: obstype = SCATT
0: codetype = -1 0 0 0 0 0 0 0 0 0
0: dbkz = -1 0 0 0 0 0 0 0 0 0
0: ni = 64 110.km
0: nlev = 1
0: dlev(hPa)= 0
. . .
0: processed = 0
0: rejected = 0
0: accepted = 0

0:------------------------------------------------------------------------------
-

21.5.6 Assignment of observations to preconditioning ‘boxes’

At the end of the monitoring step the observations (here 120 975 from 35 224 reports)
which will be used is the assimilation are redistributed, so that approximately 500 obser-
vations are assigned to a ‘box’ (here 288 on 95 processors) distributed.

0:--------------------------------------------------------------------------
0: set_boxes : number of deg. freedom = 120975
0: set_boxes : number of spots used = 35224
0: set_boxes : number of boxes = 288
0: set_boxes : size of osas matrix = 14634950625
0: box pe observations reports
0: proc. goal left
0: 1 0 421 420 35032
0: 2 0 841 840 34863
0: 3 0 1262 1260 34667
0: 4 1 1681 1680 34512
0: 5 1 2101 2100 34321
. . .
0: 284 94 119297 119294 732
0: 285 94 119718 119714 617
0: 286 95 120134 120134 410
0: 287 95 120554 120554 209
0: 288 95 120975 120975 0
0:--------------------------------------------------------------------------
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21.5.7 Observation usage report

The number of reports which were processed and finally dismissed during the monitoring
step is reported. A similar final printout will be given at the end of the program.

0:--------------------------------------------------------------------------
0:
0: Observation Report Statistics after first guess scan
0:
0: obstype proces. merged split dism. passive reject. active accept.

lost description
0: dbkz code
0:

--------------------------------------------------------------------------------
------------------------------------------------

0: SYNOP 46939 0 0 38515 0 40 8384 0
0 SYNOP

0: 0 11 5878 0 0 1649 0 18 4211 0
0 Bodenmeldungen, SYNOP, Sect. 1-4, manuell+PAST

0: 1 140 29424 0 0 29424 0 0 0 0
0 Bodenmeldungen, METAR

0: 5 11 3916 0 0 3916 0 0 0 0
0 Bodenmeldungen, SYNOP, Section 5

0: 128 14 5691 0 0 2552 0 21 3118 0
0 Bodenmeldungen, SYNOP, Sect. 1-3, autom.

0: 256 21 881 0 0 427 0 1 453 0
0 Bodenmeldungen, SHIP, manuell

0: 384 24 1149 0 0 547 0 0 602 0
0 Bodenmeldungen, SHIP, automatisch

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: AIREP 30120 0 0 30 0 20108 9982 0
0 AIREP

0: 529 144 3981 0 0 0 0 2113 1868 0
0 In-Situ Beob., AMDAR

0: 530 -1 3942 0 0 0 0 2692 1250 0
0 In-Situ Beob., AIREP

0: 533 145 14059 0 0 0 0 9297 4762 0
0 In-Situ Beob., ACARS-Daten USA

0: 534 145 8138 0 0 30 0 6006 2102 0
0 In-Situ Beob., ACARS-Daten EUROPA (Bracknell)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SATOB 192231 0 0 0 30131 152052 10048 0
0 SATOB (AMV)

0: 1704 90 135013 0 0 0 26144 104673 4196 0
0 Satellitenbeob, AMV, Eumetsat

0: 1705 90 48270 0 0 0 3987 41150 3133 0
0 Satellitenbeob, AMV, GOES (NOAA/NESDIS)

0: 1706 90 8948 0 0 0 0 6229 2719 0
0 Satellitenbeob, AMV, MODIS

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: DRIBU 1413 0 0 962 0 7 444 0
0 DRIBU (buoys and scatterometer)

0: 385 165 1413 0 0 962 0 7 444 0
0 Bodenmeldungen, BUOY

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: TEMP 118 87 0 9 0 0 22 0
0 TEMP

0: 520 35 26 22 0 0 0 0 4 0
0 In-Situ Beob., TEMP, PART A

0: 521 35 28 19 0 0 0 0 9 0
0 In-Situ Beob., TEMP, PART B

0: 522 35 24 17 0 6 0 0 1 0
0 In-Situ Beob., TEMP, PART C

0: 523 35 24 17 0 2 0 0 5 0
0 In-Situ Beob., TEMP, PART D

0: 776 36 6 4 0 1 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART A

0: 777 36 6 5 0 0 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART B

0: 778 36 2 2 0 0 0 0 0 0
0 In-Situ Beob., TEMP, SHIP, PART C

0: 779 36 2 1 0 0 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART D

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: PILOT 187 88 0 1 0 24 74 0
0 PILOT

0: 512 32 75 38 0 1 0 15 21 0
0 In-Situ Beob., PILOT, PART A

0: 513 32 90 36 0 0 0 9 45 0
0 In-Situ Beob., PILOT, PART B
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0: 514 32 11 6 0 0 0 0 5 0
0 In-Situ Beob., PILOT, PART C

0: 515 32 11 8 0 0 0 0 3 0
0 In-Situ Beob., PILOT, PART D

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SATEM 0 0 0 0 0 0 0 0
0 SATEM (not implemented)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: PAOB 0 0 0 0 0 0 0 0
0 PAOB pressure observations derived from sat.

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SCATT 8685 0 0 0 8685 0 0 0
0 Scatterometer

0: 1697 64 8685 0 0 0 8685 0 0 0
0 Satellitenbeob, QUICKSCAT (als DRIBU)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: GPSRO 0 0 0 0 0 0 0 0
0 GPS Radio occultations (bending angles)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: unused 0 0 0 0 0 0 0 0
0 unused

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: TOVS 154258 0 0 26 0 147962 6270 0
0 ATOVS

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: total 433951 175 0 39543 38816 320193 35224 0
0

0:
0: SYNOP reports DISMISSED due to:
0:
0: SUBTYP 33340
0: CORR 61
0: CORRERR 52
0: DBLSTAT 1508
0: DBLERR 515
0: INSDAT 1111
0: RULE 1928
0: total 38515
0:
0: AIREP reports DISMISSED due to:
0:
0: INSDAT 30
0: total 30
0:
0: DRIBU reports DISMISSED due to:
0:
0: DBLSTAT 19
0: DBLERR 6
0: INSDAT 937
0: total 962
0:
0: TEMP reports DISMISSED due to:
0:
0: DBLSTAT 6
0: INSDAT 3
0: total 9
0:
0: PILOT reports DISMISSED due to:
0:
0: INSDAT 1
0: total 1
0:
0: TOVS reports DISMISSED due to:
0:
0: INSDAT 26
0: total 26
0:
0: SATOB reports PASSIVE due to:
0:
0: NOTUSED 30131
0: total 30131
0:
0: SCATT reports PASSIVE due to:
0:
0: NONE 8685
0: total 8685
0:
0: SYNOP reports REJECTED due to:
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0:
0: FG 34
0: BLACKLIST 6
0: total 40
0:
0: AIREP reports REJECTED due to:
0:
0: THIN 19880
0: FG 228
0: total 20108
0:
0: SATOB reports REJECTED due to:
0:
0: THIN 79248
0: SURF 5573
0: FG 1470
0: QI 65761
0: total 152052
0:
0: DRIBU reports REJECTED due to:
0:
0: FG 7
0: total 7
0:
0: PILOT reports REJECTED due to:
0:
0: FG 1
0: BLACKLIST 23
0: total 24
0:
0: TOVS reports REJECTED due to:
0:
0: THIN 74674
0: SURF 232
0: DATASET 73056
0: total 147962
0:
0:--------------------------------------------------------------------------

21.6 Analysis step

21.6.1 Redistribution of observations

Before starting the analysis step observations are redistributed over boxes and processor
elements.

21.6.2 Initialization of the RTTOV package

The RTTOV package is initialized and coefficient files are read.

0:--------------------------------------------------------------------------
0:
0: Input to RTTVI / RTTOV7:
0:
0:platform : 1 1 1 1 1 1 1 1 1 9
0:satellite : 15 15 15 16 16 16 17 17 17 2
0:instrument : 0 3 4 0 3 4 0 3 4 3
0:numchans : 0 0 0 0 0 0 0 0 0 0
0:
0: 1 1 15 0 noaa-15 hirs

ATOVS_COEFFS_DIR/rtcoef_noaa_15_hirs.dat
0: 2 1 15 3 noaa-15 amsua

ATOVS_COEFFS_DIR/rtcoef_noaa_15_amsua.dat
0: 3 1 15 4 noaa-15 amsub

ATOVS_COEFFS_DIR/rtcoef_noaa_15_amsub.dat
0: 4 1 16 0 noaa-16 hirs

ATOVS_COEFFS_DIR/rtcoef_noaa_16_hirs.dat
0: 5 1 16 3 noaa-16 amsua

ATOVS_COEFFS_DIR/rtcoef_noaa_16_amsua.dat
0: 6 1 16 4 noaa-16 amsub

ATOVS_COEFFS_DIR/rtcoef_noaa_16_amsub.dat
0: 7 1 17 0 noaa-17 hirs

ATOVS_COEFFS_DIR/rtcoef_noaa_17_hirs.dat
0: 8 1 17 3 noaa-17 amsua

ATOVS_COEFFS_DIR/rtcoef_noaa_17_amsua.dat
0: 9 1 17 4 noaa-17 amsub

ATOVS_COEFFS_DIR/rtcoef_noaa_17_amsub.dat
0: 10 9 2 3 eos-2 amsua

ATOVS_COEFFS_DIR/rtcoef_eos_2_amsua.dat
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0:
0:--------------------------------------------------------------------------
0:
0: Output from RTTVI:
0:
0:kerr : 0
0:kppf : 1
0:kpnsat : 10
0:kplev : 43
0:kpch :2378
0:kpchus :2378
0:kpnav : 4
0:kpnsav : 5
0:kpnssv : 6
0:kpncv : 2
0:
0: profiles:
0:
0: preslev otmin otmax oqmin oqmax oozmin oozmax ooref
0: hPa K K g/kg g/kg mg/kg mg/gk mg/gk
0: 10.00 162.00 335.50 0.00 0.01 1.01 16.31 9.69
0: 29.00 173.12 335.79 0.00 0.01 1.86 16.85 10.00
0: 69.00 168.91 352.80 0.00 0.01 2.10 17.03 10.12
0: 142.00 160.85 354.40 0.00 0.01 2.11 17.08 10.18
0: 261.00 160.52 349.42 0.00 0.01 2.11 17.11 10.22
. . .
0: 92246.00 195.47 352.15 0.07 240.20 0.00 0.17 0.05
0: 95744.00 188.15 354.71 0.07 269.60 0.00 0.16 0.05
0: 98588.00 154.95 356.59 0.07 278.90 0.00 0.16 0.04
0:100543.00 135.00 357.86 0.07 282.00 0.00 0.16 0.04
0:101325.00 135.00 385.87 0.07 283.80 0.00 0.16 0.04
0:
0: valid channel numbers
0:
0:sat.idx : 1 2 3 4 5 6 7 8 9 10
0:satellite : 15 15 15 16 16 16 17 17 17 2
0:instrument : 0 3 4 0 3 4 0 3 4 3
0:
0:chan.idx: 1 1 1 1 1 1 1 1 1 1 1
0:chan.idx: 2 2 2 2 2 2 2 2 2 2 2
0:chan.idx: 3 3 3 3 3 3 3 3 3 3 3
0:chan.idx: 4 4 4 4 4 4 4 4 4 4 4
0:chan.idx: 5 5 5 5 5 5 5 5 5 5 5
0:chan.idx: 6 6 6 0 6 6 0 6 6 0 6
0:chan.idx: 7 7 7 0 7 7 0 7 7 0 7
0:chan.idx: 8 8 8 0 8 8 0 8 8 0 8
0:chan.idx: 9 9 9 0 9 9 0 9 9 0 9
0:chan.idx: 10 10 10 0 10 10 0 10 10 0 10
0:chan.idx: 11 11 11 0 11 11 0 11 11 0 11
0:chan.idx: 12 12 12 0 12 12 0 12 12 0 12
0:chan.idx: 13 13 13 0 13 13 0 13 13 0 13
0:chan.idx: 14 14 14 0 14 14 0 14 14 0 14
0:chan.idx: 15 15 15 0 15 15 0 15 15 0 15
0:chan.idx: 16 16 0 0 16 0 0 16 0 0 0
0:chan.idx: 17 17 0 0 17 0 0 17 0 0 0
0:chan.idx: 18 18 0 0 18 0 0 18 0 0 0
0:chan.idx: 19 19 0 0 19 0 0 19 0 0 0
0:chan.idx: 20 0 0 0 0 0 0 0 0 0 0
0:chan.idx: 21 0 0 0 0 0 0 0 0 0 0
. . .
0:chan.idx: 40 0 0 0 0 0 0 0 0 0 0
0:--------------------------------------------------------------------------

21.6.3 Set up communication patterns for observations

In order to explicitely represent the background error covariance matrix in observation
space HBHT , the observation operator matrix H has to be applied to both sides of the
covariance matrix B. Thus parts of H must be passed from the processor where H was
evaluated to the other processors where it has to be used as well. The communication
patterns for that purpose are derived here.

0:--------------------------------------------------------------------------
0:
0: setting up communication flags for observations (H)
0:
0: pe box spot char statid n dest...
0: 0 1 4 252 LH3537 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 5 252 10771 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 89 252 EU0109 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 90 252 EU5830 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 91 252 EU5830 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 92 252 LH844 30 1 2 3 4 8 10 14 16 23 28
0: 0 1 93 252 LH844 30 1 2 3 4 8 10 14 16 23 28
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0: 0 1 94 252 LH844 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 95 252 LH844 30 1 2 3 4 8 10 14 16 20 23
0: 0 1 96 252 LH844 30 1 2 3 4 8 10 14 16 20 23
0: 0 1 97 252 LH3383 30 1 2 3 4 8 10 14 16 20 23
0: 0 1 98 252 LH230 29 1 2 3 4 8 10 14 16 23 28
0: 0 1 99 252 LH230 29 1 2 3 4 8 10 14 16 23 28
. . .
0: 95 288 160 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 161 244 AQUA 13 34 38 45 51 55 68 70 74 75 77
0: 95 288 162 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 163 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 164 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 165 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 166 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 167 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 168 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0: 95 288 169 244 AQUA 12 34 45 51 55 68 70 74 75 77 81
0:--------------------------------------------------------------------------

21.6.4 Derivation of the background error covariance matrix

Now the explicit (sparse) representation of the background error covariance matrix in
observation space is calculated. Progress of the calculations is reported.

0:----------------------------------------------------------
0: set_Pb: block 1 / 288 processed.
0: set_Pb: block 2 / 288 processed.
0: set_Pb: block 3 / 288 processed.
0: set_Pb: block 4 / 288 processed.
0: set_Pb: block 5 / 288 processed.
. . .
0: set_Pb: block 284 / 288 processed.
0: set_Pb: block 285 / 288 processed.
0: set_Pb: block 286 / 288 processed.
0: set_Pb: block 287 / 288 processed.
0: set_Pb: block 288 / 288 processed.

The number of nonzero coefficients is reported for each matrix block, as well as the
minimum and maximum distance between observations related to the left and right hand
side of the matrix block, respectively.

0: pe block m n nonzero total % min max
distance

0:
0: 0 1 1 421 421 124417 235225 52.89 0.000

403.755
0: 0 1 2 421 416 112957 218250 51.76 4.195

510.270
0: 0 2 2 416 416 102270 202500 50.50 0.000

309.997
0: 0 1 3 421 417 130928 246380 53.14 5.571

556.850
0: 0 2 3 416 417 117190 228600 51.26 281.609

713.470
0: 0 3 3 417 417 135887 258064 52.66 0.000

328.115
. . .

0: 0 3 264 417 418 92293 235712 39.15 1343.741
4783.369

0: 0 1 270 421 422 12 238620 0.01 3916.781
4784.968

0: 0 3 270 417 422 145 249936 0.06 3874.434
4784.820

0: 0 1 276 421 414 54039 216795 24.93 1673.515
4784.973

0: 0 3 276 417 414 64185 227076 28.27 1614.673
4784.915

0: 0 2 287 416 421 20716 194400 10.66 2597.133
4784.987

0: 1 5 1 419 421 125452 227465 55.15 189.998
763.324

0: 1 4 2 417 416 102471 200250 51.17 684.698
1244.633

0: 1 6 2 417 416 114218 223200 51.17 432.716
918.137

0: 1 5 3 419 417 131205 238252 55.07 11.940
530.105

0: 1 4 4 417 417 102587 198025 51.81 0.000
456.395

. . .
0: 95 288 282 419 416 11963 3967364 0.30 2918.747
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4784.668
0: 95 287 285 421 420 12 1231200 0.00 3705.332

4784.626
0: 95 286 286 422 422 177644 7678441 2.31 11.029

1860.389
0: 95 286 287 422 421 12873 1197072 1.08 3052.477

4784.958
0: 95 287 287 421 421 146881 186624 78.70 0.507

4670.559
0: 95 288 288 419 419 166473 3225616 5.16 0.000

2180.171

A summary of the total number of coefficients allocated on each processor is reported.

0: 0 total 9158706 1731666313 0.53
0: 1 total 9662907 1731666313 0.56
0: 2 total 10023955 1731666313 0.58
0: 3 total 10960377 1731666313 0.63
0: 4 total 8692637 1731666313 0.50
0: 5 total 18198546 1731666313 1.05
. . .
0: 91 total 4108753 1731666313 0.24
0: 92 total 9982533 1731666313 0.58
0: 93 total 4262991 1731666313 0.25
0: 94 total 5676948 1731666313 0.33
0: 95 total 5655390 1731666313 0.33
0: all total 953142803 1731666313 55.04

The sparsity pattern of the matrix HBHT is only reported if the number of boxes does
not exceed 256. Thus the printout is suppressed here.

0: Matrix Block encoding:
0:
0: : all elements are zero
0: + : full n x m representation
0: x : only lower triangle is stored
0: - : compressed sparse row storage
0: | : compressed sparse column storage
0: . : not stored due to symmetry
0:----------------------------------------------------------

21.6.5 Check the operator implementation of vertical covariance
matrices

If both the matrix representation and the operator representation of the vertical covariance
matrices are present, the consistency of the two representations is checked by multiplying
both of them with a random vector and comparing the results.
The differences are printed in detail for the first box located on processor 0:

0:--------------------------------------------------------------------------
0:
0:test_B_oo: test the operator implementation of B
0:
0: ib is i typ x y_explicit y_operator difference
0: 1 1 1 1 -0.2590933 1.0576991 1.0576991 -0.0000000
0: 1 1 2 4 1.6015922 28.7493461 28.7493463 -0.0000002
0:
0: 1 2 3 1 -1.4989612 1.0577360 1.0577372 -0.0000012
0: 1 2 4 4 0.1747676 28.7493461 28.7493463 -0.0000002
0:
0: 1 3 5 1 0.1192641 1.0577749 1.0577753 -0.0000004
0: 1 3 6 4 -0.3020232 28.7493461 28.7493463 -0.0000002
0:
0: 1 4 7 8 0.4581814 12.5770027 12.5770029 -0.0000002
0: 1 4 8 16 0.1889846 11.6392758 11.6392753 0.0000005
0: 1 4 9 2 0.3949742 -11.1691786 -11.1691791 0.0000005
. . .
0: 1 157 416 8 -0.3810747 10.5640007 10.5640006 0.0000001
0: 1 157 417 16 1.6291501 22.8783190 22.8783196 -0.0000006
0: 1 157 418 2 -0.3620953 -16.0862929 -16.0862939 0.0000010
0:
0: 1 158 419 8 -0.5258410 11.2173443 11.2173441 0.0000002
0: 1 158 420 16 -0.4714969 21.1797884 21.1797882 0.0000001
0: 1 158 421 2 0.5701788 -12.3612765 -12.3612774 0.0000009
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In order to be able to track down any problems to certain observation types, maximum
absolute values of the differences are reported for all combinations of observation types
at the left and right hand side of the matrix, respectively:

0: all all 0.0000063 0.0000028 0.0000031
0.0000015 0.0000017 0.0000024 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 1 z geopotential 0.0000027 0.0000028 0.0000005
0.0000000 0.0000005 0.0000005 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 2 t temperature 0.0000030 0.0000008 0.0000030
0.0000010 0.0000006 0.0000006 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 4 rh relative humidity 0.0000016 0.0000000 0.0000003
0.0000015 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 8 u wind u component 0.0000017 0.0000007 0.0000006
0.0000000 0.0000013 0.0000005 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 16 v wind v component 0.0000020 0.0000007 0.0000006
0.0000000 0.0000004 0.0000015 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 32 zs geopotential at the surface 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 64 rawbt brightness temperature 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 128 bangl bending angle 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 256 q specific humidity 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: 512 sink dummy (sink) variable 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: norm 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0: all z t rh
u v zs rawbt bangl q sink
0: norm, diff = 0.288E-02 0.241E-01 0.241E-01 0.191E-08
0:--------------------------------------------------------------------------

21.6.6 Positive definiteness check

The smallest eigenvalues of the block diagonals of the matrices HBHT , R, and HBHT+R
are calculated. The test is performed for the whole block as well as for their diagonals and
for submatrices only consisting of the same type of observations or reports. If negative
eigenvalues occur an attempt is made to attribute them to specific reports.
0:------------------------------------------------------------------------------
-

0:
0: Check matrix for small eigenvalues
0:
0: matrix = HBHi
0: scaling = T
0: fix = 1
0: verbose = 2
0:
0: test pe block dbkz type station count hits e-value size file
0: 4 0 1 -1 0 65 -0.1E-05 421
0: 5 0 1 -1 SYNOP 0 39 -0.3E-13 199
0: 6 0 1 -1 SYNOP 1 7 -0.1E-13 101
0: 6 0 1 -1 SYNOP 4 20 -0.7E-15 98
0: 4 0 2 -1 0 111 -0.2E-05 416
0: 5 0 2 -1 SYNOP 0 54 -0.1E-12 314
0: 6 0 2 -1 SYNOP 1 7 -0.1E-13 157
0: 6 0 2 -1 SYNOP 4 32 -0.7E-15 157
0: 4 0 3 -1 0 51 -0.1E-05 417
0: 5 0 3 -1 SYNOP 0 28 -0.1E-13 150
0: 6 0 3 -1 SYNOP 1 4 -0.9E-14 75
0: 6 0 3 -1 SYNOP 4 17 -0.5E-15 75
. . .
0: 4 92 277 -1 0 25 -0.8E-06 422
0: 5 92 277 -1 SYNOP 0 19 -0.4E-13 146
0: 6 92 277 -1 SYNOP 1 1 -0.3E-14 51
0: 6 92 277 -1 SYNOP 4 3 -0.1E-15 35
0: 6 92 277 -1 SYNOP 8 2 -0.2E-15 30
0: 6 92 277 -1 SYNOP 16 2 -0.1E-15 30
0: 5 94 283 -1 SYNOP 0 1 -0.7E-16 32
0: 5 94 284 -1 SYNOP 0 1 -0.5E-17 12
0: 4 94 285 -1 0 1 -0.1E-14 420
0: 4 95 288 -1 0 4 -0.8E-06 419
0: 5 95 288 -1 SYNOP 0 2 -0.3E-13 36
0: 6 95 288 -1 SYNOP 4 1 -0.7E-16 16
0:
0: test failed hits bound min.ev
0: 1 (diagonal) : 0 0 0.0E+00 0.5E-01
0: 2 (rep./data): 0 2 0.0E+00 -0.1E-14
0: 3 (report) : 0 1 0.0E+00 -0.2E-14
0: 4 (block) : 3 2973 0.0E+00 -0.2E-05
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0: 5 (rep.-type): 3 1660 0.0E+00 -0.2E-12
0: 6 (rep-t/d-t): 6 1129 0.0E+00 -0.5E-13

0:------------------------------------------------------------------------------
-

0:
0: Check matrix for small eigenvalues
0:
0: matrix = R
0: scaling = T
0: fix = 2
0: verbose = 2
0:
0: test pe block dbkz type station count hits e-value size file
0:
0: test failed hits bound min.ev
0: 1 (diagonal) : 0 0 0.0E+00 0.1E+00
0: 2 (rep./data): 0 0 0.0E+00 0.1E+00
0: 3 (report) : 0 0 0.0E+00 0.1E+00
0: 4 (block) : 0 0 0.0E+00 0.1E+00
0: 5 (rep.-type): 0 0 0.0E+00 0.1E+00
0: 6 (rep-t/d-t): 0 0 0.0E+00 0.1E+00

0:------------------------------------------------------------------------------
-

0:
0: Check matrix for small eigenvalues
0:
0: matrix = P+R
0: scaling = F
0: fix = 2
0: verbose = 2
0:
0: test pe block dbkz type station count hits e-value size file
0:
0: test failed hits bound min.ev
0: 1 (diagonal) : 0 0 0.0E+00 0.3E-01
0: 2 (rep./data): 0 0 0.0E+00 0.2E-01
0: 3 (report) : 0 0 0.0E+00 0.2E-01
0: 4 (block) : 0 0 0.0E+00 0.2E-01
0: 5 (rep.-type): 0 0 0.0E+00 0.2E-01
0: 6 (rep-t/d-t): 0 0 0.0E+00 0.2E-01

0:------------------------------------------------------------------------------
-

The OI covariance model may lead to negative eigenvalues of HBHT in the 3dvar.
Depending on the parameters passed to the test routines negative eigenvalues are forced
to zero.

21.6.7 Iterative solution of the analysis equation

For each iteration of the outer (nonlinear) loop, the set of flags valid for the iteration is
printed:

0:------------------------------------------------------------------------------
-

0:
0:OSAS outer iteration 1
0:
0: fg_b = T
0: fg_o = F
0: linesrch = F
0: xlnsrch = T
0: new_R_H = T
0: new_H = 0
0: new_R = T
0: vqcf = 1.00

Values of cost function, residuum and other parameters are printed for each iteration
of the inner (CG) loop. In this example 20 inner CG iterations were performed:

0:#
0:# it inl il r.dot.y J_b J_o J

J_cg delta_J delta_J_cg resid dJ/dx
0:#
0: 0 1 0 0.0000 0.0000 43000.4897 43000.4897

0.0000 0.0000 0.0000 1.0000000 0.5097480 #ITNL
0: 1 1 1 -0.0000 15507.5082 685643.3644 701150.8726
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-109857.1093 658150.3829 0.0000 1.8916764 0.7232529 #ITLI
0: 2 1 2 0.0000 7827.5341 32617.6091 40445.1432

-117872.8306 -660705.7294 -8015.7213 0.2944196 0.3931095 #ITLI
0: 3 1 3 0.0000 6143.4829 23014.9456 29158.4286

-118989.7471 -11286.7146 -1116.9165 0.1868543 0.2057325 #ITLI
0: 4 1 4 0.0000 5521.6601 20709.4739 26231.1340

-119372.3449 -2927.2946 -382.5979 0.1391550 0.1769151 #ITLI
0: 5 1 5 0.0000 5303.8067 19703.0764 25006.8831

-119573.4530 -1224.2509 -201.1081 0.1148099 0.1592638 #ITLI
0: 6 1 6 0.0000 5287.4361 19557.7915 24845.2277

-119741.6380 -161.6554 -168.1850 0.1073447 0.1305658 #ITLI
0: 7 1 7 0.0000 5400.9628 18915.6256 24316.5884

-119869.1407 -528.6392 -127.5027 0.0899827 0.1008851 #ITLI
0: 8 1 8 0.0000 5548.0405 17944.9072 23492.9477

-119950.5349 -823.6408 -81.3942 0.0644773 0.0773148 #ITLI
0: 9 1 9 0.0000 5661.8088 17541.9337 23203.7425

-120000.2417 -289.2051 -49.7068 0.0507743 0.0581356 #ITLI
0: 10 1 10 0.0000 5726.2245 17288.8042 23015.0287

-120034.0979 -188.7138 -33.8562 0.0395045 0.0469073 #ITLI
0: 11 1 11 0.0000 5739.5505 17229.2286 22968.7792

-120061.1606 -46.2496 -27.0627 0.0348344 0.0467553 #ITLI
0: 12 1 12 0.0000 5701.7241 17236.3927 22938.1167

-120081.4881 -30.6624 -20.3275 0.0316682 0.0386821 #ITLI
0: 13 1 13 0.0000 5667.6507 17183.6394 22851.2901

-120093.2989 -86.8266 -11.8108 0.0235509 0.0263236 #ITLI
0: 14 1 14 0.0000 5642.9435 17193.7465 22836.6900

-120101.9434 -14.6001 -8.6445 0.0211220 0.0291193 #ITLI
0: 15 1 15 0.0000 5638.6272 17198.1903 22836.8176

-120107.3679 0.1275 -5.4245 0.0206295 0.0210431 #ITLI
0: 16 1 16 0.0000 5643.2782 17166.4005 22809.6787

-120111.5359 -27.1388 -4.1680 0.0166344 0.0236108 #ITLI
0: 17 1 17 0.0000 5655.0127 17135.1720 22790.1848

-120115.0434 -19.4940 -3.5075 0.0130784 0.0173357 #ITLI
0: 18 1 18 0.0000 5669.4972 17110.1773 22779.6745

-120117.6503 -10.5103 -2.6069 0.0105032 0.0123090 #ITLI
0: 19 1 19 0.0000 5676.0225 17100.0214 22776.0439

-120119.2524 -3.6306 -1.6021 0.0093927 0.0137755 #ITLI
0: 20 1 20 0.0000 5676.0059 17096.8933 22772.8991

-120120.6147 -3.1448 -1.3623 0.0080518 0.0093643 #ITLI
. . .
0:
0:OSAS outer iteration 2
0:
0: fg_b = F
0: fg_o = F
0: linesrch = T
0: xlnsrch = T
0: new_R_H = T
0: new_H = 0
0: new_R = T
0: vqcf = 1.00
0:
. . .
0:#
0:# it inl il r.dot.y J_b J_o J

J_cg delta_J delta_J_cg resid dJ/dx
0:#
0: 21 2 0 0.0000 1876.0501 28465.7580 30341.8082

-57460.0913 7568.9090 62660.5233 1.0000000 0.1999451 #ITNL
0: 22 2 1 0.0000 4113.4333 145896.5726 150010.0058

-70652.5463 119668.1977 -13192.4550 2.3504749 0.2798538 #ITLI
0: 23 2 2 0.0000 3687.1706 28110.5669 31797.7375

-71347.8000 -118212.2683 -695.2538 0.3994167 0.1465836 #ITLI
0: 24 2 3 0.0000 3481.6862 26022.9587 29504.6449

-71455.7454 -2293.0927 -107.9454 0.6285719 0.0749381 #ITLI
0: 25 2 4 0.0000 3378.7376 25361.7333 28740.4709

-71499.4969 -764.1740 -43.7515 0.4226129 0.0518180 #ITLI
0: 26 2 5 0.0000 3337.6182 25163.0381 28500.6564

-71523.2176 -239.8145 -23.7206 0.3328475 0.0508103 #ITLI
0: 27 2 6 0.0000 3330.7659 25191.0105 28521.7765

-71542.9686 21.1201 -19.7511 0.3315913 0.0423143 #ITLI
0: 28 2 7 0.0000 3356.8101 25086.0603 28442.8704

-71561.4976 -78.9061 -18.5289 0.2878550 0.0436108 #ITLI
0: 29 2 8 0.0000 3386.5639 24945.1423 28331.7062

-71571.6692 -111.1643 -10.1716 0.2273417 0.0330797 #ITLI
0: 30 2 9 0.0000 3423.8673 24840.0498 28263.9170

-71580.9515 -67.7891 -9.2823 0.1747468 0.0234503 #ITLI
0: 31 2 10 0.0000 3444.4300 24803.8336 28248.2636

-71587.1830 -15.6534 -6.2315 0.1568574 0.0211011 #ITLI
0: 32 2 11 0.0000 3450.4639 24781.6411 28232.1050

-71592.7601 -16.1586 -5.5771 0.1369956 0.0204702 #ITLI
0: 33 2 12 0.0000 3440.3844 24803.4505 28243.8349

-71596.9820 11.7299 -4.2219 0.1448390 0.0180577 #ITLI
0: 34 2 13 0.0000 3427.8943 24787.3414 28215.2357

-71600.2479 -28.5992 -3.2658 0.1120842 0.0147843 #ITLI
0: 35 2 14 0.0000 3416.8044 24802.0167 28218.8211

-71602.6262 3.5854 -2.3784 0.1119354 0.0132963 #ITLI
0: 36 2 15 0.0000 3410.7396 24787.9427 28198.6823

-71604.5588 -20.1388 -1.9325 0.0820701 0.0114533 #ITLI
0: 37 2 16 0.0000 3411.0075 24783.7963 28194.8038

-71606.2555 -3.8785 -1.6968 0.0727639 0.0106047 #ITLI
0: 38 2 17 0.0000 3413.8369 24776.0744 28189.9113
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-71607.3005 -4.8925 -1.0449 0.0619101 0.0083276 #ITLI
0: 39 2 18 0.0000 3418.0782 24766.7894 28184.8676

-71608.1165 -5.0437 -0.8160 0.0476879 0.0076294 #ITLI
0: 40 2 19 0.0000 3420.9732 24762.7211 28183.6943

-71608.6510 -1.1734 -0.5346 0.0430322 0.0062750 #ITLI
0: 41 2 20 0.0000 3421.9293 24760.0674 28181.9967

-71609.0463 -1.6976 -0.3952 0.0359152 0.0059763 #ITLI
. . .
0:
0:OSAS outer iteration 9
0:
0: fg_b = F
0: fg_o = F
0: linesrch = T
0: xlnsrch = T
0: new_R_H = T
0: new_H = 0
0: new_R = T
0: vqcf = 1.00
0:
0:#
0:# it inl il r.dot.y J_b J_o J

J_cg delta_J delta_J_cg resid dJ/dx
0:#
0: 168 9 0 0.0000 3353.8763 25195.7510 28549.6273

-63096.5435 -0.0000 0.0687 1.0000000 0.0000033 #ITNL
0: 169 9 1 0.0000 3353.8739 25195.7534 28549.6273

-63096.5435 -0.0000 -0.0000 0.9874884 0.0000025 #ITLI
0: 170 9 2 0.0000 3353.8707 25195.7566 28549.6273

-63096.5435 -0.0000 -0.0000 0.8606731 0.0000027 #ITLI
0: 171 9 3 0.0000 3353.8699 25195.7574 28549.6273

-63096.5435 -0.0000 -0.0000 0.7561378 0.0000021 #ITLI
0: 172 9 4 -0.0000 3353.8708 25195.7566 28549.6273

-63096.5435 0.0000 -0.0000 0.7847892 0.0000018 #ITLI
0: 173 9 5 0.0000 3353.8720 25195.7553 28549.6273

-63096.5435 0.0000 -0.0000 0.9499225 0.0000023 #ITLI
0: 174 9 6 -0.0000 3353.8716 25195.7558 28549.6273

-63096.5435 0.0000 -0.0000 1.1675538 0.0000025 #ITLI
0: 175 9 7 0.0000 3353.8722 25195.7552 28549.6273

-63096.5435 -0.0000 -0.0000 1.0647133 0.0000021 #ITLI
0: 176 9 8 0.0000 3353.8710 25195.7563 28549.6273

-63096.5435 -0.0000 -0.0000 0.5931741 0.0000017 #ITLI
0: 177 9 9 0.0000 3353.8707 25195.7567 28549.6273

-63096.5435 -0.0000 -0.0000 0.4808165 0.0000015 #ITLI
0: 178 9 10 -0.0000 3353.8702 25195.7571 28549.6273

-63096.5435 0.0000 -0.0000 0.5267271 0.0000017 #ITLI
0: 179 9 11 0.0000 3353.8703 25195.7571 28549.6273

-63096.5435 -0.0000 -0.0000 0.5202085 0.0000019 #ITLI
0: 180 9 12 0.0000 3353.8704 25195.7570 28549.6273

-63096.5435 -0.0000 -0.0000 0.4166229 0.0000015 #ITLI
0: 181 9 13 0.0000 3353.8704 25195.7569 28549.6273

-63096.5435 -0.0000 -0.0000 0.3940269 0.0000012 #ITLI
0: 182 9 14 0.0000 3353.8707 25195.7566 28549.6273

-63096.5435 0.0000 -0.0000 0.3921252 0.0000010 #ITLI
0: 183 9 15 0.0000 3353.8711 25195.7563 28549.6273

-63096.5435 -0.0000 -0.0000 0.3807942 0.0000010 #ITLI
0: 184 9 16 0.0000 3353.8715 25195.7558 28549.6273

-63096.5435 -0.0000 -0.0000 0.3016651 0.0000009 #ITLI
0: 185 9 17 0.0000 3353.8716 25195.7558 28549.6273

-63096.5435 -0.0000 -0.0000 0.2726596 0.0000008 #ITLI
0: 186 9 18 0.0000 3353.8713 25195.7561 28549.6273

-63096.5435 0.0000 -0.0000 0.2661211 0.0000007 #ITLI
0: 187 9 19 0.0000 3353.8707 25195.7566 28549.6273

-63096.5435 -0.0000 -0.0000 0.2241733 0.0000007 #ITLI
0: 188 9 20 0.0000 3353.8705 25195.7569 28549.6273

-63096.5435 0.0000 -0.0000 0.2346517 0.0000008 #ITLI
0:
0:OSAS outer iteration 10
0:
0: fg_b = F
0: fg_o = F
0: linesrch = T
0: xlnsrch = T
0: new_R_H = T
0: new_H = 0
0: new_R = T
0: vqcf = 1.00
0:
0: exit outer loop:dJdz < gtolo: 0.792482980897703434E-06

0:------------------------------------------------------------------------------
-

In this case the outer loop is terminated because the stopping criterium - based on the
residuum (gradient of the cost function) - was met.
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21.7 Estimation of analysis error
The analysis error is estimated and written to a GRIB file. A summary of the file content
is given in the program output:

0:------------------------------------------------------------------------------
-

0:
0: Inventory of analysis error file:
0:
0: rec adress name date time tab cnt sub prc cde lvt

levelvl runtype ni grd nlev
0: 1| 0|VAR_U |2006-07-20|18:00:00|202| 78|255|195| 41|100|

10|analysis| 60| 0| 7
0: 8| 26222|VAR_V |2006-07-20|18:00:00|202| 78|255|195| 42|100|

10|analysis| 60| 0| 7
0: 15| 52444|VAR_FI |2006-07-20|18:00:00|202| 78|255|195| 40|100|

10|analysis| 60| 0| 7
0:
0: (t_atm)
0: time% (t_time)
0: time% days : 2453937
0: time% secs : 64800
0: time% yyyymmddhhmmss:20060720180000
0: ref_time% (t_time)
0: ref_time% days : 2453937
0: ref_time% secs : 64800
0: ref_time% yyyymmddhhmmss:20060720180000
0: grid% (t_grid) :
0: grid% grid : 0
0: grid% levtyp: 100
0: grid% nx : 60
0: grid% ny : 30
0: grid% ngl : 0
0: grid% nn : 0
0: grid% nz : 7
0: grid% rot : F
0: grid% cyc_x : F
0: grid% poly : F
0: grid% global: F
0: grid% la1 : -87.00
0: grid% lo1 : 0.00
0: grid% di : 6.00
0: grid% dj : 6.00
0: grid% a : 6371229.00
0: grid% g : 9.81
0: grid% size : 12600
0: grid% dlon : (1),(n)= 0.00 354.
0: grid% dlat : (1),(n)= -87.0 87.0
0: grid% lon(1): (1),(n)= 0.00 6.18
0: grid% lat(1): (1),(n)= -1.52 1.52
0: grid% rlon : min,max= 0.00 6.18 | 0.00 354. [degree]
0: grid% rlat : min,max= -1.52 1.52 | -87.0 87.0 [degree]
0: grid% slm : not associated!
0: grid% geosp : not associated!
0: grid% geo_sh: not associated!
0: grid% geoid : not associated!
0: grid% k= 1 ak= 0.0000 bk= 0.0000 akf= 1000.0000 bkf= 0.0000
0: grid% k= 2 ak= 0.0000 bk= 0.0000 akf= 5000.0000 bkf= 0.0000
0: grid% k= 3 ak= 0.0000 bk= 0.0000 akf= 10000.0000 bkf= 0.0000
0: grid% k= 4 ak= 0.0000 bk= 0.0000 akf= 20000.0000 bkf= 0.0000
0: grid% k= 5 ak= 0.0000 bk= 0.0000 akf= 30000.0000 bkf= 0.0000
0: grid% k= 6 ak= 0.0000 bk= 0.0000 akf= 50000.0000 bkf= 0.0000
0: grid% k= 7 ak= 0.0000 bk= 0.0000 akf= 100000.0000 bkf= 0.0000
0: grid% k= 8 ak= 0.0000 bk= 0.0000
0: lb : 1 1 1 1
0: ub : 60 30 7 1
0: size: 37800
0: ps gg(: not ALLOCATED!)
0: psr gg(: not ALLOCATED!)
0: t gg(: not ALLOCATED!)
0: u gg(: min,max=) 0.329 7.36 41 202
0: u k= 1 0.442 4.62
0: u k= 2 0.329 2.97
0: u k= 3 0.358 3.62
0: u k= 4 0.558 6.14
0: u k= 5 0.617 7.36
0: u k= 6 0.453 5.91
0: u k= 7 0.399 3.55
0: v gg(: min,max=) 0.330 7.37 42 202
0: v k= 1 0.442 4.63
0: v k= 2 0.330 2.97
0: v k= 3 0.357 3.62
0: v k= 4 0.566 6.13
0: v k= 5 0.600 7.37
0: v k= 6 0.476 5.92
0: v k= 7 0.384 3.52
0: q gg(: not ALLOCATED!)
0: qcl gg(: not ALLOCATED!)



330 DWD DA System Documentation March 4, 2019

0: qci gg(: not ALLOCATED!)
0: tke gg(: not ALLOCATED!)
0: cl gg(: not ALLOCATED!)
0: ph gg(: not ALLOCATED!)
0: pf gg(: not ALLOCATED!)
0: rh gg(: not ALLOCATED!)
0: t2m gg(: not ALLOCATED!)
0: rh2m gg(: not ALLOCATED!)
0: geoh gg(: not ALLOCATED!)
0: geof gg(: min,max=) 1.00 83.3 40 202
0: geof k= 1 4.77 83.3
0: geof k= 2 2.65 39.2
0: geof k= 3 2.58 32.2
0: geof k= 4 3.27 40.0
0: geof k= 5 2.92 48.4
0: geof k= 6 2.34 41.1
0: geof k= 7 1.00 33.9
0: tsurf gg(: not ALLOCATED!)
0: td2m gg(: not ALLOCATED!)
0: tv gg(: not ALLOCATED!)
0: psi gg(: not ALLOCATED!)
0: chi gg(: not ALLOCATED!)
0: size = 37800
0:

0:------------------------------------------------------------------------------
-

21.8 Post-multiplication
The progress of the post-multiplication is reported.

0:------------------------------------------------------------------------------
-

0:
0: apply_B_mi newpl =F
0:
0: apply_B_mi: box, nbox, ncol 1 96 40
0: apply_B_mi: pass 2
0: apply_B_mi: box, nbox, ncol 2 96 40
0: apply_B_mi: pass 2
0: apply_B_mi: box, nbox, ncol 3 96 40
0: apply_B_mi: pass 2
. . .
0: apply_B_mi: box, nbox, ncol 94 96 43
0: apply_B_mi: pass 2
0: apply_B_mi: box, nbox, ncol 95 96 43
0: apply_B_mi: pass 2
0: apply_B_mi: box, nbox, ncol 96 96 45
0: apply_B_mi: pass 2

0:------------------------------------------------------------------------------
-

21.9 Output of the analysis
A summary of the analysis increment and of the analysis itself is printed in the job output.
The analysis is writtem to a GRIB file.

0:------------------------------------------------------------------------------
-

0:
0: analysis increment
0:
0: (t_atm)
0: time% (t_time)
0: time% days : 2453937
0: time% secs : 64800
0: time% yyyymmddhhmmss:20060720180000
0: ref_time% (t_time)
0: ref_time% days : 2453937
0: ref_time% secs : 64800
0: ref_time% yyyymmddhhmmss:20060720180000
0: grid% (t_grid) :
0: grid% grid : 192
0: grid% levtyp: 110
0: grid% nx : 193
0: grid% ny : 193



DWD DA System Documentation March 4, 2019 331

0: grid% ngl : 0
0: grid% nn : 0
0: grid% nz : 40
0: grid% rot : F
0: grid% cyc_x : F
0: grid% poly : F
0: grid% global: T
0: grid% la1 : 0.00
0: grid% lo1 : 0.00
0: grid% di : 0.00
0: grid% dj : 0.00
0: grid% a : 6371229.00
0: grid% g : 9.81
0: grid% size : 14899600
0: grid% dlon : (1),(n)= 0.00 0.00
0: grid% dlat : (1),(n)= 0.00 0.00
0: grid% lon(1): (1),(n)= 0.00 -0.628
0: grid% lat(1): (1),(n)= 1.57 0.459
0: grid% rlon : min,max= -3.14 3.14 | -180. 180. [degree]
0: grid% rlat : min,max= -1.57 1.57 | -90.0 90.0 [degree]
0: grid% slm : min,max= 0.00 1.00
0: grid% geosp : min,max= -963. 0.595E+05 | -98.2 0.607E+04 [m]
0: grid% geo_sh: not associated!
0: grid% geoid : min,max= -107. 85.2
0: grid% k= 1 ak= 0.0000 bk= 0.0000 akf= 1000.0000 bkf= 0.0000
0: grid% k= 2 ak= 2000.0000 bk= 0.0000 akf= 3000.0000 bkf= 0.0000
0: grid% k= 3 ak= 4000.0000 bk= 0.0000 akf= 5000.0000 bkf= 0.0000
0: grid% k= 4 ak= 6000.0000 bk= 0.0000 akf= 7000.0000 bkf= 0.0000
0: grid% k= 5 ak= 8000.0000 bk= 0.0000 akf= 8988.0684 bkf= 0.0002
. . .
0: grid% k=37 ak= 210.3939 bk= 0.9797 akf= 138.1415 bkf= 0.9840
0: grid% k=38 ak= 65.8892 bk= 0.9883 akf= 36.6284 bkf= 0.9911
0: grid% k=39 ak= 7.3677 bk= 0.9940 akf= 3.6838 bkf= 0.9958
0: grid% k=40 ak= 0.0000 bk= 0.9976 akf= 0.0000 bkf= 0.9988
0: grid% k=41 ak= 0.0000 bk= 1.0000
0: lb : 0 1 1 1
0: ub : 23 16 40 10
0: size: 622080
0: ps gg(: min,max=) -519. 499. 1 2
0: psr gg(: min,max=) 0.488E+05 0.104E+06 1 2
0: t gg(: min,max=) -2.24 2.22 11 2
0: t k= 1 -1.33 1.34
0: t k= 2 -1.21 1.05
0: t k= 3 -1.41 2.22
0: t k= 4 -1.29 1.61
0: t k= 5 -1.51 0.862
. . .
0: t k=35 -1.67 1.53
0: t k=36 -1.65 1.54
0: t k=37 -1.69 1.54
0: t k=38 -1.69 1.53
0: t k=39 -1.68 1.54
0: t k=40 -1.67 1.54
0: u gg(: min,max=) -11.3 9.25 33 2
0: u k= 1 -2.00 1.84
0: u k= 2 -1.35 1.87
0: u k= 3 -1.73 1.27
0: u k= 4 -1.89 2.44
0: u k= 5 -3.16 3.79
. . .
0: u k=35 -6.00 3.87
0: u k=36 -5.92 3.85
0: u k=37 -5.85 3.85
0: u k=38 -5.81 3.84
0: u k=39 -5.77 3.83
0: u k=40 -5.75 3.81
0: v gg(: min,max=) -12.1 9.93 34 2
0: v k= 1 -2.56 1.84
0: v k= 2 -1.42 1.35
0: v k= 3 -1.40 1.77
0: v k= 4 -1.58 2.33
0: v k= 5 -2.42 2.25
. . .
0: v k=35 -7.00 4.41
0: v k=36 -6.46 4.29
0: v k=37 -6.06 4.20
0: v k=38 -5.79 4.12
0: v k=39 -5.62 4.07
0: v k=40 -5.51 4.03
0: q gg(: not ALLOCATED!)
0: qcl gg(: not ALLOCATED!)
0: qci gg(: not ALLOCATED!)
0: tke gg(: not ALLOCATED!)
0: cl gg(: not ALLOCATED!)
0: ph gg(: not ALLOCATED!)
0: pf gg(: not ALLOCATED!)
0: rh gg(: min,max=)-0.385 0.341 255 255
0: rh k= 1 0.00 0.00
0: rh k= 2 0.00 0.00
0: rh k= 3 0.00 0.00
0: rh k= 4 0.00 0.00
0: rh k= 5 0.00 0.00
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. . .
0: rh k=35 -0.383 0.165
0: rh k=36 -0.384 0.165
0: rh k=37 -0.383 0.166
0: rh k=38 -0.381 0.165
0: rh k=39 -0.380 0.164
0: rh k=40 -0.378 0.164
0: t2m gg(: not ALLOCATED!)
0: rh2m gg(: not ALLOCATED!)
0: geoh gg(: not ALLOCATED!)
0: geof gg(: not ALLOCATED!)
0: tsurf gg(: not ALLOCATED!)
0: td2m gg(: not ALLOCATED!)
0: tv gg(: not ALLOCATED!)
0: psi gg(: not ALLOCATED!)
0: chi gg(: not ALLOCATED!)
0: size = 622080
0:

0:------------------------------------------------------------------------------
-

0:
0: analysis
0:
0: (t_atm)
. . .
0: size = 933120
0:

0:------------------------------------------------------------------------------
-

0:
0: Inventory of analysis file:
0:
0: rec adress name date time tab cnt sub prc cde lvt

levelvl runtype ni grd nlev
0: 1| 0|PS |2006-07-20|18:00:00| 2| 78|255|173| 1| 1|

0| 0|analysis|192|192| 1
0: 2| 745426|T |2006-07-20|18:00:00| 2| 78|255|173| 11|110|

1| 2|analysis|192|192| 40
0: 42| 30562466|U |2006-07-20|18:00:00| 2| 78|255|173| 33|110|

1| 2|analysis|192|192| 40
0: 82| 60379506|V |2006-07-20|18:00:00| 2| 78|255|173| 34|110|

1| 2|analysis|192|192| 40
0: 122| 90196546|QV |2006-07-20|18:00:00| 2| 78|255|173| 51|110|

1| 2|analysis|192|192| 40
0: 162| 120013586|QC |2006-07-20|18:00:00|201| 78|255|173| 31|110|

1| 2|analysis|192|192| 40
0: 202| 149830626|QI |2006-07-20|18:00:00|201| 78|255|173| 33|110|

1| 2|analysis|192|192| 40
0: 242| 179647666|T_2M |2006-07-20|18:00:00| 2| 78|255|173| 11|105|

2| 0|analysis|192|192| 1
0: 243| 180393092|TD_2M |2006-07-20|18:00:00| 2| 78|255|173| 17|105|

2| 0|analysis|192|192| 1

0:------------------------------------------------------------------------------
-

21.10 Report on observations used
Statistics on the usage of observations are printed.

0:------------------------------------------------------------------------------
-

0:
0: Observation Report Statistics
0:
0: obstype proces. merged split dism. passive reject. active accept.

lost description
0: dbkz code
0:

--------------------------------------------------------------------------------
------------------------------------------------

0: SYNOP 46939 0 0 38515 0 40 8384 0
0 SYNOP

0: 0 11 5878 0 0 1649 0 18 4211 0
0 Bodenmeldungen, SYNOP, Sect. 1-4, manuell+PAST

0: 1 140 29424 0 0 29424 0 0 0 0
0 Bodenmeldungen, METAR

0: 5 11 3916 0 0 3916 0 0 0 0
0 Bodenmeldungen, SYNOP, Section 5

0: 128 14 5691 0 0 2552 0 21 3118 0
0 Bodenmeldungen, SYNOP, Sect. 1-3, autom.

0: 256 21 881 0 0 427 0 1 453 0
0 Bodenmeldungen, SHIP, manuell

0: 384 24 1149 0 0 547 0 0 602 0
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0 Bodenmeldungen, SHIP, automatisch
0:

--------------------------------------------------------------------------------
------------------------------------------------

0: AIREP 30120 0 0 30 0 20108 9982 0
0 AIREP

0: 529 144 3981 0 0 0 0 2113 1868 0
0 In-Situ Beob., AMDAR

0: 530 -1 3942 0 0 0 0 2692 1250 0
0 In-Situ Beob., AIREP

0: 533 145 14059 0 0 0 0 9297 4762 0
0 In-Situ Beob., ACARS-Daten USA

0: 534 145 8138 0 0 30 0 6006 2102 0
0 In-Situ Beob., ACARS-Daten EUROPA (Bracknell)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SATOB 192231 0 0 0 30131 152052 10048 0
0 SATOB (AMV)

0: 1704 90 135013 0 0 0 26144 104673 4196 0
0 Satellitenbeob, AMV, Eumetsat

0: 1705 90 48270 0 0 0 3987 41150 3133 0
0 Satellitenbeob, AMV, GOES (NOAA/NESDIS)

0: 1706 90 8948 0 0 0 0 6229 2719 0
0 Satellitenbeob, AMV, MODIS

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: DRIBU 1413 0 0 962 0 7 444 0
0 DRIBU (buoys and scatterometer)

0: 385 165 1413 0 0 962 0 7 444 0
0 Bodenmeldungen, BUOY

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: TEMP 118 87 0 9 0 0 22 0
0 TEMP

0: 520 35 26 22 0 0 0 0 4 0
0 In-Situ Beob., TEMP, PART A

0: 521 35 28 19 0 0 0 0 9 0
0 In-Situ Beob., TEMP, PART B

0: 522 35 24 17 0 6 0 0 1 0
0 In-Situ Beob., TEMP, PART C

0: 523 35 24 17 0 2 0 0 5 0
0 In-Situ Beob., TEMP, PART D

0: 776 36 6 4 0 1 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART A

0: 777 36 6 5 0 0 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART B

0: 778 36 2 2 0 0 0 0 0 0
0 In-Situ Beob., TEMP, SHIP, PART C

0: 779 36 2 1 0 0 0 0 1 0
0 In-Situ Beob., TEMP, SHIP, PART D

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: PILOT 187 88 0 1 0 24 74 0
0 PILOT

0: 512 32 75 38 0 1 0 15 21 0
0 In-Situ Beob., PILOT, PART A

0: 513 32 90 36 0 0 0 9 45 0
0 In-Situ Beob., PILOT, PART B

0: 514 32 11 6 0 0 0 0 5 0
0 In-Situ Beob., PILOT, PART C

0: 515 32 11 8 0 0 0 0 3 0
0 In-Situ Beob., PILOT, PART D

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SATEM 0 0 0 0 0 0 0 0
0 SATEM (not implemented)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: PAOB 0 0 0 0 0 0 0 0
0 PAOB pressure observations derived from sat.

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: SCATT 8685 0 0 0 8685 0 0 0
0 Scatterometer

0: 1697 64 8685 0 0 0 8685 0 0 0
0 Satellitenbeob, QUICKSCAT (als DRIBU)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: GPSRO 0 0 0 0 0 0 0 0
0 GPS Radio occultations (bending angles)

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: unused 0 0 0 0 0 0 0 0
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0 unused
0:

--------------------------------------------------------------------------------
------------------------------------------------

0: TOVS 154258 0 0 26 0 147962 6270 0
0 ATOVS

0:
--------------------------------------------------------------------------------
------------------------------------------------

0: total 433951 175 0 39543 38816 320193 35224 0
0

0:
0: SYNOP reports DISMISSED due to:
0:
0: SUBTYP 33340
0: CORR 61
0: CORRERR 52
0: DBLSTAT 1508
0: DBLERR 515
0: INSDAT 1111
0: RULE 1928
0: total 38515
0:
0: AIREP reports DISMISSED due to:
0:
0: INSDAT 30
0: total 30
0:
0: DRIBU reports DISMISSED due to:
0:
0: DBLSTAT 19
0: DBLERR 6
0: INSDAT 937
0: total 962
0:
0: TEMP reports DISMISSED due to:
0:
0: DBLSTAT 6
0: INSDAT 3
0: total 9
0:
0: PILOT reports DISMISSED due to:
0:
0: INSDAT 1
0: total 1
0:
0: TOVS reports DISMISSED due to:
0:
0: INSDAT 26
0: total 26
0:
0: SATOB reports PASSIVE due to:
0:
0: NOTUSED 30131
0: total 30131
0:
0: SCATT reports PASSIVE due to:
0:
0: NONE 8685
0: total 8685
0:
0: SYNOP reports REJECTED due to:
0:
0: FG 34
0: BLACKLIST 6
0: total 40
0:
0: AIREP reports REJECTED due to:
0:
0: THIN 19880
0: FG 228
0: total 20108
0:
0: SATOB reports REJECTED due to:
0:
0: THIN 79248
0: SURF 5573
0: FG 1470
0: QI 65761
0: total 152052
0:
0: DRIBU reports REJECTED due to:
0:
0: FG 7
0: total 7
0:
0: PILOT reports REJECTED due to:
0:
0: FG 1
0: BLACKLIST 23
0: total 24
0:
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0: TOVS reports REJECTED due to:
0:
0: THIN 74674
0: SURF 232
0: DATASET 73056
0: total 147962
0:

0:------------------------------------------------------------------------------
-

21.11 Report on CPU time resorces
The amount of CPU and wall time required for each step of the computation is printed:

0:------------------------------------------------------------------------------
-

0:
0: cpu(min) (max) (mean) wall percent task
0: 8.14 12.06 9.65 20.49 47.11 read observations
0: 0.58 2.57 1.76 3.55 49.62 read inventory
0: 0.80 0.85 0.83 2.24 36.93 read grid
0: 3.68 3.87 3.78 7.58 49.82 read background state
0: 4.42 9.80 7.19 14.40 49.92 set up background error operators
0: 0.00 0.02 0.01 0.02 31.77 thinning of observations
0: 14.57 16.04 15.31 30.65 49.94 set up FG boxes
0: 1.19 1.59 1.39 2.79 49.86 broadcast observations to PEs

(FG)
0: 0.54 0.70 0.65 1.40 46.31 scatter model columns (FG)
0: 0.25 0.48 0.30 0.77 38.51 set up FG data structures
0: 0.06 0.38 0.20 0.80 24.83 interpolate (FG)
0: 0.56 2.23 1.24 4.55 27.20 run observation operators (FG)
0: 5.32 6.28 5.80 11.62 49.94 set background error correlations

(FG)
0: 2.11 4.00 3.00 7.78 38.50 perform FG checks
0: 19.66 23.95 21.95 46.46 47.24 write monitoring files
0: 23.18 27.09 25.13 50.37 49.88 redistribute observations
0: 0.00 0.02 0.01 0.03 39.93 cleanup after FG scan
0: 0.00 0.01 0.00 0.01 34.37 set up PSAS boxes
0: 0.22 0.30 0.27 0.58 47.05 scatter model columns
0: 0.37 0.73 0.50 1.17 42.65 setup PSAS data structure
0: 0.00 0.02 0.01 0.04 31.77 interpolate
0: 6.08 6.32 6.23 12.49 49.86 run observation operators (for H)
0: 130.76 144.44 137.51 275.69 49.88 set background error correlations
0: 96.35 109.07 102.68 205.71 49.91 test operator implementation of B
0: 0.01 0.03 0.02 0.05 44.79 calculate preconditioning matrix
0: 5.73 6.64 6.18 12.38 49.96 Test R,B,R+B for positive

definiteness
0: 0.01 0.02 0.01 0.03 40.62 Cholesky factorization of R
0: 0.08 0.10 0.09 0.19 48.63 Cholesky factorization of B+R
0: 0.00 0.01 0.00 0.01 21.87 interpolate first guess
0: 0.04 0.07 0.06 0.14 41.22 1st iteration
0: 0.17 0.18 0.17 0.35 49.97 variational quality control
0: 0.34 0.36 0.35 0.69 50.66 recalculate R^(-1)
0: 0.10 0.13 0.11 0.24 46.66 recalculate preconditioner
0: 10.44 11.19 10.81 21.67 49.90 CG solver
0: 95.03 101.80 98.40 197.18 49.90 iterations > 1
0: 3.45 4.26 3.85 7.72 49.91 estimate analysis error
0: 0.01 0.03 0.02 0.06 38.37 distribute model columns for post

mult.
0: 30.20 30.70 30.44 60.99 49.92 post multiplication
0: 0.03 0.07 0.05 0.13 40.14 gather results on model grid
0: 0.94 1.03 1.00 2.05 48.80 add (interpolate) increment
0: 0.03 0.05 0.04 0.07 50.30 write summary of GRIB-files
0: 8.50 9.99 9.33 18.69 49.92 write GRIB-file
0: 2.95 34.74 20.49 66.20 30.95 write psas.info file
0: 505.30 553.13 530.68 1090.03 48.68 Total

0:------------------------------------------------------------------------------
-

A good load balance is achieved if the mean CPU time amounts to approximately 50%
of the wall time. (Not 100/multi-threading).
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Implementation-Part needs LETKF-modules!
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Chapter 22

Overview (Tutorial)

This chapter briefly describes the usage of modules, derived types and procedures of the
DWD data assimilation system. More formal coding standards are given in Coding
Standards Datenassimilation.

22.1 Program Execution in the Parallel Environment

22.1.1 MPI (Message Passing Interface)

The data assimilation, post-processing, and utility programs must run in a parallel envi-
ronment to fulfil memory and run-time requirements. Parallelisation of the code is done
by using the Message Passing Library (MPI). The routines provided the MPI library are
encapsulated the module mo_mpi. For the specific procedures of the MPI library This
module provides generic routines, applicable to variables of different type and arrays of
different rank. The generic routines automatically chose the correct MPI data type and
buffer size. If a communicator is not passed MPI_COMMON_WORLD is assumed.
In a non-parallel environment the data-assimilation code is compiled with the directive

-DNOMPI. In this case the interface of module mo_mpi remains the same and calling
the procedures has no effect so that in general no further changes to the code are required.
The most important entities provided by module mo_mpi are listed below:

subroutines to initialise and shut down the MPI environment .
p_start initialise the parallel environment
p_stop finish MPI and clean up all PEs
p_abort abort the program (with error code /= 0)

generic point to point communication routines
p_send MPI send routine
p_recv MPI receive routine
p_sendrecv MPI sendrecv routine
p_isend MPI non-blocking send
p_irecv MPI non-blocking receive

requests for non blocking calls
p_wait waits for an MPI send or receive to complete

341
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p_probe check incoming messages w/o actually receiving
generic collective communication routines

p_barrier all PEs wait until all PEs have reached this point
p_bcast broadcast data from one to all other PEs
p_bcast_ptr broadcast a pointer and its content to all other PEs
p_alltoall all PEs send and receive to/from all PEs
p_gather one PE gathers data from all PEs
p_allgather all PEs gather data from all PEs
p_scatterv one PE scatters vector data to all PEs
p_gatherv one PE gathers vector data from all PEs
alltoallv_args set up/check arguments for MPI alltoallv
allgatherv_args set up/check arguments for MPI allgatherv
gatherv_args set up/check arguments for MPI gatherv

generic MPI reduction routines (minimum, maximum, ..)
p_max calculates maximum value of variable on all PEs
p_min calculates minimum value of variable on all PEs
p_sum calculates sum of values of variable on all PEs
p_or calculates logical .or. of variable on all PEs
p_and calculates logical .and. of variable on all PEs

processor element identifiers
p_pe Id of this PE (in MPI_COMM_WORLD)
p_io Id of the processor dedicated to do I/O
p_nprocs number of available processor elements

logical flags
p_parallel true for parallel environment
p_parallel_io true if this PE is p_io

pre-defined MPI communicator group Ids
MPI_COMM_WORLD group consisting of all PEs
MPI_COMM_SELF group consisting of this PE only
MPI_COMM_NULL group consisting of no PE

22.1.2 Program Start and Stop

When a parallel job is started by the batch system each instance is started independently
from each other. In order to communicate the Message Passing interface must be initiated
at the beginning of the program and finalised at its end by calling specific MPI routines
(MPI_init, . . . ). In the data assimilation environment these tasks are fulfilled by calling
the routines p_start and p_stop from module mo_mpi. In case of an error routine
finish from module mo_exception may be called to abort the program.
In the following example program instance of the program prints out its processor

element number. The program aborts if it is run on 13 processors.

program test
!-------------
! Modules used
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!-------------
use mo_mpi, only: p_start, &! set up the MPI environment

p_stop, &! shut down the mpi_environment
p_pe, &! Id of THIS pe (starting with 0)
p_nprocs, &! number of available processor elements
p_barrier ! MPI barrier routine

use mo_exception, only: finish ! abort in case of error
implicit none
!-------------
! program code
!-------------
call p_start ! set up the MPI environment
if (p_nprocs == 13) call finish(’program test’,’ERROR: running on 13 PEs’)
print *,’My PE number is’,p_pe ! print out processor Id
call p_barrier ! wait until all PEs are ready
call p_stop ! shut down the mpi_environment

end program test

22.1.3 Input and Output in the Parallel Environment

The MPI standard does not guarantee that all processor elements can do I/O. However
most platforms allow I/O for all PEs.
For input it is possible to read the same file in parallel if the information is required by

more than one processor. However this is not advisable because internal communication
using the MPI library is in general more efficient than accessing a file multiple times. Thus
files are in general read by one processor and the information is scattered or broadcasted
to the others.
A single file cannot easily be written by multiple processors at the same time. Thus it

is required to gather the information on one processor and then write it to the file.
Below the approaches chosen for different situations are summarised.

Steering of the program flow by namelist input
Fortran namelist input is the recommended way for steering the program flow in
operational applications. We read the namelist input by one dedicated PE and when
distribute it via the MPI interface. Details are given is Section 22.1.5.

Interactive steering of the program
For interactive applications namelist input is not appropriate. Parallel interactive
input is faciliated using routines from module mo_dialog and further described
in Section 22.1.6.

Job control output (stdout)
The output sequence in a sequential file from different PEs is unpredictable. Thus
Job control output to standard output (stdout, Fortran unit 6) should be done only
from processor p_io. Merging of output from different processors is supported by
routines from module mo_p_output and further described in Section 22.1.7.
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Errors and warning messages (stderr)
Urgent output (error and warning messages) may be written from individual pro-
cessors to standard error (stderr, Fortran unit 0). In contrast to stdout this unit
is in general not buffered and appears in the output immediately. As the sequence
of the output from the different PEs is unpredictable this method should be used
rarely. Output to stderr can be performed using subroutine message from module
mo_exception as well.

Fortran file I/O
Files handled by the Fortran I/O library are identified by Fortran Unit Numbers.
In the data assimilation program bookkeeping on used and unused unit numbers is
performed by module mo_fortran_units and further described in Section 22.1.4.

Atmospheric fields
Atmospheric fields in the data assimilation system are represented by means of
variables of derived type t_atm (state variables) and t_grid defined in modules
mo_atm_state and mo_atm_grid, respectively (cf. Section 22.2). I/O to of
these fields to GRIB files is handled by module mo_grib (cf. Section 22.2.5).
Atmospheric fields on a regular latitude-longitude or Gaussian grid can also be
written to a binary file readable by the GRADS plotting utility (cf. Section 28.5.1).

Observational data
Observational data may be held in different representations as described in Section
??). Input of the original observational data (in BUFR format or converted by
BUFR2NetCDF) is done by routines specific to the observation types.

Observational data which has already been processed either by the data assimilation
system or by the COnsortium for Small-scale MOdelling (COSMO) model is stored
in NetCDF feedback format. This format is further described in Feedback File
Definition.

22.1.4 Fortran I/O

Files handled by the Fortran I/O library are identified by Fortran Unit Numbers. In the
data assimilation program bookkeeping on used and unused unit numbers is performed
by entities from module mo_fortran_units:

get_unit_number reserve a unit number
return_unit_number release a unit number
reserve_unit_number reserve a specific unit number
print_used_units used for debugging

A typical code sequence which reads/writes files via the Fortran I/O library in a parallel
environment may look like:

subroutine sub

use mo_mpi, only: p_pe, &! Id of THIS pe (starting with 0)
p_io, &! Id of processor dedicated to do I/O
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p_nprocs, &! number of available processor elements
p_bcast, &! generic MPI broadcast routine
p_gather ! generic MPI gather routine

use mo_fortran_units, only: get_unit_number, &! reserve a unit number
return_unit_number ! release a unit number

implicit none

integer :: unit ! Fortran unit number to use
real :: a ! input
real :: r (p_nprocs) ! result from the different Processors

if (p_pe == p_io) then ! read input on one PE only
write (6,*) ’enter number’ ! prompt on standard output
read (5,*) a ! read from standard input

endif

call p_bcast (a, p_io) ! broadcast input from p_io to all PEs
a = a * a ! do some calculations
call p_gather (a, r, p_io) ! gather the results on one PE

if (p_pe == p_io) then ! write result on one PE only
unit = get_unit_number() ! reserve a unit number
open (unit, file=’my_results’,action=’write’) ! open output file
write (unit,*) r ! write result to file
close (unit) ! close file
call return_unit_number(unit) ! release the unit number

endif

end subroutine sub

22.1.5 Namelist Input

Fortran namelist input is the recommended way for steering the program flow in opera-
tional applications.
A namelist input file consists of a number of namelist groups, each of them holding a

number of ’variable=value’ pairs, for instance:

&GROUP_A
A = 1.
B = 2.

/
&GROUP_B

D = 3.
/

When the namelist is read, the values of the respective variables in the program are
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replaced by the values from the file, if present.
Without any precautions namelist groups must be read in the order of their presence in

the input file. Therefore module mo_namelist provides a routine to position the input
file at the beginning of a specified namelist group, allowing to detect if a namelist group
is present or to read a namelist group multiple times:

open_nml open namelist file
position_nml position file at start of namelist group
close_nml close namelist file
nnml Fortran unit used for namelist input
POSITIONED return value from position_nml: namelist group found
MISSING return value from position_nml: namelist group not found

A typical code sequence to read a namelist looks like:

subroutine read_namelist

use mo_mpi, only: p_pe, &! Id of THIS pe (starting with 0)
p_io, &! Id of processor dedicated to do I/O
p_bcast ! generic MPI broadcast routine

use mo_exception, only: finish ! abort in case of error
use mo_namelist, only: open_nml, &! open the namelist file

nnml, &! Fortran unit used for namelist input
position_nml, &! position file at specific namelist group
POSITIONED, &! return code for successful positioning
MISSING ! return code for missing namelist group

implicit none

logical :: first ! rewind namelist file for first try
integer :: status ! return code from ’position_nml’
real :: a, b, c ! declare namelist variables
namelist /GROUP_A/ a, b, c ! declare namelist group

first = .true. ! set mark for first try to read the namelist group
do ! read namelist group several times

if (p_pe == p_io) then ! read on dedicated PE only
if (first) call open_nml (’namelist’) ! open namelist file (if not yet done)
a=-1.; b=-1.; c=-1. ! set default values for namelist variables
call position_nml (’GROUP_A’, & ! position namelist group

rewind=first, &
status=status )

first=.false. ! remember that group was already read
select case (status)
case (POSITIONED) ! read namelist group if found

read (nnml ,nml=GROUP_A)
case (MISSING) ! do nothing if namelist group not found

write(6,*) ’GROUP_A: not found’
case default
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call finish(’read_namelist’,’GROUP_A’) ! abort in case of error
end select
write(6,*) ’GROUP_A:’,a,b,c ! printout namelist variables read

endif
call p_bcast (status, p_io) ! broadcast namelist variables if read
if (status==POSITIONED) then

call p_bcast (a, p_io)
call p_bcast (b, p_io)
call p_bcast (c, p_io)

else
exit ! exit the loop if no further namelist group found

endif
end do
end subroutine read_namelist

Running the above code results in the output:

GROUP_A: 1.00000000 2.0000000 -1.00000000
GROUP_A: not found
GROUP_A: -1.00000000 -1.00000000 -1.00000000

22.1.6 Interactive Steering of the Program

Namelist input as described in the previous system is recommended for steering of batch
programs but not suitable for interactive applications. For the latter module mo_dialog
provides some routines for interactive input in a parallel environment:

ask_menue menue with different options
ask get value of a variable
ask_y_n ask for answer ’y’es or ’n’o

ask is a generic routine for querying for the value of a string, integer, single or double
precision real, or vector of integer, real or logical variable. An example program may look
like:

program test
use mo_mpi, only: p_start, &! set up the MPI environment

p_barrier, &! wait until all PEs reached this point
p_stop ! shut down the mpi_environment

use mo_dialog, only: ask_menue, &! enter menue
ask, &! ask for anything
ask_y_n ! ask for a logical (answer ’y’ or ’n’)

implicit none

logical :: l
integer :: j, i(2)
character :: c
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call p_start ! set up the MPI environment
do

c = ask_menue (’’, & ! present the menue
’+ add two numbers ’, &
’* multiply two numbers’)

call ask (i,’enter integer numbers’) ! enter the arguments
select case (c)
case (’+’) ! calculations

j = i(1) + i(2)
case (’*’)

j = i(1) * i(2)
end select
write (6,*) ’result =’,j ! printout (on all PEs !!!)
call p_barrier ! wait until all PEs are ready
l = ask_y_n (’continue ?’) ! ask for continuing
if (.not.l) exit

end do
call p_stop ! shut down the mpi_environment

end program test

22.1.7 Job Control Output

The output sequence to a sequential file from different PEs is unpredictable. Thus Job
control output to standard output (stdout, Fortran unit 6) should be done only from
processor p_io. Merging of output from different processors is supported by routines
from module mo_p_output. The following entities are accessible from this module:

oline output line buffer (array of strings)
iol index of next line to write to buffer
nextline routine to increment actual buffer line number
flush_buf routine to gather lines and write buffer
flush_buf_pio as write_p, but only if p_pe==p_io
add_line routine to add a line to the output buffer
add_line_pio add a line to output buffer for p_pe==p_io only

oline is an array (current size 30k) of character strings (length 132) which has to be
filled by each pe and later is gathered and printed by PE p_io. A typical example code
may look like:

subroutine job_control_output
use mo_mpi, only: p_pe ! processor id
use mo_p_output, only: oline, &! output buffer (array of strings)

iol, &! index of next line to write in buffer
nextline, &! routine to increment buffer line number
flush_buf ! routine to write buffer to stdout

integer :: i

call flush_buf ! flush old buffer content
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do i=1, p_pe ! write lines from individual processors
call nextline
write (oline(iol),*) ’printout: line’,i,’from processor’,p_pe

end do
call flush_buf ! flush buffer content
end subroutine job_control_output

Running the above program on 4 processors will result in the following output:

printout: line 1 from processor 1
printout: line 1 from processor 2
printout: line 2 from processor 2
printout: line 1 from processor 3
printout: line 2 from processor 3
printout: line 3 from processor 3

22.1.8 Report on CPU-time, Wall-time and Memory Require-
ments

For an assessment of the cpu and wall-time requirements of the different parts of the
program may be instrumented. The following utility routines are defined in module
mo_cpu_time:

stop_time Determine cpu and wall-time for the subsequent part of the program.
print_times Print cpu and wall-time times used by the parts of the program.

Example code:

program test
use mo_mpi, only: p_start, &! set up the MPI environment

p_stop, &! shut down the mpi_environment
p_pe, p_io ! processor element ids

use mo_cpu_time, only: stop_time, &! stop time used for a program segment
print_times ! print times used for program segments

implicit none

integer :: i
integer, allocatable :: k (:), j(:)

call p_start ! set up the MPI environment

call stop_time (’work on PE 0’)
if (p_pe == p_io) then

allocate (k (1000000)) ! some work on PE 0 only
k(1) = 1
do i = 2, 1000000

k(i) = k(i-1) + i
end do
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write (6,*) ’k =’,k(1000000)
endif

call stop_time (’work on all PEs’)
allocate (j (1000000))
j(1) = 1 ! some work on all PEs
do i = 2, 1000000

j(i) = j(i-1) + i
end do
if (p_pe==p_io) write (6,*) ’j =’,j(1000000)
call stop_time (’’) ! empty comment to trace last segment

call print_times
call p_stop ! shut down the mpi_environment

end program test

Each invocation of stop_time gives a report on the resources used in the previous
program segment. print_times prints a summery (usually at the end of the program).
Running on 2 processors the above program produces the following output:

k = 1784293664

cpu(min) (max) (mean) wall percent minrss maxrss sumrss task
0.00 0.02 0.01 0.02 50.00 3 7 10 work on PE 0

-------------------------------------------------------------------------------
j = 1784293664

cpu(min) (max) (mean) wall percent minrss maxrss sumrss task
0.02 0.02 0.02 0.02 95.66 7 11 18 work on all PEs

-------------------------------------------------------------------------------

cpu(min) (max) (mean) wall percent minrss maxrss sumrss task
0.00 0.02 0.01 0.02 50.00 3 7 10 work on PE 0
0.02 0.02 0.02 0.02 95.66 7 11 18 work on all PEs
0.04 0.04 0.04 0.04 97.68 7 11 18 Total

The columns of the report have the following meaning:
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cpu(min) : minimum cpu time (s) used on any processor
(max) : maximum cpu time (s) used on any processor

(mean) : mean cpu time (s) per processor
wall : wall time (s)

percent : mean cpu time/wall time (%)
minrss : minimum memory (Mbyte) used on any processor
maxrss : maximum memory (Mbyte) used on any processor
sumrss : total memory used (Mbyte)

task : description of program segment (parameter to stop_time)

22.2 Representation of Atmospheric Model Data
Model data is stored in variables of derived type t_atm defined in module
mo_atm_state (cf. Figure 22.1). Multiple instances or arrays of this type are suitable
for representing different model states (forecast, analysis) or ensembles of model states.
The derived type contains multi-dimensional arrays holding the different model fields
(temperature, humidity, wind, . . . ). It further consists of a pointer referencing variables
of type t_grid defined in module mo_atm_grid. This type holds meta data and
coefficients as well as invariant fields (orography, land-sea-mask, . . . ) for the description
of the model discretisation as well as information on the MPI partitioning of the model
state.

Figure 22.1: Derived types for model states and grid representation. Red: gridded fields.
Green: type t_grid holding the specification of the model grid. Blue: type t_atm holding
the model state.
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22.2.1 Representation of Model Fields in the Parallel Environ-
ment

The gridded model fields are represented as arrays of rank 4. The first 3 dimensions
correspond to the 2 horizontal coordinates (longitude, latitude in general), and the vertical
coordinate. In case of the GME the 4th dimension holds the 10 diamonds, otherwise its
size is 1. For surface fields (surface pressure, orography, . . . ) the size of the 3rd dimension
is 1. In a parallel environment the model fields may be horizontally distributed over
different processor elements. In this case the horizontal dimensions only run over a subset
of the respective grid-points.
The 4-dimensional arrays are directly accessible by pointer components within the de-

rived types t_atm and t_grid. In addition to that an array component of derived type
t_m (defined in module mo_memory) holds a reference and meta information of each
field, e.g. name, GRIB code numbers, . . . . This allows to loop through all fields which
is required for certain operations on the model state and to access the fields by passing
their name as a parameter.

22.2.2 Model Grid Description

The derived type t_grid (module mo_atm_grid) holds information on the following
aspects of the model grid:

Horizontal discretization
The type of horizontal grid is indicated by the component gridtype (cf. WMO
Table 6, module mo_wmo_tables). Supported grid-types are regular or rotated
latitude-longitude grid (COSMO, HRM), Gaussian grid (IFS, RCHAM), and icosa-
hedral grid (GME).

Vertical discretization
The type of vertical grid is indicated by the component leveltyp (cf. WMO Table 3,
modulemo_wmo_tables). Supported level-types are hybrid pressure coordinates
(GME, IFS, ECHAM, HRM), or hybrid height (COSMO). The cosmo coordinate
system is further indicated by a value of ivctype6=0.

Array bounds and partitioning
Array bound values are given by the components lbg(1:4) and ubg(1:4) (lower and
upper bound of each dimension). For individual fields the actual range may differ
due to a staggered grid or for soil variables. In a parallel environment only a subset
of the horizontal grid-points may be allocated (if ldec=.true.) on a given processor.
The bounds of the allocated fields on the actual processor are given by the compo-
nents lb(1:4) and ub(1:4). Detailed information on the partitioning (neighborhood
relationships, etc.) is gigen in the component dc of type t_atm_dec from module
mo_atm_decomp.

Invariant fields
Invariant sueface fields related to the coordinate system are accessible:
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lsm land sea mask
geosp surface geopotential (m2/s2)
rlon longitude (rad)
rlat latitude (radians)
geoid geoid heights (for GNSS radio occultations) (m)

In case of the COSMO vertical coordinate systen the following invariant fields are provided:
hsurf geometrical height of surface (m)
hhl geometrical height of half levels (m)
p0 base-state pressure
dp0 base-state pressure thickness
rho0 base-state density

Operations
The following operations are provided by module mo_atm_grid:

Grid construction and destruction
construct Set up the grid description (by optional parameters).

In general grids are not set explicitly but read from file (22.2.5).
destruct Deallocate derived type components.
set_geoid Set geoid surface field
cosmo_ref_atm Set fields of COSMO reference atmosphere
coarsen Derive coarser resolution grid: take each stride.th point.

Printout and plotting
print Print out the grid meta data.
init_ctl Set the GRADS meta data from the grid meta data.
to_grads Dump the invariant fields to a GRADS file.

Interpolation and transformation
phi2phirot Convert latitude from real geographical system to rotated system
phirot2phi Convert latitude from one rotated system to another
rlarot2rla Convert longitude from one rotated system to another
rla2rlarot Convert longitude from real geographical system to rotated system
hunt Obtain indices to grid-points for 2d lat-lon coordinates
w_intpol Return indices and interpolation weights to grid
lin_intpol Linear interpolation of 2D lat-lon or Gaussian field.
average Average to coarser grid (nearest neighbour).

Loop over invariant fields, pick up selected gridpoints.
lgtd Perform direct Legendre transform (on geosp)
lgti Perform inverse Legendre transform

Example code:

type (t_grid) , pointer :: grid
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allocate (grid)
call construct (grid, gridtype = 0, &

nx = 360 )
call print (grid)
call destruct (grid)

22.2.3 Model States

Model states are represented in the derived type t_atm defined in module
mo_atm_state. The type holds the following information:

Product meta data .
runtype ’forecast’, ’analysis’, ..)
runclass 0..3: main-run,pre-assimilation,assimilation,test
expid experiment id
member ensemble member number
members ensemble size
ensemble_id ensemble id

Grid meta data
time verification time (start of forecast)
ref_time reference time (validity of data)
grid pointer to grid description t_grid
lb (4) lower bounds of fields (copy from t_grid)
ub (4) upper bounds of fields (copy from t_grid)

Prognostic atmospheric variables
ps surface pressure (Pa)
psr reference pressure (Pa)
pp pressure deviation
t temperature (K)
u longitudinal wind (m/s)
v meridional wind (m/s)
w vertical wind (m/s)
q specific humidity (kg/kg)
qcl specific cloud liquid water
qci specific cloud ice
qr prognostic rain
qs prognostic snow
qg prognostic graupel

Soil variables
t_so soil temperature
w_so soil humidity
w_so_ice soil ice
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Derived variables
clc cloud cover
ph half level pressure
pf full level pressure
rh relative humidity
t2m 2m temperature
rh2m 2m relative humidity
geoh geopotential height (half levels)
geof geopotential height (full levels)
tsurf surface temperature
fr_ice sea ice fraction
td2m 2m dewpoint temperature
tv virtual temperature
psi streamfunction
chi velocity potential
vrt vorticity
div divergence

Diagnostic variables
vmax_10m maximum 10m wind speed
tmin_2m minimum 2m temperature
tmax_2m maximum 2m temperature
clct total cloud cover
clcl low cloud cover
clcm medium cloud cover
clch high cloud cover
tot_prec total precipitation
u_10m 10m wind component
v_10m 10m wind component

Temporary backup for wind components on the C-grid
u_10m_c 10m wind component
v_10m_c 10m wind component
u_c u component
v_c v component

Fields to pass trough (COSMO LETKF)
z0 roughness length
soiltyp soil type
plcov plant coverage
lai leaf area index
rootdp root depth
vio3 vertically integrated O3
hmo3 height of O3 maximum
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for_e Bedeckung Nadelwald
for_d Bedeckung Laubwald

Fields to pass trough (GME LETKF)
h_ice ice thickness
t_ice ice surface temperature
h_snow snow depth (m)
tqr integrated rainwater
tqs integrated snowwater

22.2.4 GRIB file inventory

Model states are generally stored in GRIB files. In order to faciliate the handling of GRIB
files module mo_grib_handling provides the following entities:
t_inventory inventory data type
get_inventory read inventory table
print_inventory print inventory
p_bcast broadcast inventory
Example code:

use mo_grib_handling, only: t_inventory, &! Inventory Data Type
get_inventory, &! read inventory table
print_inventory ! print inventory

implicit none

type(t_inventory), pointer :: inv(:)

nullify (inv)

write(6,*)
write(6,*)’ inventory of file gff200908070000.ens.004 (GME ensemble member)’
write(6,*)
call get_inventory (inv,’gff200908070000.ens.004’)
call print_inventory (inv, first=.true.)

write(6,*)
write(6,*)’ inventory of file lbff20090807000000_0 (COSMO deterministic run)’
write(6,*)
call get_inventory (inv,’lbff20090807000000_0’)
call print_inventory (inv, first=.true.)

Example input data may be found at /e/uscratch/arhodin/kenda_bc:

lbff20090807000000_0
gff200908070000.ens.004
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The above program (called with a GME ensemble member and COSMO example file)
results in the following printout:

.

inventory of file gff200908070000.ens.004 (GME ensemble member)

rec adress ed name date time tab cnt sub prc cde zen lvt levelvl runtype vvmm ni grd nlv mem nme eid clas expid
1| 0| 1|PS |2009-08-07|03:00:00| 2| 78|255|173| 1| 0| 1| 0| 0|forecast| 300| 64|192| 1| 4| 1| 3|ass | 0
2| 84957| 1|T |2009-08-07|03:00:00| 2| 78|255|173| 11| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0

42| 3483277| 1|U |2009-08-07|03:00:00| 2| 78|255|173| 33| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0
82| 6881597| 1|V |2009-08-07|03:00:00| 2| 78|255|173| 34| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0

122| 10279917| 1|QV |2009-08-07|03:00:00| 2| 78|255|173| 51| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0
162| 13678237| 1|QC |2009-08-07|03:00:00|201| 78|255|173| 31| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0
202| 17076557| 1|QI |2009-08-07|03:00:00|201| 78|255|173| 33| 0|110| 1| 2|forecast| 300| 64|192| 40| 4| 1| 3|ass | 0
242| 20474877| 1|FR_LAND|0001-01-01|00:00:00| 2| 78|255|173| 81| 0| 1| 0| 0|analysis| 0| 64|192| 1| 4| 1| 3|ass | 0
243| 20559507| 1|FIS |0001-01-01|00:00:00| 2| 78|255|173| 6| 0| 1| 0| 0|analysis| 0| 64|192| 1| 4| 1| 3|ass | 0

inventory of file lbff20090807000000_0 (COSMO deterministic run)

rec adress ed name date time tab cnt sub prc cde zen lvt levelvl runtype vvmm ni grd nlv mem nme eid clas expid
1| 0| 1|U |2009-08-07|00:00:00| 2| 78|255|138| 33| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1

51| 19425300| 1|V |2009-08-07|00:00:00| 2| 78|255|138| 34| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
101| 38850600| 1|T |2009-08-07|00:00:00| 2| 78|255|138| 11| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
151| 58275900| 1|QV |2009-08-07|00:00:00| 2| 78|255|138| 51| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
201| 77701200| 1|QC |2009-08-07|00:00:00|201| 78|255|138| 31| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
251| 97126500| 1|PP |2009-08-07|00:00:00|201| 78|255|138|139| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
301|116551800| 1|T_SNOW |2009-08-07|00:00:00|201| 78|255|138|203| 0| 1| 0| 0|analysis| 0| 421| 10| 1| -1| 1| 0|main| 1
302|116940306| 1|QV_S |2009-08-07|00:00:00| 2| 78|255|138| 51| 0| 1| 0| 0|analysis| 0| 421| 10| 1| -1| 1| 0|main| 1
303|117328812| 1|W_SNOW |2009-08-07|00:00:00| 2| 78|255|138| 65| 0| 1| 0| 0|analysis| 0| 421| 10| 1| -1| 1| 0|main| 1
304|117717318| 1|W |2009-08-07|00:00:00| 2| 78|255|138| 40| 0|109| 1| 0|analysis| 0| 421| 10| 51| -1| 1| 0|main| 1
355|137531124| 1|QI |2009-08-07|00:00:00|201| 78|255|138| 33| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
405|156956424| 1|QR |2009-08-07|00:00:00|201| 78|255|138| 35| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
455|176381724| 1|QS |2009-08-07|00:00:00|201| 78|255|138| 36| 0|110| 1| 2|analysis| 0| 421| 10| 50| -1| 1| 0|main| 1
505|195807024| 1|HSURF |2009-08-07|03:00:00| 2| 78|255|137| 8| 0| 1| 0|
0|nudging | 0| 421| 10| 1| -1| 1| 0|ass | 7434

The columns have the following meaning:
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rec Record number in the GRIB file. Only 1 record is shown for multi-level fields
(due to first=.true. in print_inventory)

adress Adress of record in the GRIB file. (Used by GRIB input routines to read selected
fields).

ed GRIB edition number (currently 1, GRIB 2 will be implemented soon).
name Name of GRIB field (DWD convention, toggle 3dvar convention by liname=.true.

in print_inventory)
date Verification date (toggle to data base time by ldbtime=.true. in print_inventory)
time Verification time (toggle to data base time by ldbtime=.true. in print_inventory)
tab GRIB table number
cnt Generating center, 78 for DWD
sub Generating subcenter 255 for unspecified
prc generating process
cde GRIB code number
zen Zusatzelementnummer (used to identify fields from surface analysis etc.)
lvt Level type (cf. WMO Table 3, module mo_wmo_tables)
levelvl Level value (only 1st record shown for multi-level fields)
runtype Run type, i.e forecast, analysis, nudging, . . .
vvmm Forecast interval (hours,minutes)
ni Grid resolution parameter, number of triangles in diamond for GME, number of

longitude points for COSMO.
grd Grid type, (cf. WMO Table 6, module mo_wmo_tables)
nlv Number of levels of the field in the file (only 1st record shown)
mem Ensemble size, -1 for deterministic run
nme Number of ensemble members (or deterministic run) found in the file.
eid Ensemble member number (0 for deterministic run)
clas Run class: main (forecast) run, assimilation cycle, . . .
expid Experiment number in NUMEX

22.2.5 GRIB I/O

In order to handle GRIB input and output of model fields module mo_grib provodes
the following entities:
read generic routine to read model state or grid information
write_grib generic routine to write model state or grid or single field to GRIB file
read_multi read a multi-level field
read_single read a single-level field
SCATTER flag values
BCAST flag values
The specific routine read_atm_grid of the generic interface read to read the grid

information takes the following arguments:
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grid Variable of derived type to set. The variable must not be ini-
tialized (don’t call constuct before). It is recommended to use
a pointer variable (which must be allocated) to be passed to
instances of the atmospheric deriived type later.

file GRIB file name to read. The GDS (Grid Descriptor Section)
of a suitable record in the file is evaluated to derive the grid
information.

invt(:) optional,pointer Inventory of the GRIB file. If the variable is given on input,
it is not derived from the file conent again. If the pointer is
passed but not associated, the inventory is provided on output.

invar optional Invariant fields File name. If this parameter is given, the in-
variant fields are read from this seperate file (to be provided
only once for GME LETKF).

nproc1 optional Number of processor elements in x-direction if the model fields
shall be distributed in a parallel environment.

nproc2 optional Number of processor elements in y-direction if the model fields
shall be distributed in a parallel environment. nproc1, nproc2
must be provided so that nproc1*nproc2 equals the total num-
ber of processors in the group. Otherwise the complete model
fields will be allocated on each processor.

comm optional MPI communicator group. If the variable is not present
MPI_COMM_WORLD is assumed.

geosp optional If this parameter is passed with value .false. the routine will
not abort if the orography invariant field (geosp or hsurf) is
missing in the file.

lsm optional If this parameter is passed with value .false. the routine will
not abort if the land-sea-mask invariant field is missing in the
file.

scanmode optional Force a specific scanmode (default:WMO8_J_POSITIVE, cf
WMO Table 8 in module mo_wmo_tables)

member optional Select ensemble member with this number.
The specific routines read_atm_state or read_atm_ens of the generic in-

terface read to read the model or ensemble state take the following arguments:
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atm Atmospheric state variable to set. Must be an array in case
of an ensemble. The variable must be initialised already (call
construct).

file Name of GRIB file to read. In case of an ensemble the name
is extended by ’.eee’ (3 digits ensemble number). In a paral-
lel environment Ensemble members are read in parallel from
different processors.

invt optional Inventory of the GRIB file. May be provided so that it is not
set up twice unnecessarily.

fields optional List of fields to read, separated by blanks.
runtype optional Run-type to select (’forecast’,’analysis’,. . . )
time optional Verification-time to select.
reftime optional Reference time to select.
member optional Ensemble member to select.
optionals optional List of optional fields to read (subset of ’fields’). The routine

does not abort if any of these fields is missing in the file.
unsp_type optional List of fields with unspecified runtype (subset of ’fields’). These

fields are read even if their run-type does not correspond with
the parameter ’runtype’.

The specific routine write_grid_grib of the generic interface write_grib writes the
invariant fields stored in a variable of type t_grid to a GRIB file and takes the following
parameters:

grid Grid variable to write.
file Name of file to write to.
mode optional Writing mode: ’w’ (default for write) or ’a’ (append).
time optional Time to write, default: ????? (for invariant fields).

The optional arguments grib, pio, ie are only used if the routine is called from within
write_atm_grib (see below).
The specific routines write_atm_grib to write a model state and write_atm_ens

to write an ensemble of model states take the following parameters:
atm Model state to write. Array of model states in case of an

ensemble.
file Name of file to write.
mode optional Writing mode: ’w’ (default for write) or ’a’ (append).
grid optional Flag to write grid invariant fields as well (fefault: .false.).
edition optional GRIB edition (default: 1), Edition 2 is not fully implemented

yet.

The specific routine write_var_grib is only used internally.
Example code:

use mo_atm_state, only: t_atm, &! atmospheric state data-type
construct, &! initialize model state variable
destruct, &! release model state memory
print ! print model state variable

use mo_atm_grid, only: t_grid, &! Type definition for grid information
construct, &! initialize model grid variable
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destruct ! release model grid memory
use mo_grib, only: read, &! read model state or grid

write_grib ! write model state or grid
use mo_run_params, only: set_nprocs ! set processor configuration
implicit none

type (t_grid) ,pointer :: grid
type (t_atm) :: state
type (t_atm) :: ensemble(4)
integer :: nproc1, nproc2

!---------------------------------------
! set reasonable processor configuration
!---------------------------------------
call set_nprocs (nproc1, nproc2)
print *,’processor configuration:’,nproc1, nproc2

!--------------------------------------
! read and write GME model grid & state
!--------------------------------------
allocate (grid)
call read (grid, ’lbff20090807000000_0’,&

nproc1=nproc1, &
nproc2=nproc2, &
lsm=.false. )

call construct (state, grid)
call read (state, ’lbff20090807000000_0’, &

fields=’u v w t’ )
call write_grib (state, ’lbff20090807000000_copy’)
call print (state, comment=’GME model state’)
call destruct (state)
call destruct (grid)

!-------------------------------------
! read and write COSMO grid & ensemble
!-------------------------------------
call read (grid, ’gff200908070000.ens.001’,&

nproc1=nproc1, &
nproc2=nproc2 )

call construct (ensemble, grid)
call read (ensemble, ’gff200908070000.ens’,&

fields=’u v t ps’ ,&
runtype=’forecast’ )

call write_grib (ensemble, ’gff200908070000.copy’)
call destruct (ensemble)
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call destruct (grid)
deallocate (grid)

Example input data may be found at /e/uscratch/arhodin/kenda_bc:

lbff20090807000000_0
gff200908070000.ens.004
gff200908070000.ens.003
gff200908070000.ens.002
gff200908070000.ens.001

Running the program writes the following files:

lbff20090807000000_copy
gff200908070000.copy.004
gff200908070000.copy.003
gff200908070000.copy.002
gff200908070000.copy.001

Running on 4 PEs the program provides the following output:

processor configuration: 2 2
processor configuration: 2 2
processor configuration: 2 2
processor configuration: 2 2

read_atm_grid: p_readgrib = 0

read_atm_grid: file =lbff20090807000000_0

derive vertical coordinates grom GDS:
center = 78
sub_center = 255
process = 138
local_ident = 254
repres = 10
nv = 56

1 100000.00000000
2 288.14990234
3 42.00000000
4 11357.00000000
5 22000.00000000

...
52 94.63999939
53 51.42999268
54 20.00000000
55 0.00000000
56 0.00000000

COSMO vertical coordinate parameters:
ke1 = 51
ivctype = 2
irefatm = 0
p0sl = 100000.000000000000
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t0sl = 288.14990234375000
dt0lp = 42.000000000000000
vcflat = 11357.000000000000
delta_t = 0.0000000000000000
h_scal = 0.0000000000000000
svc1 = 0.0000000000000000
svc2 = 0.0000000000000000
nfltvc = 0
read_atm_state: reading u
read_atm_state: reading v
read_atm_state: reading w
read_atm_state: reading t

_______________________________________________________________________________

GME model state

(t_atm)
time% (t_time)
time% days : 2455051
time% secs : 0
time% yyyymmddhhmmss:20090807000000
ref_time% (t_time)
ref_time% days : 2455051
ref_time% secs : 0
ref_time% yyyymmddhhmmss:20090807000000
grid% grid : 10
grid% nx : 421
grid% ny : 461
grid% ngl : 0
grid% ni : 0
grid% levtyp : 110
grid% ivctype: 2
grid% p0sl : 100000.00000
grid% t0sl : 288.14990
grid% dt0lp : 42.00000
grid% vcflat : 11357.00000
grid% nn : 0
grid% nz : 50
grid% ns : 0
grid% rot : T
grid% cyc_x : F
grid% poly : F
grid% global : F
grid% arakaw : C
grid% rlon : min,max= 0.182E-01 0.346 | 1.04 19.8 [degree]
grid% rlat : min,max= 0.780 0.986 | 44.7 56.5 [degree]
grid% hhl gg(: min,max=) -5.50 0.220E+05 255 255 1: 51
grid% p0 gg(: min,max=) 0.341E+04 0.999E+05 255 255 1: 50
grid% dp0 gg(: min,max=) 109. 0.291E+04 255 255 1: 50
grid% rho0 gg(: min,max=) 0.810E-01 1.21 255 255 1: 50
run type :analysis
run class : 0
experiment Id : 1
ensemble member: -1
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ensemble size : -1
lb : 1 1 1 1
ub : 210 230 50 1
size : 9708300
t gg(: min,max=) 211. 301. 11 2 1: 50
u gg(: min,max=) -12.7 18.1 33 2 1: 50
v gg(: min,max=) -26.3 30.6 34 2 1: 50
w gg(: min,max=)-0.609 0.557 40 2 1: 51
size = 9708300

read_atm_grid: p_readgrib = 0

read_atm_grid: file =gff200908070000.ens.001

derive vertical coordinates grom GDS:
center = 78
sub_center = 255
process = 173
local_ident = 253
repres = 192
nv = 82

1 0.00000000
2 2000.00000000
3 4000.00000000
4 6000.00000000
5 8000.00000000
6 9976.13671875
7 11902.14453125

....
81 0.99763012
82 1.00000000

GME/HRM vertical coordinate

reading ensemble members 1 to 4

read_atm_state: reading u
scatter fields
read_atm_state: reading v
scatter fields
read_atm_state: reading t
scatter fields
read_atm_state: reading ps



Chapter 23

Data structures

23.1 Model grid

23.2 Atmospheric state

The derived type type t_atm holds the atmospheric fields :
reference (poibter) to the grid data,

some meta data (time, ensemble number,. . .
atmospheric fields (4D-pointer components: x,y,z,diamond),
additional table with references to all fields.

set up state
deallocate state
allocate component
deallocate component
printout
state = state; state = number; . . .
state + state; . . .

Example code:

type (t_grid) , pointer :: grid
type (t_atm) :: atm

allocate (grid)
call construct (grid, gridtype = 0, &

nx = 360 )

call construct (atm, gri d= grid )

call allocate (atm,’t’)
atm% t = 273.15_wp
call print (atm)
atm = 0._wp
call print (atm)

365



366 DWD DA System Documentation March 4, 2019

call destruct (atm)
call destruct (grid)

23.3 Handling of pointer components

As long as allocatable components of derived types are not supported by all relevant
compilers pointer components must be used instead.
Deallocation of pointer components is not done automatically and must be done by the

programmer.
In the include file ’tr15581.incf’ routines for bookkeeping (especially for cases of function

results passed to other subroutines) are defined.

23.4 Low level GRIB interface (MPIfM GRIB library
interface)

The 3-dimensional Variational Data Assimilation (3dVar) uses the EMOS compatible
GRIB library of the MPIfM.
A derived type is defined for a convenient acess to the parameters of the GRIB routines:

type t_grib1 ! GRIB record data type
t_sec0 ! component: Section0
t_sec1 ! Section1, product definition.
t_s1_dwd ! Section1, DWD specific section.
t_rsec2 ! Section2, real values in grid def.
t_s2_gauss ! Section2, Gaussian grid.
t_s2_latlon ! Section2, lat/lon grid.
t_s2_tri ! Section2, triangular grid.
t_s2_sph ! Section2, spherical harmonics.
t_sec3 ! Section3, bitmap (integer field).
t_rsec3 ! Section3, bitmap (real field).
t_sec4 ! Section4, binary data

Fortran 90 interface to a subset of the EMOS GRIB and BPIO library:
Open a GRIB file
Close a GRIB file
Read next GRIB product
Write a block of bytes
Seeks to a specified location
Encode/Decode GRIB record
Set DWD record headers (or raw mode)
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23.5 Medium level GRIB interface (GDS setup, Inven-
tory)

data type definition: t_inventory and components:
type t_inventory
routines to derive the inventory from a GRIB file:

derive the inventory of a GRIB file.
printout of the inventory.

write a GRIB file :
open a file, set default grib sections
encode a record and write
close the file

prepare a GRIB record for output :
specify default values
specify dwd local part of PDB
specify dwd local PDB for ensemble prediction
specify center, subcenter, process
specify dwd local part of PDB
specify dwd local PDB for ensemble prediction
specify defaults for ECMWF local extension
specify ECMWF local extension for ensemble fc.
specify reference time
specify verification time
specify leveltype, vertical coordinate params.
specify lat/lon grid
specify Gaussian grid
specify triangular grid
specify code, table, bits
specify level
transfer data

example code:

type (t_inventory) :: inv

call get_inventory (inv, file=’gribfilename’)
call print_inventory (inv)

23.6 High level GRIB interface (interface to dace de-
rived types)

read atmospheric state.
read grid information.
write atmospheric state.
write grid (constant data).
write variable.
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example code:

type (t_grid) , pointer :: grid
type (t_atm) :: atm

allocate (grid)
call read (grid, file=’gribfilename’)
call read (atm, file=’gribfilename’, fielts=’ps u v t’)
call print (atm)



Chapter 24

Parallelization Strategy

Parallelization of the code is based in MPI (Message Passing Interface). All data has to
be distributed over the processors.

24.1 Model grid

Atmospheric states (background, analysis), discretized on a model grid, are stored in a
data type t_atm, defined in module mo_atm_state. Information on the grid is hold in data
type t_grid, defined in module mo_atm_grid. Atmospheric 3-dimensional fields are stored
in 4-dimensional array components (for instance atm% t(:,:,:,:) for temperature), in
the same way as in the forecast model GME. The first 2 indices correspond to horizontal
position, the third to vertical position, and the fourth index denotes the diamond. Regular
global longitude-latitude or Gaussian grids are stored using only the first 3 indices.
The operations applied on this data types in this analysis scheme do not rely on neigh-

borhood relationships, because the analysis is performed in the space of the observations.
In a parallel environment, the grid-points are distributed over the processor using a domain
decomposition approach. The ranges of the first and second index (horizontal domain)
are divided into nproc1 and nproc2 (defined in namelist /RUN/) subranges, respectively;
The data is distributed over nproc1×nproc2 processors.

24.2 Observation operators

For certain operations (e.g. for setting up the forecast error covariance matrix and for
the post-multiplication step) basic information on the observation operators must be
present on several or on all processors. Therefore the basic information is replicated on all
processors. More expensive (in terms of CPU-time and memory) operations (for instance
evaluation of nonlinear operators) are performed only on dedicated processors. Up to
now, these are the processors which hold the block-diagonal of the respective background
error covariance matrix (cf. Section 24.3.1).
The observation operators H consist of a pure interpolation operator Hi of the atmo-

spheric fields to the location of the observation and the operator Ho which calculates the
observed quantities. In order to evaluate Hi, the model columns involved must be present
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on the respective processor. A data type t_col is defined in module mo_t_col to hold
the model columns, together with routines to select and distribute the columns.

24.3 PSAS

24.3.1 Block decomposition of the matrix B + R

Matrix Block encoding: Matrix Block usage

: all elements are zero 0 : empty
+ : full n x m representation 1 : <= 10 % filled
x : only lower triangle is stored ...
- : compressed sparse row storage 9 : <= 90 % filled
| : compressed sparse column storage * : > 90 % filled
. : not stored due to symmetry

PE
0 x..+||||||| 700641422110000000000000000000000000000000000000
0 +x.|||+|| | 670551712020000000000000000000000000000000000000
0 --x||||||| 517313151200000000000000000000000000000000000000
1 +--x. +|+||| 653700656111000000000000000000000000000000000000
1 ----x.| | ||| 451160201021100000000000000000000000000000000000
1 --- -x | ||||| 113024010311110000000000000000000000000000000000
2 -+-+- x.. || 471620700021000000000000000000000000000000000000
2 ---- --x.| 215501170100000000000000000000000000000000000000
2 ---+- --x || 221610536011000000000000000000000000000000000000
3 - -- - - x || 102103010500110000000000000000000000000000000000
3 -- ---- - x.| ||| || | 120121201030101110110100000000000000000000000000
3 ---- - -x| ||| || | | | 000111101023101110110100000001000001000000000000
4 -- ---x..|+ |||||||||| 000011000111600160314112111100000000000000000000
4 - - -x | | | || |||| | 000001000100150002001020004100321100100000000000
4 --- x++ +||+ +|| | 000000000011407770831707310010000000000000000000
5 --- +x. ++|+ ++| | 000000000011107800771807610010000000000000000000
5 --+ +-x +||+|+|| || 000000000011607580825718540110000000000000000000
5 - x | ||| | | | | 000000000000020002000000001001330100100100001000
6 --- +++ x..+ ++| | 000000000011308780700808840010000000000000000000
6 --- -+- -x.| ||| | 000000000011103720470504510010000000000000000000
6 ----- --x|||||||| | 000000000000411150117123251310000010000000000000
7 --- +++ +--x .+| | 000000000011107870851700850020000000000000000000
7 -- - - x ||| | ||| | 000000000000120010002070014400103110010000000000
7 - +++ +--+ x++ || 000000000000207780843808870130000000000000000000
8 - -+- +--+ +x. || | 000000000000103650852808800140000010000000000000
8 - --- -----++x || | 000000000000101140415517670350000010000000000000
8 -- - - - x| +||+| ||| || 000000000000140001001040007100634610222011000000
9 -- - - -----x. ||| | 000000000000110010003041131500003130010000000000
9 --- ---- --- -x || | 000000000000001110111203450150000031000000100000
9 - - x | | || | 000000000001000001000000000003000001000100002101

10 - - - + x..+ +|||| 000000000000030003000010006000700700613110000000
10 - - - +x.| +|||| 000000000000020003000000003000770500612220000000
10 - - -- --x|| |||||| 000000000000010000000030004300217510255131000000
11 - - - +- +--x +|+||| 000000000000010001000010006100755700737251000000
11 - - ----- - x | ||| 000000000000000000001010111330001050020001210000
11 - -- x | | | 000000000001000000000000000011000003000000100101
12 - - - ++-+ x..|+| | | 000000000000010001000000002000662700700372010010
12 - -- ----- -x.||||| 000000000000000000000010002100115320260144210000
12 - ---+ +-x|+| | 000000000000000000000000002000325700757374010000
13 - ----- ---x.. || || 000000000000000001000000000001121200313500021031
13 - ---- +-+-x. | | 000000000000000000000000001000123500747370020010
13 - --- ----+x|+ | 000000000000000000000000001000001110244267260020
14 - -- - -x. | 000000000000000000000000000010000021020002400001
14 - -----+-x || 000000000000000000000000000000000010111226250031
14 - - - x||| 000000000000000001000000000002000000000100008324
15 - - -x.. 000000000000000000000000000001000001000000003300
15 - --- ---x. 000000000000000000000000000000000000100312032160
15 - - - -----x 000000000000000000000000000001000001000100114246

. .

Figure 24.1: Distribution of the matrix blocks over processors for the test case described
in Section 27. The processor number for each row is given in the column at the left, the
representation of each matrix block is shown in the center panel, and the percentage of
non-zero elements is shown at the right.

Solving equation (??) involves evaluation of matrix-vector products with the matrix B+
R. The matrix is subdivided into blocks of approximate size 500×500, so that the block-
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diagonals may be explicitely inverted for pre-conditioning. The blocks are distributed
over the processors in a parallel environment. In order to facilitate the evaluation of
the matrix-vector product required for the solution of (??), the rows of the block-matrix
are distributed over the processor as indicated in Figure 24.1. Vectors and matrices
are represented in variables of type t_dec_vector and t_dec_matrix defined in module
mo_dec_matrix together with the algebraic operators (*,+,. . . ), which take care about
the communication between processors. Matrix blocks are stored in compressed storage
format if they are sufficiently sparse. The representation type and percentage of nonzero
elements for each matrix block is given in Figure 24.1 as well.

24.3.2 Post multiplication

The post multiplication step consists of evaluating the product of the Matrix PbH
T with

a vector. Because the matrix is used only once, its elements are not stored but calculated
on the fly. The rows of the matrix (associated with the analysis increment on the model
grid) are distributed over the processors.
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Chapter 25

Sequence of operations

Rework this Chapter to make clear that it is specific to the 3DVAR computations!

Missing: Chapter for the LETKF-Implementation!

Initialization

program var3d:
At first, the Message Passing Interface (MPI) is initialized by calling subroutine

open_nml from module mo_mpi. All the communication routines are encapsulated within
this module. The communication routines may be called in a parallel run as well as in a
single processor run. In the latter case, they return without having any effect.
Job control input is read from a file ’namelist’ (cf. Section 16) in the working di-

rectory. On the processor dedicated to I/O processing (p_pe==p_io), the file is opened
by calling subroutine open_nml defined in module mo_namelist. The main purpose of
this module is to provide routines to position the input file at the beginning of a spec-
ified namelist-group, so that namelist-groups may appear in arbitrary order. It can be
determined if namelist groups are missing or occurring more than once.
Subroutine nml_run_flags defined in module mo_run_params is called to read the

namelist group /RUN/. This group specifies analysis time, file names, and the number of
processors to be used.

Reading the background state

The routine stop_time from module mo_cpu_time is called here and wherever the cpu-
time and wall-time required for a part of the program shall be determined. The times are
written to the standard output file.
The gridded model input and output is encoded in GRIB format. Some information to be

encoded in the output files (identification number of the weather center, process identifier)
is set by calling subroutine set_defaults defined in module mo_grib_handling.
Finally the background state is read by calling subroutine read_background.
Gridded model data (3-dimensional atmospheric fields as well as 2-dimensional surface

fields and meta-data) is stored in variable bg of derived data type t_atm, defined in module
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mo_atm_state. In a parallel environment, the model state is stored distributed over the
processor elements.

Reading the observations

Reading the observations is handled by subroutine prepare_obs (currently defined in
module mo_3dvar called next.
subroutine prepare_obs (module mo_3dvar):
First the blacklist is read by calling subroutine read_blacklists from module

mo_blacklist. The blacklist identifies the observations which are known to be unreliable.
These observations are rejected so that they need not enter the assimilation system.
Now the observations are read by calling process_obs(TSK_INIT+TSK_READ,obs,bg)

defined in module mo_obs. Observations are currently read only on one processor. The ob-
servations are stored in the variable obs of data type t_obs (defined in module mo_t_obs).
Most operations on this data type are handled by this subroutine. As the first parameter
a flag is passed, indicating the task to be performed. In this case, TSK_INIT triggers the
initialization of the modules concerned with observation handling. The flag TSK_READ
triggers reading of the observations.
back in program var3d:

Spreading the observations over processors and boxes

The raw observations have been read on one processor only. They have to be distributed
over analysis boxes (used for pre-conditioning) and the analysis boxes themselves are
distributed over the processors. By calling process_obs (TSK_SETUP_DIMS,...) meta-
information required for distributing the observations is gathered, for instance the number
and type of the observations to be processed.
Now execution branches into the Physical Space Assimilation System (PSAS) specific

routine setup_psas.
subroutine setup_psas (module mo_psas):
At the start of this subroutine the namelists /PSAS/ and /VARQC/ are read, specifying

PSAS specific parameters (e.g. convergence criteria) and parameters for the variational
quality control procedure.
On the processor which has read the observations, the association of the observations

with analysis boxes and processors is established. First the horizontal distance between
each pair of observation points is determined. Based on this information, subroutine
set_boxes decides on the association with boxes and processors: Starting from an arbi-
trary observation, the closest neighbors are assembled into a box, until 500 observations
are reached. This procedure is repeated with a new starting point at the boundary of the
box. (The distribution of observations, boxes, and processors is written to a GRADS-file
spots.dat.) Finally the observations are broadcasted. So the basic information on the
observations is present on all processor elements. Merely the more expensive operations
– for instance the evaluation of nonlinear observation operators – are performed on dedi-
cated processors. Observations are stored in variable obs, which is an array of a derived
data type t_obs. Each array element corresponds to one observation box, containing all
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observations associated with it.

Scatter model columns

In order to interpolate the atmospheric state to the location of the observations (or to
the location required by the observation operators) the model columns involved must be
assembled on the processor holding the respective observations. They are determined by
calling process_obs(TSK_SETUP_COLS,obs(i),atmf) for each observation box obs(i)
associated with the actual processor element. The model columns are send to the respec-
tive boxes and processor elements. They are stored in an array cbgb of data type t_cols.
Again, each element of cbgb corresponds to an observation box.

Interpolation to observation points

The call to process_obs(TSK_SETUP_FULL,obs,atmf) allocates space and determines
the levels to interpolate to. The interpolated model values are stored in variable fi of
type type t_vector. This data type holds vectors those elements are distributed over
‘segments’, and segments distributed over processor elements. This data type is intended
to be used in algebraic operations involving large matrices and vectors. The ‘segments’
of the vector here correspond to the observation boxes.

Set background error covariances

A number of variables holding matrices and vectors are allocated. Error covariance and
pre-conditioning matrices are stored in variables of type t_matrix. Internally these ma-
trices are partitioned in blocks; The blocks are distributed over processor element. In
dependence of the number of nonzero elements, each block is stored in full or in sparse rep-
resentation. Algebraic operations (+.−, ∗, /, . . . ) are defined on variables of type t_matrix
and type t_vector, hiding implementation details and communication issues.
The background error covariance matrix HPbH

T in the space of observed quantities
can be written as HO(HIPbH

T
I )HT

O, with the operator H, consisting of the interpolation
operator to the observation points HI and the observation operator HO.
The observation operator Jacobi covariance matrices HO are calculated by calling

process_obs(TSK_K,obs,atmf,xi=fi). The elements of the matrix (HIPbH
T
I ) are cal-

culated explicitely as a function of the location and type of the observations involved
by subroutine set_Pb(P_b,e_f,e_o,obs,cbgb,er,atmf%time). The observation error
covariance matrix R is calculated by calling set_R(R,e_o,obs). In addition to the er-
ror covariance matrices P_b and R, the errors (square root of the diagonal elements) are
stored in the vectors e_f and e_o. The pre-conditioning matrix P_R = P_b+R,e (diagonal
elements only) as well as the inverse R and the approximate inverse of P_R (Cholewsky
decomposition of the block diagonals) are calculated as well. Optionally the matrices P_b,
R, and P_R are written to a file in sparse format.

The observations are stored in a variable of type t_vector by subroutine get_obs. The
corresponding model equivalents f are calculated from the model variables fi interpolated
to the locations of observations by subroutine apply_H.
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Solve the system of equations in observation space

The details of the solution algorithm are given in Section 26. Equation ?? is solved
iteratively by a Newton algorithm. At the beginning of each iteration, the values of some
flags (their value may be set individually set for each iteration by namelist /PSAS/) are
printed.
In the first iteration, the current guess is either set to the background value, or to a

value close to the observations, depending on the flags fg_b and fg_o respectively.

Line search (subroutine lnsrch)

The Newton algorithm does not ensure that the value of the cost function decreases in
each iteration, because the step size and direction is based on the approximation of the
cost function in the vicinity of the current guess. Thus a line search is applied (call to
subroutine lnsrch) in order to guarantee that the cost function decreases.
Because evaluation of the nonlinear terms is expensive, the line search is designed

to evaluate them only a few times, and thus is not very exact. In general, the nonlinear
terms are calculated only once or twice. The nonlinear quantities are the cost function, its
gradient, as well as the observation error covariance matrix (which depends on the current
guess if variational quality control is enabled) and the background error covariance matrix
(if nonlinear observation operators are present). They are evaluated in function Rfunc.
For the case that no line search is performed (i.e. in the first iteration), instead of lnsrch
the routine Rfunc is called directly.
Finally the the pre-conditioning matrix (inverse of the block-diagonals of B+R) and

the inverse of the observation error covariance matrix (required for diagnostics only) are
recalculated before calculating the search direction and step size is determined by the
Conjugent Gradient algorithm (subroutine nlpcg). For both, the outer Newton algorithm
and the inner CG algorithm, parameters (for instance convergence criteria) can be set in
namelist /PSAS/ (Section 16.16).

Inner loop (CG algorithm)

The preconditioned Conjugate Gradient algorithm is fairly standard and taken from a
textbook ([20], p. 118 ). A number of quantities is monitored in the standard output and
in file nlpcg.info (Section 20.1).

Estimate the analysis error

The analysis error is estimated by subroutine ana_err. Currently the errors are estimated
on 7 pressure levels (1000, 500, 300, 200, 100, 50, 10) on a 6o×6o grid for the geopotential
and the two wind components. This estimate is written to a GRIB file and used in the
subsequent analysis cycle to estimate the background error. The expense of the algorithm
as implemented here does not depend on the number of observations or the size of the
analysis grid. It can be switched off by the flag anaerr in namelist /PSAS/.
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Post multiplication

The effort of the post-multiplication step grows linearly with the number of observations
times the number of model prognostic variables. This step is quite expensive and cpu-
time may be saved if the analysis increment is calculated on a coarser resolution, then
interpolated on the finer model grid, and finally added to the first guess. In this case a
coarser model reference state (variable atma) is derived from the full resolution state.
The post multiplication basically consists of a matrix-vector multiplication, involving

the large matrix PbH
T . This operation is parallelized by assigning the rows of the matrix

to certain processors. The right hand side (quantity z in observation space) is hold
on each processor whereas the left hand side (analysis increment on the model grid) is
distributed over the processor round robin. The relevant information required for updating
the left hand side (mainly surface pressure of the background state) is distributed over the
processor elements by calling subroutine setup_post(cbg,atma), and stored in variable
cbg of type t_cols.
The post multiplication is performed by subroutine post_mult. Basically the matrix

is only used once. Thus it is not stored, but the values of its elements are calculated
on the fly when the multiplication is performed. Because the analysis grid depends on
the surface pressure of the analyzed state itself, the post multiplication is performed in
two steps. First analysis increments for the surface pressure are derived and added to
the background value to obtain the new surface pressure. Then the pressure levels of the
analysis grid are calculated, and the analysis increments for the remaining variables are
calculated on this grid.
The result of the post multiplication (the analysis increments were obtained column by

column in variable ani of type t_cols. They are send back to the processor holding the
respective part of the grid by calling subroutine finish_post(ana,ani,atma) and finally
stored in variable ana of type t_atm. If the analysis increments were derived on a coarser
grid, they are now interpolated to the full resolution grid by subroutine interpolate_atm.

Add analysis increment to forecast

The surface pressure of the analyzed state differs from that of the background. Conse-
quently, the vertical grid of the analysis differs from that of the background as well, as
the pressure levels depend on the surface pressure as well. In order to account for the
change of vertical coordinates, the analysis is performed as follows:

1. The atmospheric state atma is represented in terms of virtual temperature and
relative humidity. For these quantities the analysis increments were derived.

2. A preliminary analysis is performed by adding the analysis increment (evaluated at
the levels of the background grid) to the background state. The pressure increment
is added to the background surface pressure without changing the height of the
atmospheric levels. (The resulting state is stored in variable ana.

3. The pressure levels of the analysis grid are derived, taking into account the analyzed
surface pressure.
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4. The preliminary analysis is vertically interpolated to the analysis grid, resulting
in the state atmtmp. Interpolation is performed by subroutine vert_intp, consis-
tently with the interpolation algorithm used to interpolate to the locations of the
observations.

5. Finally temperature and specific humidity are derived from virtual temperature and
relative humidity on the analysis grid.

As an option, the procedure performed in the preceding Optimum Interpolation code is
present: deriving the analysis increment at the levels of the analysis grid and adding them
to the background values (taken from the background grid) without further interpolation.
For diagnostics, both the background atma and the analysis atmtmp may be vertically

interpolated to standard pressure levels (fg_p and ani_p) and the difference written to a
GRIB file. The difference of the analysis and the background (defined on the respective
pressure levels) may be written as well.

Interpolate analysis to locations of observations

In order to check for the consistency of the interpolation (from background to observation
points) and the projection of the increments from observation space to the model grid
(by the post-multiplication step) the final analysis is interpolated to the locations of
the observations by the same algorithm which has been used for the background. The
resulting analysis of the observed quantities may be compared to their values estimated
in observation space (Bz +H(xb)).

Output

The analysis (and optionally the analysis increment on pressure and model levels) is
written to the respective GRIB files. The analysis at the location of the observation is
written to an ASCII file (psas.info).

End of program

back in program var3d
Finally all allocated memory is explicitely deallocated. This is mainly done for debug

purposes so that memory leaks can be easily detected. The program is stopped in a
controlled way on all processors by calling subroutine p_stop from module mo_mpi.

subroutine setup_psas (module mo_psas)



Chapter 26

Solution of the set of equations in
physical space

The set of equations (??) is solved in subroutines setup_psas (outer loop, module
mo_psas), nlpcg and lnsrch (linear CG algorithm and line search, module mo_nlpcg).
We distinguish the following vector spaces:

X, the space of model control variables (temperature, humidity, wind components),
interpolated to the location of the observation. Within this chapter we do not deal
with the original control variables located on the model grid.

Y , the space of observed quantities. These quantities are related to the control variables
in X by the nonlinear observation operator: y = H(x).

Ui, the space of observed quantities, related to the control variables in X by the observa-
tion operator linearized at the guess within the ith iteration: w−wb = (Hix−xb).

Z, the dual space, related to Ui by w−wb = HiPbH
T
i z and to X by x−xb = PbH

T
i z.

Within subroutine setup_psas the following variables are defined:

Symbol Fortran Description
-name

Matrices
Hi Hi Jacobi matrix of the observation operator H linearized

at at xi, with yi = H(xi). (Currently Hi is stored within
the derived data type obs.)

Rj Rj Observational error covariance matrix in Y . If varia-
tional quality control is enabled, R is the inverse of the
Hessian at the location yj. In general yj = yi, i.e. the
observational cost function and its derivatives are evalu-
ated at the same location there the observation operator
was linearized.

HiPbH
T
i HBHi Background (forecast) error covariance matrix in Ui.

379
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ĤiPbHT
i +Rj HBH_R Preconditioning matrix in Ui. ĤiPbHT

i denotes the
block-diagonal of HiPbH

T
i .

(ĤiPbHT
i +Rj)

−1 HBH_R_inv Inverse preconditioning matrix in Ui.
R−1
j R_inv Inverse observational error covariance matrix Rj.

S−1 S_inv Inverse scaling matrix, i.e. inverse of the diagonal of
the preconditioning matrix. The inverse preconditioning
matrix is scaled by S−1.

Vectors in observation space Y
o o Observations
yb yb Background value yb = H(xb).
o− yb o_yb Observation minus background (forecast).
y − o y_o Guess minus observation.
yi yi Model aequivalents of observations yi = H(xi), evalu-

ated at the location xi there the observation operator
was linearized.

∂Jo/∂y dJody Gradient of the observational cost function with respect
to y. This quantity is calculated by the variational qual-
ity control routine.

wqc w_qc Weight assigned to the observations by the variational
quality control routine.

ya−yb ya_yb Final analysis minus forecast.
ef e_f Forecast error (standard deviation) for the observed

quantities.
eo e_o Observational error (standard deviation).
∂Jj−1/∂z dJold Gradient of the cost function in the previous iteration.

Vectors in dual space Z
zj z Solution of the set of linear equations (??).
zj−1 zold Previous solution of the set of linear equations (??).
∂Jj/∂z dJdz Gradient of the cost function with respect to z. This

quantity is calculated by the variational quality control
routine.

Vectors in linearized observation space Ui
ui−ub ui_ub Model aequivalent of observation minus background ui−

ub = Hi(xi−xb), evaluated at the location there H was
linearized.

u−ub u_ub Current guess (analysis) minus background.
ur ur Residuum, right hand side of equation (??).
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uj−ub uj_ub Model aequivalent of observation minus background,
evaluated at the location there the observational cost
function Jo was evaluated and linearized (Rj, ∂J/∂y).

Vectors in interpolated model space X
xb xb Forecast (background) interpolated to the locations of

observations.
xi−xb xi_xb Location of linearisation of H minus background.
x−xb x_xb Current guess (analysis) minus background.

Scalars

The following Table traces the locations in the program flow, there these variables are
used (i), used and modified (io), or overwritten (o). This corresponds to the intend-
attributes (in,out,inout) of the respective Fortran 90-routines1.

1arguments of derived data type may require the intend(inout) attribute even if the values of the
variable are merely overwritten if the routine requires access to the meta-data (dimensions, etc.) of the
data type.
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.

constants observation operator observational cost function preconditioner current guess saved
xb yb o o_yb xi_xbui_ub yi Hi HBHi Rj J_qcdJdzdJodyuj_ubw_qcHBH_RR_invS_invHBH_R_invur z u_ubx_xby_o zold

dJold
Initial set up
o o o o o o o o o o o . o o . o o o o o o o o . .
Iterative Newton search
Line search
. . . . io? io? io? . . o o o o . o . . . . . io o . . i
Recalculate x
. . . . i i . . i . . . . . . . . . . . i o o o .
Rfunc
. . . . . . . . . o o o o . o . . . . . i i . i .
Recalculate Hi

i . . . o o o o . . . . . . . . . . . . . . . i .
Recalculate HiPbH

T
i

. . . . . . . i o . . . . . . . . . . . . . . . .

. . . . . . . . i . . . . . . . . . . . i o . . .
Recalculate Rj (Rfunc)
. . i . . i i . . o . o o . o . . . . . i i o . .
save old values
. . . . . . . . . . . i . . . . . . . . i . . . o
R−1

. . . . . . . . . i . . . . . . o . . . . . . . .
rhs
. . . . . . . . . i . . i o . . . . . o . i . . .
without VQC
. . o . . . . . . . o . o o . . . . . o . i i . .
preconditioner
. . . . . . . . i i . . . . . o . o o . . . . . .
Linear (CG) solver
. . . . . . . . i i (i) . (i) (i) . . (i) . i i io o . . .

Initial set up

Before entering the main loop the variables are set to the following initial values:

xb, yb, o, o_yb (constants):
The forecasted and observed quantites (in interpolation space U and observation
space Y ) are set to their respective values which remain unchanged furtheron.

xi_xb, ui_ub, yi, Hi, HBHi (observation operator):
The observation operator H is evaluated and linearised at the background
state(xi=xb). The reference values (xi_xb, ui_ub, yi) in interpolation and ob-
servation space, the Jakoby-matrix (Hi), as well as the forecast error covariance
matrix in observation space (HBHi) are set accordingly.

Rj, J_qc, dJody, uj_ub (observational cost function):
Initally, the observational cost function is evaluated with variational quality control
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switched off. This means that Ri, the inverse Hessian of the observational cost
function, is equal to the nominal observational error covariance matrix R. The
observational cost function is quadratic and equal to its quadratic approximation
everywhere. The reference point for this approximation is chosen arbitrarily at the
value of the observations, leading to the values of J_qc= 0 (cost function), dJody= 0
(gradient). The reference value uj_ub is set to o − ub. (For nonlinear observation
operators this is a bad approximation. However, up to now, this quantity is used for
diagnostics only within the CG routine.

HBH_R, R_inv, S_inv, HBH_R_inv (preconditioner):
The preconditioning matrix HBH_R is calculated as the block diagonal of HBHi+Rj.
Its inverse HBH_R_inv is scaled by the diagonal of HBHi+Rj, whose inverse is kept
in S_inv.

z, u_ub, x_xb, ur (current guess):
The first guess is set to the background value. Consequently z,u_ub,x_xb= 0 and
ur=o_yb.

Optionally, some of the quantities set so far (at the background state) may be written
for diagnostic purposes (for instance the matrices HBHi and Rj in a sparse representation).

Iterative Newton search

The set of equations is solved iteratively. Within each iterations the following steps are
performed:

1. Perform a line search.
To ensure covergence, the increment is determined by a line search along the direc-
tion of the increment given by the estimate of the CG routine from the (linearized)
set of wquations in the previous iterate.

2. Update quantities.
For the new estimate, a number of quantities is updated (e.g. linearisation of H
and Jo.)

3. Derive new estimate of the linearized equations.
A new estimate is sought by the conjugate gradient algorithm.

These steps are described in more detail in the subsequent sections:

Line Search (subroutine lnsrch)

In each iteration i the conjugate gradient algorithm provides an estimate zlin of the
location of the cost function J(z), assuming a linear relationships y−yi = H(x− xi)
and a quadratic observational cost function Jo(y). (The relationship y − yb = HiPbH

T
i z

is linear by definition.) These assumptions do not hold and in order to account for
the nonlinearities the linear estimate is iterated in an outer loop. In order to ensure
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convergence a line seach is performed along a search direction p = zlin−zold there zold is
the estimate in the previous iteration.
The line search algorithm updates its argument z, i.e. the estimate of the location of

the minimum of the cost function. The (linearily) related quantities u_ub and x_xb are
updated as well.
On entry, the high dimensional problem is reduced to a 1-dimensional problem by

calculating p and the related search direction pu = HiPbH
T
i p in U . The corresponding

direction px in X is derived as well as described below.

1-dimensional search

With the definition z = zold + λp the approximate minimum of J(λ) is sought. The first
estimate is chosen as λ1 = 1. (i.e. the step size proposed by the CG algorithm, which
may be changed by the subroutine argument lambda1). The second estimate is chosen
by assuming a quadratic approximation of J(λ), given the 3 pieces of information: J(λ0),
∂J/∂λ|λ0 and J(λ1). Subsequent estimates assume a quadratic approximation as well,
derived from the 3 modt recent evaluations of the cost function Jk, Jk−1, Jk−2.
Because the evaluation of the cost function J in general will be expensive, only a limited

number of trials is performed until the condition J(λk) < J(λ0 = 0) is fullfilled. If the
argument exac is set to .true. at least 2 estimates are tried.

Evaluation of the cost function

In order to derive the cost function for different values of V z, (i) the respective values of
u, x and y, and (ii) the cost function and its gradient have to be calculated:
Update of the guess x in interpolation space
For a given linearization (xi_bg, ui_bg, Hi) of the observation operator H for each

guess of z the corresponding values of u_ub, x_xb and y have to be calculated as a prereq-
uisite for calculating the cost function. The following steps are performed by subroutine
set_new_x:

1. u_ub
is calculated by u_ub = HBHi z.

2. x_xb
Calculating of x_xb in general is expensive. For that reason a strategy for deriving
an approximate value is followed if the flag new_x is set to 1. Calculation of x_xb
without approximation is enabled by setting x_xb to 2.

Approximate solution new_x = 1:
x_xb is calculated by x−xb = H−1(u−ub). In general H may be not invertable.
In this case the generalised inverse is used. This method runs the risk that the
inversion of the matrix may be ill posed and the result may become inaccurete.
To improve accuracy the linearization values xi_xb,ui_ubmay be used to apply
the inversion only to the deviations from these coordinates. Another problem
may occur because H in general is not square and there may be unobserved
components of x_xb which will be unaltered by this procedure.
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Exact solution new_x = 2:
This option is currently not implemented.
The exact solution is obtained by x−xb = PbH

T
i z. The matrix PbH

T
i currently

is not kept and must be recalculated for this purpose.

3. y
Filally y is calculated by y = H(x).

Evaluation of the cost function and its gradient
The cost function and its derivatives are calculated by subroutine Rfunc. Given z and

u−ub, the background cost function is easily calculated as Jb = (u−ub)(HiPbH
T
i )z. The

observational cost function is calculated for given y−o by the variational quality control
routine new_R. This routine also returns information on the first (dJody) and second (R)
derivative of the cost function. These quantities are given in Y and as long as yi 6= yj it
is inexact to apply them in U :) The final gradient of Jb + Jo is given as dJody + z.

Update quantities

Recalculate Hi

Recalculate HiPbH
T
i

Recalculate Rj

Recalculate R

Update rhs

Recalculate the Preconditioning matrix

Linear (CG) solver
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Chapter 27

Performance

This test case is based on approximately 20 000 observations (Table 27.1, consisting of
the SYNOP and TEMP observations present at 0UTC for an arbitrary day. The TEMP
observations were used on the main pressure levels only. The times required for different
parts of the program is shown in Table 27.2. The analysis was performed on one node
(16 processors) of the IBMSP2 (cos5).
The operational constraint of 10 minutes time is approximately met by this test case.

70 000 observations (the approximate number of the operational OI scheme) can be pro-
cessed by 8 nodes within the time constraint.
CPU time is spent to approximately equal parts for performing I/O, for solving the set of

equations in observation space, and for the post-multiplication step. Note that performing
I/O is not parallelized yet, and that a certain amount of the diagnostics written is not
required for an operational analysis. For the first step of the iterative solver, CPU times
required for parts of that task are explicitely given. Approximately the same amount of
time is spent for the Conjugent Gradient solver and for the evaluation of the nonlinear
terms (here variational quality control). In total, 20 iterations were performed.

387
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observation type accepted rejected
SYNOP surface pressure 3230 233
SYNOP wind component u 67 1
SYNOP wind component v 67 1
TEMP geopotential 4355 1193
TEMP relative humidity 3330 955
TEMP wind component u 4854 317
TEMP wind component v 4854 317
total 20757 3017

Table 27.1: Number of observations processed in this test case. The columns denoted
‘accepted’ and ‘rejected’ give the number of observations with a weight of wvqc > 0 and
wvqc < 0, respectively, assigned by the variational quality control routine.
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cpu(min) (max) (mean) wall percent task
5.88 6.71 6.64 6.69 99.29 read inventory
0.68 0.74 0.71 0.77 92.86 read grid
17.44 98.18 23.39 100.78 23.21 read background and observations
11.41 12.41 12.32 12.41 99.24 set up PSAS boxes
1.05 2.87 2.01 2.87 69.93 broadcast observations to PEs
0.77 0.84 0.81 0.82 98.55 scatter model columns
0.31 0.34 0.33 0.35 94.11 interpolate
5.57 5.66 5.58 5.65 98.81 run observation operators (for H)
2.66 9.57 5.09 9.71 52.41 set background error correlations
0.03 0.10 0.08 0.16 48.83 calculate pre-conditioning matrix
0.24 0.37 0.31 0.36 86.11 calculate inverse pre-conditioning matrix
0.01 0.02 0.02 0.03 60.42 interpolate first guess

1st iteration:
3.13 3.20 3.17 3.19 99.24 variational quality control
0.06 0.06 0.06 0.07 85.71 recalculate R−1

0.20 0.32 0.27 0.32 84.37 recalculate pre-conditioner
3.44 3.60 3.59 3.59 99.88 CG solver

225.38 226.35 225.97 226.44 99.79 iterations > 1
10.13 10.29 10.25 10.29 99.57 estimate analysis error
0.12 0.25 0.19 0.24 77.87 distribute model columns for post mult.

195.31 199.83 196.81 200.14 98.33 post multiplication
0.87 1.63 1.29 1.65 78.07 gather results on model grid
10.82 10.90 10.88 10.91 99.74 add (interpolate) increment
50.85 51.91 51.76 51.89 99.75 write GRIB-file
0.03 1.16 0.10 1.32 7.62 write psas.info file

644.67 649.17 648.15 650.87 99.58 Total

Table 27.2: CPU- and wall time used for different parts of the program (20 000 obser-
vations, run on 16 processors). The first 3 columns show the minimum, maximum, and
mean CPU-time (in seconds) spend on any processor. The forth and fifth column shows
wall-time (seconds) and relation of mean CPU-time to wall-time (%), respectively. Values
larger than 100% of the latter are due to the limited precision of the timing functions.
The times are stopped by the Fortran 90 intrinsic routines cpu_time and system_clock,
respectively.
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Chapter 28

Source Code Reference

28.1 Observations

28.1.1 Observation data type – Module mo_t_obs

28.1.2 Observation operator – Module mo_obs

28.1.3 SYNOP observation operator – Module mo_synop

28.1.4 TEMP observation operator – Module mo_temp

28.1.5 TOVS observation operator – Module mo_tovs

28.1.6 GPS Radio Occultation operator – Module mo_occ

This module contains the routines specific to the GPS radio occultation operator. The
routines make use of the data type definitions of module mo_t_obs. In subroutine
process_occ the following actions are performed, triggered by the values of the variable
tsk:
Module initialisation (TSK_INIT)
At first, the namelist group GPS_RO is read (subroutine read_occ_nml ). The geoid

anomalies are read (subroutine set_geoid ) and stored in the grid data structure.
Input and Data selection (TSK_READ)
Currently input files (vda-format) provided by the CT algorithm written by Michael

Gorbunov are read, using subroutine read_occ_infvda . The path and filenames of the
data sources are explicitely specified by namelist RO_VDA. Bending angles are provided in
high vertical resolution and thus rays at a reasonable spacing are selected according to
the parameters provided by namelist GPS_RO.
The content of the data file is stored in variables of type t_occ and t_rays (selected

rays only). These variables are kept in the observational data structure (component par
of variable obs, type t_obs). Their components very closely reflect the content of the
data file:

type t_ray ! obs for one bending angle
real(wp) :: p = invalid ! impact parameter [km]

391
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real(wp) :: eps = invalid ! bending angle [rad]
real(wp) :: var = invalid ! bending angle variance [rad^2]
real(wp) :: var2 = invalid ! variance interpolated-uninterpolated
type(cartesian) :: rleo ! LEO position
type(cartesian) :: vleo ! LEO speed
type(cartesian) :: rgps ! GPS position
type(cartesian) :: vgps ! GPS speed

end type t_ray

type t_occ ! GNNS occultation data type (ray tracer)
character(len=64) :: file ! Input file name
integer :: yyyy ! Occultation date: year
integer :: mo ! Occultation date: month
integer :: dd ! Occultation date: day
integer :: hh ! Occultation UTC : hour
integer :: mi ! Occultation UTC : minute
real(wp) :: sec ! Occultation UTC : second
integer :: occid ! Occultation ID
type (geodetic) :: gp ! Geodetic latitude ,longitude [deg]
type (cartesian) :: xlc ! Local curvature center (cartesian)
real(wp) :: rlc ! Local curvature radius [km]
real(wp) :: xb ! Back propagation plane position [km]
integer :: wf ! GPS data smoothing window [points]
integer :: w ! BP data smoothing window [points]
integer :: wi ! Ionospheric smoothing window [points
integer :: nray = 0 ! number of rays used
logical :: checked = .false. ! rays are all valid

end type t_occ

Identify the model columns required (TSK_SETUP_COLS)
The model columns required by the ray-tracing operator are identified by calling sub-

routine ECHAM_rays_idx_init . The indices of the model columns are stored in the
components mcol and spot% imcol of the observation variable obs (type t_obs).
Set up interpolation space (TSK_SETUP_FULL)
The variables used in the interpolated space (temperature and humidity at model levels

at the model columns identified by obs% spot% imcol) are marked in obs% t_int.
Set up the Jacobi-matrix (TSK_K)
Run the tangent linear operator (TSK_H)
Setup of the radio occultation data structures
derivation of refractivity
Ray tracing
Adjoint calculations
Background error covariances
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28.1.7 GNSS slant delay operator – Module STD_operator

Empty: GNSS Slant Total Delay operator: Theory

Signal Delays

The optical path length L is defined by the integral

L =

∫
S

n(s) ds (28.1)

S beeing the true bended signal path in the atmosphere and n(s) beingt the refraction
index along this path. The optical path difference ∆L as defined by

∆L =

∫
S

n(s) ds−
∫
G

ds (28.2)

is the difference between L and the undisturbed signal propagation in vacuum (n = 1).
The signal path in vacuum is a straight line G and

∫
G
ds is the geometric distance between

transmitter and receiver. After some algebra two contributions to ∆L can be identified:

∆L =

∫
S

n(s) ds+

∫
S

ds−
∫
S

ds−
∫
G

ds (28.3)

=

∫
S

(n(s)− 1) ds+

∫
S

ds−
∫
G

ds (28.4)

=

∫
S

(n(s)− 1) ds+ (S −G) (28.5)

The first term
∫
S

(n(s)− 1) ds describes the delay due to the delayd signal propagation
in matter (v < c) and the second term describes the extra travel time due to the increased
path length of the bended signal path (S-G). The latter is referred to as the geometric
delay. The speed of light enters the equations implicitly as the refraction index n = c

v
, v

beeing the speed of light in matter, c beeing the vacuum speed of light. The term n− 1
is usually rather small, especially in gases. Therefore, the refractivity N is defined:

N = 106 · (n− 1) (28.6)

leading to

∆L = STD = 10−6 ·
∫
S

N ds+ (S −G) (28.7)

∆L is referred to as the slant total delay (STD). The term S − G is much smaller than
the first term and is often neglected, leading to the well known approximation

STD ≈ 10−6 ·
∫
S

N ds (28.8)

This approximation is not used by the STD observation operator. At low elevations the
STD is about 20 m – 25 m and the geometric delay is about 15 cm – 25 cm, i.e. approx.
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1 % of the total delay. In zenith direction the STD (= ZTD) is about 2.4 m and the
geometric delay is almost zero.
The STD provided by GNSS data processing is a quantity related to the neutral atmo-

sphere 1, i. e. ionospheric effects were separated before the STD was estimated. As the
STD observation operator must provide the same physical quantity the integral 1.7 has
to deal only with the subpath S inside the neutral atmosphere. This is not necessarily
true for the raytracing. The free charges in the ionosphere have a strong impact on the
signal path. i. e. on the point where the signal enters the neutral atmosphere. However,
this effect is small and is neglected by the STD operator.

Raytracing

According to Fermat’s principle each electromagnetic wave propagates along a path S
which minimizes the optical path length:∫

S

n(s) ds ⇒ min. (28.9)

Assuming that the field of the refracion index n is known, this equation can be used to
estimate the bended signal path in the atmosphere. The variational problem is best solved
in a Cartesian system with the x axis pointing from the receiver to the satellite. The y
and z coordinates of the signal path become functions of x which describe the deviations
from a straight line:∫ b

a

n(x, y, z)
√

1 + y′(x)2 + z′(x)2 dx =

∫ b

a

F (x, y(x), y′(x), z(x), z′(x)) dx ⇒ min.

The variational problem can be translated to a system of partial differential equations
using the Euler-Lagrange equations:

∂F

∂y
−

d

dx

∂F

∂y′
= 0 ⇒

∂F

∂y
−

∂2F

∂x∂y′
−

∂2F

∂y∂y′
−
∂2F

∂y′2
= 0

∂F

∂z
−

d

dx

∂F

∂z′
= 0 ⇒

∂F

∂z
−

∂2F

∂x∂z′
−

∂2F

∂z∂z′
−
∂2F

∂z′2
= 0

(28.10)

This leads to two coupled ordinary differential equations for the functions y(x) and z(x)

y′′ =
(ny
n
− nx

n
y′
)

(1 + y′2 + z′2 )

z′′ =
(nz
n
− nx

n
z′
)

(1 + y′2 + z′2 ) (28.11)

with
nx =

∂ n(x, y, z)

∂x
, ny =

∂ n(x, y, z)

∂y
, nz =

∂ n(x, y, z)

∂z
(28.12)

1In the GNSS literature the term “troposphere” is very often used as a sysnonym for the neutral
atmosphere which reaches up to ∼ 100 km. Regarding the propagation of radio waves the atmosphere is
divided into the neutral atmosphere and the ionosphere and everything below the ionosphere is regarded
as “troposphere”.
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The equations 28.11 have to be solved with the boundary conditions

y(a) = z(a) = y(b) = z(b) = 0 (28.13)

which guarantee that the signal propagates from the transmitter at x = b to the receiver
at x = a.
For the numerical solution a set of supporting points on the x axis needs to be defined:

xi , i = 1, . . . , N , with x1 = a , xN = b

Using these xi the differential equations could be approximated by finite differences but
a more general solution can be found by connecting neigbored points by polynomials and
differentiating the polynomials. The Lagrange polynomials L(x) were chosen to connect
sets of three neighbored points (xi−1, xi, xi+1):

L(x) =
k=i+1∑
k=i−1

fk · lk(x) , lk(x) =
i+1∏

m=i−1
m 6=k

(x− xm)

(xk − xm)

Here fk is the value of the function at the node xk, i. e. fk = yk or fk = zk and the
lk are the Lagrange basis polynomials. After replacing the functions y(x) and z(x) with
the corresponding Lagrange polynomials and their derivatives the following system of
algebraic equations is obtained:

k=i+1∑
k=i−1

yk l
′′
k(xi) =

(
ny
n
− nx

n

k=i+1∑
k=i−1

yk l
′
k(xi)

)
·1 +

(
k=i+1∑
k=i−1

yk l
′
k(xi)

)2

+

(
k=i+1∑
k=i−1

zk l
′
k(xi)

)2
 (28.14)

k=i+1∑
k=i−1

zk l
′′
k(xi) =

(
nz
n
− nx

n

k=i+1∑
k=i−1

zk l
′
k(xi)

)
·1 +

(
k=i+1∑
k=i−1

yk l
′
k(xi)

)2

+

(
k=i+1∑
k=i−1

zk l
′
k(xi)

)2
 (28.15)

The 2(N − 2) non-linear equations with 2(N − 2) unknowns can now be solved in order
to obtain the yi and zi which define the functions y(x) and z(x) at the supporting points
xi, i = 2, . . . , N − 1. The values y1 = yN = 0 and z1 = zN = 0 are defined by the
boundary conditions and need not to be estimated. The derivatives of the Lagrange basis
polynomials lk are required only at the supporting points xi and are simple combinations
of the point distances ∆xi.
The equations XX can be rearenged and written in vector notation as G(x) = 0, where

the vector function

G = (g1,2, g2,2, . . . , g1,i, g2,i, . . . , g1,N−1, g2,N−1)
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consists of the functions g1(xi) = g1,i defined by equ. 28.14 and the functions g2(xi) = g2,i

defined by equ. 28.15 evaluated at each supporting point xi, i = 2, . . . , N − 1. The vector
x of unknown is given by

x = (y2, z2, . . . , yi, zi, . . . , yN−1, zN−1)

A system of non-linear equatins G(x) = 0 can be solved with the Newton algorithm which
finds the roots of the equations iteratively:

xk+1 = xk −
(
∇G(xk)

)−1 ·G(xk)

In this form the inverse of the Jacobian J = ∇G is required. In most cases it is more
efficient to solve a system of linear equations which provides the corrections ∆xk to the
latest estimate of the root xk:

∆xk · ∇G(xk) + G(xk) = 0 ⇒ xk+1 = xk + ∆xk (28.16)

The iteration continues until the norm
∣∣∆xk

∣∣ is sufficiently small and xk is a good estimate
of the root.
The Newton algorithm requires the Jacobian of G, i. e. the partial derivatives of G

with respect to the 2(N − 2) unknowns yi and zi. In equ. 28.14/28.15 it was decided
to connect 3 neigbored supporting points by the interpolating Lagrange polynomial and
consequently each single function gi depond on only 6 variables:

gi(x) = gi (yi−1, zi−1, yi, zi, yi+1, zi+1)

This leads to a Jacobian with only 6 non-zero entries per row. The consecutive functions
g1,i and g2,i always depend on the same set of unknowns and the Jacobian is a band matrix
of band width 7.
The band width depends on the number of supporting points which are connected

by the interpolating Polynom. If r points are connected the band width is 2r + 1. In
case of the Lagrange polynomials r = 3 is the minimum number of points and 7 is the
minimum band width. Chosing a larger r should lead to more accurate and stable results
but increases the number of partial derivatives which need to be computed and also the
computing time to solve a system of linear equation with a larger band width. It seems
that r = 3 is entirely sufficient.
The system of linear equation defined by equ. 28.16 can be solved by any standard

technique but there are especially efficient algorithms for solving band matrices.
The Newton algorithm does in general not provide stable solutions and its results can

depend to a large degree on the start vector x0 of the iteration. Fortunately, the deviations
from a linear signal propagation are rather small, i. e. several 100 m over distances of
several 100 km, and a straight line (x0 = 0) is a good starting point. It turned out
that even a rather simple implementation of a Newton algorithm leads to stable and fast
results. Usually, 1 – 3 iterations are sufficient to obtain accurate results.
The vector x provided by the Newton algorithm is the final solution for the bended

signal path in the atmosphere. The supporting points xi and the yi and zi from x define
the bended signal path (xi, yi, zi) which can in the next step be used to estimate the STD.
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Figure 28.1: Raybendeing

The signal delay

After the raytracer provided an estimate of the signal path S in the atmosphere the signal
delay can be computed using equ. 28.2. The second part

∫
G
ds is the geometric distance

between satellite and receiver which is known from the corresponding coordinates and the
first part

∫
S
n(s) ds was already computed within the last step of the raytracer:

STD =

∫ b

a

n(x, y, z)
√

1 + y′(x)2 + z′(x)2 dx−
∫
G

ds

The derivatives of the discrete functions y(x) and z(x) are obtained by computing the
derivatives of the corresponding Lagrange polynomials.

Reference systems, coordinates

geographische Koordinaten, ECEF, lokales Horizontsystem, Slant-System, ...

Transformations

Transformations between ellipsoidal and cartesian coordinates The ellipsoidal
coordinates longitude λ, latitude β and height h can be transformed into ECEF kartesian
coordinates X, Y and Z and vice versa. It is assumed that the origin of the ECEF
cartesian system, i. e. the center of Earth, is also the center of the ellipsoid.

1) Transformations from ellipsoidal to cartesian coordinates Querkrüm-
mungsradius des Ellipsoids:

N =
a√

1− e2 · sin2 β
=

a√
1− f(2− f) sin2 β

=
a2√

a2 + cos2 β + b2 sin2 β
(28.17)
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Figure 28.2: Raybendeing

The transformation ellipsoidal → cartesian coordinates is given by:

X = (N + h) · cos β · cosλ (28.18)
Y = (N + h) · cos β · sinλ (28.19)
Z =

(
(1− e2)N + h

)
· sin β (28.20)

=

(
N

1 + e′2
+ h

)
· sin β (28.21)

=

(
b2

a2
N + h

)
sin β (28.22)

These equations show no singularities and can be translated to computer code without
any modifications.
The specific form of the transformation depends on the choice of axes and angles as

given in ??. Here it is assumed that

0 ≤ λ ≤ 2 π (28.23)

−π
2
≤ β ≤ −π

2
(28.24)

The results are identical if the longitude is between −π and +π, positive values indicating
eastern directions and negative values indicating western directions. However, the trans-
formation from cartesian to ellipsoidal coordinates always provides longitudes between 0
and 2π.
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2) Transformations from cartesian to ellipsoidal coordinates The transfor-
mation from cartesian to ellipsoidal coordinates is more complicated and several special
conditions need to be regarded (routine Cart2Ellips):

γ = arctan

{
Z + e′2 b sin3 θ

ρ− e2 a cos3 θ

}
(28.25)

ϕ = 2 · arctan

(
Y

|X|+ ρ

)
(28.26)

H =
ρ

cos β
−N (28.27)

with
ρ =
√
X2 + Y 2 (28.28)

θ = arctan
Z a

ρ b
, (28.29)

N =
a√

1− e2 · sin2 β
(28.30)

(β needs to be computed before N ! Here, the latitude β is required, not ϕ !)
The ellipsoidal coordinates (λ, β, h) are:

λ =


0◦ if X = 0, Y = 0
ϕ if X ≥ 0, Y ≥ 0
360◦ + ϕ if X ≥ 0, Y < 0
180◦ − ϕ if X < 0

(28.31)

β =


+90◦ if ρ = 0, Z > 0
0◦ if ρ = 0, Z = 0
−90◦ if ρ = 0, Z < 0
γ if ρ 6= 0

(28.32)

h =


−b if ρ = 0, Z = 0
|Z| − b if ρ = 0, Z 6= 0
H if ρ 6= 0

(28.33)

The longitude λ and the latitude β are within the range

0 ≤ λ ≤ 2 π (28.34)

−π
2
≤ β ≤ −π

2
(28.35)

the height h is givem in meters.

Transformations between the local horizon system and the “slant system” The
STD observations are given with respect to the local horizon system, i. e. the azimuth α
and elevation ε of the GNSS satellite are given for a specific GNSS station. Azimuth and
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elevation define a vector pointing from the GNSS station to the GNSS satellite and are
independent from the bended signal path in the atmosphere.
The signal path can most easily be computed in a reference system which is aligned

to the satellite-receiver-axis by solving Fermats’s principle. Therefore, it is necessary to
transform coordinates from the local horizon system to the “slant system”. The “slant
system” is defined as follows:

1. The origin of both reference systems is the GNSS station.

2. The x axis of the slant system points from the GNSS station to the GNSS satellite,
i. e. defines the satellite-receiver-axis.

3. The z axis is restricted to a plane defined by the the center of Earth, the GNSS
station and the GNSS satellite, i. e. for ε = 0◦ the z axis is the vertical axis and for
ε = 90◦ the z axis is a horizontal axis.

4. The y axis is chosen in order to obtain a right handed Cartesian system.

It is assumed that azimuth and elevation are transformed to Cartesian coordinates defining
a left handed local horizon system (x, y, z) (see XXX). The transformation from the local
horizon system (x, y, z) to the slant system (x′, y′, z′) is described by two basic rotations
and one reflection at the y plane. The corresponding matrix R is given by

R = Ry(ε) ·Rz(α) · Sxz (28.36)

with

Ry(ε) =

 cos ε 0 sin ε
0 1 0

− sin ε 0 cos ε

 , Rz(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , Sxz =

1 0 0
0 −1 0
0 0 1


The combined matrix

R(ε, α) =

 cos ε cosα − cos ε sinα sin ε
− sinα − cosα 0

− sin ε cosα sin ε sinα cos ε

 (28.37)

leads to a system of equations

x′ = x · cos ε cosα− y · cos ε sinα + z · sin ε
y′ = −x · sinα− y · cosα

z′ = −x · sin ε cosα + y · sin ε sinα + z · cos ε

which is implemented in the subroutine LocalHorz2Slant, STD_coord.f90.
The inverse transformation from the slant system to the Cartesian local horizon system

is given by
R−1 = RT = Sxz ·Rz(α) ·Ry(ε) (28.38)
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with

R−1(ε, α) =

 cos ε cosα − sinα − sin ε cosα
− cos ε sinα − cosα sin ε sinα

sin ε 0 cos ε

 (28.39)

The corresponding system of equations

x = x′ · cos ε cosα− y′ · sinα− z′ · sin ε cosα

y = −x′ · cos ε sinα− y′ · cosα + z′ · sin ε sinα

z = x′ · sin ε+ z′ · cos ε

is implemented in the subroutine Slant2LocalHorz, STD_coord.f90.
Empty: GNSS Slant Total Delay operator: Implementation

Subroutine structure of the STD operator
std_delay_1

SignalPath
Newton03Ell

FermatDglJacobi
Slant2LocalHorzMat
LocalHorz2CartMat
Slant2EllipsMat
RefracModelGrad2
ExpInt1Dgrad2
Slant2EllipsMatGrad2

BandSolv
PathRefrac

Slant2Ellips
RefracModel

LayerSearch
NWein

PathDelay
IntegPolyCube

LineRefrac (optional)
RefracModel
IntegPolyCube

COSMO Interface to the STD Operator

The main part of the COSMO interface to the STD observation oprator is the routine
organize_gnss_std in file src_obs_use_org.f90.
The purpose of the COSMO interface is to

1. read and distribute the station data, e. g. coordinates, names,
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2. read and distribute the STD observations and

3. collect and distribute the model fields (p, T , qv) required to compute the delays.

The station information needs to be read only once and is distributed to all nodes as the
observations will be distributed in order to optimize the load balance and all nodes must
be able to process observations from all stations. The STD observations are read as soon
as new data are available. Currently, the STDs come in hourly batches which are read
and distributed in one pass. Within each time step of the COSMO model it is checked
if/how many STDs with the corresponding observation time are available. The required
module columns along the signal paths are requested and distributed between the nodes
and the appropriate columns are transferred to the STD operator.

28.2 Model data structures

28.3 Vectors and Matrices – Module mo_dec_matrix
This module holds the declaration of data types t_dec_matrix for matrices and
t_dec_vector for vectors in block decomposed form to be stored on different processors
in an distributed memory environment. Arithmetic operations +, -, *, /, . . . are defined
on these data types. Using this data structures and operations, algebraic operations using
vectors and matrices can be furmulated on a high level of abstraction hiding implemen-
tation details as sparse matrix representations or parallelization issues. Based on these
data types and operators preconditioned conjugate gradient algorithms are implemented
in module mo_solver.

Contents of module mo_dec_matrix

Data Type definitions:
Data types t_vector, t_ivector, and t_matrix hold matrices vec-
tors in block decomposed form to be stored on different processors
in an distributed memory environment. General information on the
distribution is stored in the data type t_dec_info.

t_vector: decomposed vector.
t_ivector: decomposed integer-vector.
t_matrix: block decomposed matrix.
t_dec_info: decomposition meta data.

components of these data types (in general not referenced directly):

t_matrix_block: matrix blocks.
t_vector_segm : vector segments.
t_ivector_segm: vector segments.
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t_info_block : decomposition meta data.

The characteristics of the matrices (component %qual of type
t_matrix) is indicated by one of the following predifined values:

GENERAL: general representation, no restrictions.
BDIAG: the matrix only consists of diagonal blocks.

Matrix blocks may be stored in different representations (compo-
nent %repr of type t_matrix_block):

ZERO: all elements are zero, no storage required.
IDENT: identity matrix, no storage required.
DIAGONAL: diagonal matrix.
FULL: full n x m representation.
PACKED: only upper triangle is stored.
CHOLES: Cholesky decomposed (inverse matrices).
CSR: compressed sparse row representation.
CSC: compressed sparse column representation.
MIRROR: this i,j block is not stored on this pe, use j,i instead.

For initialization and deinitialization the routines construct
and destruct are defined on variables of data types t_matrix,
t_vector and t_dec_info. The effect of delete_storage is sim-
ilar to destruct, but dedicated to the deallocation of pointer
components of return arguments from functions. Subroutine
dec_matrix_mem diagnoses the memory used.

construct: Initialization.
destruct: Deinitialization, release memory of pointer components.
delete_storage: Release memory of temporary variables (function return

arguments).
dec_matrix_mem: Diagnostic printout of memory used.

Arithmetic operations are defined on variables of data types
t_matrix, t_vector:

operator (+): vector + vector.
operator (-): vector − vector.
operator (*): matrix ∗ vector; scalar ∗ vector.
operator (/): ’elemental’ vector / vector.
operator (**): vector ∗∗ integer.
operator (==): comparison: vector == vector.
assignment (=): assignment: vector = vector; vector = scalar; matrix =

matrix.
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assign: matrix = matrix with optional parameters.
reorder: reorder the elements of a matrix or vector.
add_to: matrix = matrix + matrix.
diag: diagonal of a matrix matrix.
dot_product: dot product.
norm2: 2-norm of a vector.
abs: ’elemental’ absolute value.
max: ’elemental’ maximum value.
min: ’elemental’ minimum value.
amax: maximum of absolut value.
sum: vector element sum.
maxval: maximum value of elements.
minval: minimum value of elements.
random_number: set vector elements with random numbers (equaly dis-

tributed between 0 and 1).
random_gauss: set vector elements with normal distributed random

numbers.
print: print vector.
size: size of vector.
get_row: return one row of the matrix.
crep: character used for visualisation.

Operations on matrix blocks:

allocate_block: allocate components of a matrix block.
pack_matrix: store matrix in packed format.
csr_matrix: store matrix in compressed sparse row format.
csc_matrix: store matrix in compressed sparse column format.
cholesky: calculate Cholesky factorisation.

The following routines gather the vector elements on one or all PE’s.

global: Store the vector segments redundantly on all processor
elements.

gather: Gather the vector segments temporarily on a specific
processor element.

release_mem: Release the temporarily stored vector segments.

The following routines send/receive/broadcast matrix blocks.

p_send: overloaded MPI_SEND routine.
p_recv: overloaded MPI_RECV routine.
p_bcast: overloaded MPI_BCAST routine.
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Examples

Interfaces

In detail the definitions of the public entities in this module are defined as follows:

Type t_dec_info

Decomposition meta data.

For a given vector or matrix detailed information on thet_matrix distribution over
processors is stored in the data type t_dec_info. This information is required
as a parameter for the specific construct routines for the data types t_vector,
t_ivector and t_matrix.

A variable of type t_dec_info holds the total number of elements n, the number of
matrix blocks for a row or column or the number of vector segments n_b as well as
the array b of type t_dec_info:

type t_dec_info
integer :: n = 0 ! number of elements
integer :: n_b = 0 ! number of blocks
type (t_info_block) ,pointer :: b (:) => NULL() ! info blocks

end type t_dec_info

For each block, b specifies the number of vector components n and the processor
element pe the vector elements and matrix diagonal blocks or vector segments are
stored on.

type t_info_block
integer :: n = 0 ! number of elements
integer :: pe = -1 ! processor hosting this block

end type t_info_block

Type t_vector

Vector data-type definition.

Vectors are decomposed into segments (corresponding to the respective blocks of de-
composed matrices). The n coefficients of a segment are stored on processor element
PE within the component x(:). More specific information on the decompostition
may be retrieved by the reference info to data type t_dec_info.

type t_vector_segm
integer :: pe = -1 ! processor hosting this block
integer :: n = 0 ! number of elements
real(wp) ,pointer :: x(:) => NULL() ! coefficients

end type t_vector_segm
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The segments of the decomposed vector are kept in the component s(:) of the data
type t_vector. n and specifies the total number of elements and n_s the number of
segments. alloc_l indicates if the vector is a local variable within a subroutine or
function. This information is required for the deallocation of pointer componebts
in function return arguments. Arrays segments may be either distributed over pro-
cessors ore stored rdundantly on each processor. The latter case is indicated by
global=.false..

type t_vector
type (t_dec_info) ,pointer :: info => NULL() !
decomposition info
character(len=8) :: name = ’???? ’ ! name
integer :: n = 0 ! number of elements
integer :: n_s = 0 ! number of segments
integer :: alloc_l = 0 ! allocation level
logical :: global = .false. ! global allocation
type (t_vector_segm) ,pointer :: s (:) => NULL() ! vector blocks
type (t_vector) ,pointer :: next => NULL() ! linked list for
type (t_vector) ,pointer :: prev => NULL() ! memory usage diagnostics

end type t_vector

Type t_ivector

Integer-vector data-type definition.

The definition of type t_ivector is similar to that of type t_ivector; the main
difference is that the component s%(:)% x(:) is of type integer instead of real:

type t_ivector
...
type (t_ivector) ,pointer :: next => NULL() ! linked list for
type (t_ivector) ,pointer :: prev => NULL() ! memory usage diagnostics.

end type t_ivector

type t_ivector_segm
..
integer ,pointer :: x(:) => NULL() ! coefficients

end type t_ivector_segm

Type t_matrix

Matrix data-type definition.

The data type t_dec_matrix holds a symmetric nxn matrix decomposed in n_b
times n_b blocks b(:,:) of data type t_dec_matrix. More specific information on
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the decompostition may be retrieved by the reference info. Special characteristics
of the matrix (e.g. blog diagonal matrices) are indicated by the component qual
with allowed values given by the predefined constants GENERAL or BDIAG. The latter
value indicates that only diagonal blocks b(i,i) are present.

Each matrix block is stored in a variable of type t_matrix_block defining the
number of rows m and columns n within this block as well as the number of nonzero
elements nonzero. (For nonzero==0 no further storage is required). Matrix blocks
are distributed over processor elements in a parallel environment. The index of the
processor element hosting this block is specified in pe. Currently the parallisation
strategy is to hold all elements of a row on the same processor element. Depending on
the value of the representation flag repr the matrix elements are stored in different
representations:

ZERO:
All elements of the block are zero, no storage is required.

IDENT:
The matrix block is the identity matrix, no storage is required.

DIAGONAL:
The matrix block is a diagonal matrix. The diagonal is stored in component
packed(1:n).

FULL:
The block is stored in full representation in component full(1:n,1:m).

PACKED:
The block is symmetric, only the upper triangle is stored in component packed

CHOLES:
The block represents the inverse of a matrix block, stored in Cholesky decom-
posed form in component packed(:)

CSR, CSC:
If the number of nonzero elements is small, the matrix may be stored in a
compressed sparse row or column representation using packed(:), ia(:) and
ja(:).

MIRROR:
Because of symmetry, this block b(i,j) is not stored, the transpose of b(j,i)
shall be used instead.

The matrix may have the following characteristics (

integer ,parameter :: GENERAL = 0 ! general representation, no restrictions
integer ,parameter :: BDIAG = 1 ! block diagonal representation

Each block may be represented in one of the following forms (% repr)
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integer ,parameter :: ZERO = 0 ! all elements are zero, not stored
integer ,parameter :: IDENT = 1 ! identity matrix, no storage required
integer ,parameter :: DIAGONAL = 2 ! diagonal matrix
integer ,parameter :: FULL = 3 ! full n x m representation
integer ,parameter :: PACKED = 4 ! only upper or lower triangle is stored
integer ,parameter :: CHOLES = 5 ! Cholesky decomposed (inverse matrices)
integer ,parameter :: CSR = 6 ! compressed sparse row representation
integer ,parameter :: CSC = 7 ! compressed sparse column representation
integer ,parameter :: MIRROR = 9 ! this i,j block is not stored, use j,i

type t_matrix_block
integer :: m = 0 ! number of rows
integer :: n = 0 ! number of columns
integer :: nonzero = -1 ! number of nonzero elements
integer :: pe = -1 ! processor hosting this block
integer :: repr = -1 ! representation (FULL,..)
character :: tri = ’’ ! triangle (’U’ or ’L’) stored
real(wp) ,pointer :: full (:,:) => NULL() ! coefficients FULL repres.
real(wp) ,pointer :: packed (:) => NULL() ! coefficients PACKED repres.
integer ,pointer :: ia (:) => NULL() ! row indices CSR repres.
integer ,pointer :: ja (:) => NULL() ! column indices CSR repres.

end type t_matrix_block

type t_matrix
type(t_dec_info) ,pointer :: info => NULL() !
decomposition info
character(len=8) :: name = ’???? ’ ! name
integer :: n = 0 ! number of rows/cols
integer :: n_b = 0 ! number of blocks/col
integer :: qual = GENERAL ! qualities
type(t_matrix_block) ,pointer :: b (:,:) => NULL() ! matrix blocks
type(t_matrix) ,pointer :: next => NULL() ! linked list for
type(t_matrix) ,pointer :: prev => NULL() ! memory
usage diagn.

end type t_matrix

Interface construct

Construct is a generic routine name acting on variables of type t_vector,
t_ivector, t_matrix, or t_dec_info. It must be called for any variable of these
types before its first use to set up information on the data distribution and to allo-
cate pointer components. Furthermore the variables are inserted into a linked list
in order to monitor the memory consumption. The specific interfaces are as follows:
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subroutine construct_dec_info (z, n, n_b)

This routine is called to set the number of elements of the vectors or the number of
rows and columns of the matrices used, as well as the number of blocks:

The parameters denote:
z type: type (t_dec_info) ,intent(out)

Variable to hold information on the data distribution.
n type: integer ,intent(in)

Number of elements of vectors or number of rows and
columns of the matrices used.

n_b type: integer ,intent(in)
Number of vector segments or matrix blocks per row or
column.

subroutine construct_info_block (z, n, pe)

This routine must be called for any element of component b(:) of a variable of
type t_dec_info in order to specify the number of elements in a vector segment or
matrix block and to specify the processor index the segment or matrix is stored on.

The parameters denote:
z type: type (t_info_block) ,intent(out)

Type of component b of type t_dec_info.
n type: integer ,intent(in)

Number of elements in this segment or block.
pe type: integer ,intent(in)

Processor index the segment or block is stored on.

subroutine construct_vector (x ,info [,name] [,global])

The parameters denote:
x type: type (t_vector) ,intent(out)

Variable to initialise.
info type: type (t_dec_info) ,pointer

Information on memory decomposition used to set up
the variable x. A reference to this structure is assigned
to a component of x. It may be used in subsequent
operations.

name type: character(len=*) ,intent(in) ,optional
If present, this string is assigned to component x% name.
It may used in subsequent routines (printout, diagnos-
tics of memory usage) to identify this vector.

global type: logical ,intent(in) ,optional
If present and .true., The content of the vector is al-
ways stored redundantly on all processor elements.
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subroutine construct_ivector (x ,info [,name] [,global])

The parameters denote:
x type: type (t_ivector) ,intent(out)

Variable to initialise.
... The remaining variables are the same as those in sub-

routine construct_vector.

subroutine construct_matrix (a ,info [,name] [,qual])

The parameters denote:
a type: type (t_matrix) ,intent(out)

Variable to initialise.
info type: t_dec_info ,pointer

Information on memory decomposition used to set up
the variable a. A reference to this structure is assigned
to a component of a. It may be used in subsequent
operations.

name type: character(len=*) ,intent(in) ,optional
If present, this string is assigned to component a% name.
It may used in subsequent routines (printout, diagnos-
tics of memory usage) to identify this matrix.

qual type: integer ,intent(in) ,optional
If present, this parameter should have one of the pre-
defined values GENERAL (default) or BDIAG. If BDIAG is
passed, the matrix is a block-diagonal matrix. In this
case the offdiagonal elements are assigned to zero.

Subroutine destruct (x)

Destruct is a generic routine name acting on variables x of type: t_vector,
t_ivector, t_matrix, t_matrix_block, or t_dec_info. Destruct must be called
for any variable of these types before they go out of scope. Pointer components
of the variables are deallocated. The variables are removed from the linked list
maintained for monitoring of allocated memory.

Subroutine delete_storage (x)

The parameters denote:
x type: type (t_vector) ,intent(in)

Variable to clean up.
This routine deallocates pointer components of temporary variables (function return
arguments) passed to other routines. The argument is intent(in) because the
arguments of the subroutines or function may require this. This routine shall be
used only inside routines with actual arguments of type t_vector. Details of usage
are given in Section 28.3.
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Implementation details: Memory allocation diagnostics

Implementation details: Deallocation of temporary data

Implementation details: Matrix block representations

28.4 Background error covariance model mo_fg_cov
Module mo_fg_cov provides the routines to set up the background error covariance matrix.
The routines calculate covariances for a pair of quantities (out of geopotential height,
virtual temperature, wind component u, or v) at two locations (specified by latitude,
longitude and log(pressure) ). In order to make use of simlifications in case of separability
of vertical and horizontal correlations a two-step aooroach is followed:

1. Observation points with the same horizontal coordinates (in general all observed
quantities of a report) are gathered in a set. A routine is called to precompile
quantities applicable to this set (variances, vertical correlations, etc.). These quan-
tities are kept in a derived data type t_rowcol.

2. For any pair of observation sets the corresponding covariance matrix is calculated
by subroutine making use of the precompiled quantities in data type t_rowcol.

As an alternative to step 2, instead of the covariance matrix between the two sets of
observations, the product of this matrix with a vector may be compiled on the fly. This
mode is used in the postmultiplication step.

28.5 Utilities

28.5.1 Write or Read GRADS Plot-Files – Module mo_grads

GRADS is a freeware plotting software ( Home-page2, Users Guide3) able to handle (reg-
ular, not icosahedral) gridded model data and observational data as well. Data is stored
as IEEE unformatted data without Fortran record marks. (GRADS also has capabilities
to read GRIB encoded files not used here). Information on the file content is stored in
a descriptor file (extension .ctl). This module provides routines to read and write data
and description files.

Contents of module mo_grads

Data Type definitions:
t_ctl: Data type holding the content of the GRADS descriptor

file.
Routines to set up the content of the GRADS descriptor file:

2http://www.iges.org/grads/
3http://www.iges.org/grads/gadoc/

http://www.iges.org/grads/
http://www.iges.org/grads/gadoc/
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init_ctl: Routine to set the initial content of a variable of type
t_ctl.

read_ctl: Routine to read the content of a GRADS descriptor file
into a variable of type t_ctl.

add_var: Add an entry for a field to the descriptor file (variable
of type t_ctl) of a gridded data set.

write_ctl: Routine to write the content of a variable of type t_ctl
to a GRADS descriptor file.

destruct: Deallocate memory used by components of a variable of
type t_ctl.

The following routines assist by converting components of t_ctl:
c_month: Character array to convert an integer (1..12) to a string

(’jan’..’dec’) encoding the month in the GRADS descrip-
tor file.

mmm2mm: Function to convert a string (’jan’..’dec’ or
’JAN’..’DEC’) to an integer (1..12). 0 is returned
in case of an error.

The following routines read or write from/to the GRADS data file.
While writing the content of the content of the descriptor file stored
in some variable of type t_ctl is updated.
write_var: Write a gridded field to the GRADS file.
read_var: Read a gridded field from the GRADS file.
write_stat: Write station data to the GRADS file.

Examples

To write a gridded GRADS data set the following sequence of operations may be per-
formed:

type (t_ctl) :: ctl

Declare a variable ctl to hold the descriptor of the GRADS file.

call init_ctl (ctl, file=’filename’, nx=128, ny=64, ke=31)

Initialize the descriptor file content for a gridded data set holding fields of size
128x64x31.

call add_var (ctl, ’t’, 31, ’temperature (K)’)
call add_var (ctl, ’ps’, ’surface pressure (hPa)’)

Add two variables to the list in the file descriptor. In most cases these calls are not
required because the list is extended automatically as long as variables are added
within the first time step.

call write_var (ctl, t(:,:,:), ’t’)
call write_var (ctl, q(:,:,:), ’q’)
call write_var (ctl, ps(:,:), ’ps’,t=2)
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Write the fields t and q at time step 1 and ps at time step 2 to the GRADS file at
disk.

call write_ctl (ctl)
call destruct (ctl)

Finally write the file descriptor to the disk. Deallocate pointer components of the
descriptor in not needed any more.

To read back the surface pressure the following sequence may be used:

call read_ctl (ctl, ’filename’)
call read_var (ctl, ps(:,:), ps, t=2)
call destruct (ctl)

In order to facilitate to write gridded atmospheric fields to a grads file a variant of
the generic routine init_ctl is defined in module mo_atm_grid to generate the content
of the GRADS descriptor file from the data structure t_grid which describes the model
grid. Grid data (orography, etc.), atmospheric fields or a complete atmospheric field are
written to a GRADS data set by calling the generic subroutine to_grads defined in
modules mo_atm_grid, mo_memory, and mo_atm_state, respectively.
The following sequence writes the atmospheric state stored in variable atma as well as the
fields of its grid atma% grid to a gridded GRADS file. The atmospheric state stored in
variable ana is written to time step 2. Note that the icosahedral grid is not supported by
grads.

call init_ctl (ctl, ’filename’, atma% grid)
call to_grads (ctl, atma% grid)
call to_grads (ctl, atma)
call to_grads (ctl, ana, t=2)
call write_ctl (ctl)
call destruct (ctl)

In order to write a gridded GRADS data set using these routines the following sequence
of operations may be performed:

call init_ctl (ctl,’synop.dat’,dtype=’station’,surdat= (/’ps
’,’t2m’,’q2m’/))
call write_stat (ctl, ’10056’, dlat, dlon, surf=(/1023.,231.,0.001/))
...
call write_ctl(ctl)
call destruct (ctl)
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Interfaces

In detail the definitions of the public entities in this module are defined as follows:

Type t_ctl

The names of the components in correspond to whose of the entries in a GRADS
descriptor file. In general direct access to the components is not required becaue
most entries will be set by passing appropriate parameters to subroutine init_ctl.

Subroutine init_ctl (ctl, [file,] [dtype,] [title,] [nx,] [ny,] [ngl,]
[ke,] [di,] [dj,] [lo1,] [la1,] [tdefn,] [tdefi,] [tdefd,] [undef,]
[yrev,] [surdat,] [levdat,] [surcom,] [levcom])

Set the initial content of the Grads data descriptor.

The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

Data descriptor information to be set.
file type: character(len=*) ,intent(in) ,optional

Name of the corresponding data file. This parameter
shall provide the full path name of the file to write. The
name of the descriptor file is derived by removing the
extension .dat (if present) and appending the extension
.ctl. The name of the data file and description file will
be used to write (or read) these files later. The name of
the data file is written to the dset entry of the descriptor
file as well. A în front of the basename indicates that it
is sought always in the directory of the descriptor file.
In this case the leading pathname is removed from the
string written to the descriptor file. In case of a station
data set the name of the station map file is constructed
by appending the extension .map .

dtype type: character(len=*) ,intent(in) ,optional
This entry specifies the type of data being described.
Pass ’station’ for station data, otherwise gridded bi-
nary data is assumed. GRIB data is not handled by this
module. The default is gridded binary but if one of the
parameters surdat or levdat is provided, ’station’ is
assumed.

title type: character(len=*) ,intent(in) ,optional
This string is written to the respective entry in the de-
scriptor file and should give a brief description of the
contents of the data set.

nx, ny, ngl, ke type: integer ,intent(in) ,optional
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These parameters denote the horizontal (nx, ny) and
vertical (ke) size of the gridded data. They are used to
set the respective entries xdef, ydef and zdef in the
description file. If the parameter ngl is provided, it
denotes the number of Gaussian latitudes and ydef is
set appropriately.

di, dj, lo1, la1 type: real(wp) ,intent(in) ,optional
These parameters specify the horizontal spacing (incre-
ments for longitudes and latitudes as well as starting
values). The respective entries xdef, ydef in the de-
scription file are set appropriately.

tdefn type: integer ,intent(in) ,optional
Number of time slots.

tdefi type: character(len=*) ,intent(in) ,optional
Initial time given in the format hh:mmZddmmmyyyy. If
not specified, hh defaults to 00, mm defaults to 00, and
dd defaults to 1. The character string mmm specifying
the month may be derived by means of the constant
array c_month defined in this module.

tdefd type: character(len=*) ,intent(in) ,optional
Time increment given in the format vvkk where kk is a
one or two integer digit and kk is one of mn (minute), hr
(hour), dy (day), mo (month), or yr (year).

undef type: real(wp) ,intent(in) ,optional
Specifies the undefined, or missing, data value.
-huge(1) (in single precision) is used as the default.

yrev type: logical ,intent(in) ,optional
Indicates that the Y dimension (latitude) in the data
file has been written in the reverse order from what
GRADS assumes. An important thing to remember is
that GRADS still presents the view that the data goes
from south to north. The YDEF statement does not
change; it still describes the transformation from a grid
space going from south to north. The reversal of the Y
axis is done as the data is read from the data file.

surdat, levdat type: character(len=*) ,intent(in) ,optional
In case of a surface data file the names of the surface
variables and the names of the level-dependent variables
are listed in surdat and levdat, respectively.

surcom, levcom type: character(len=*) ,intent(in) ,optional
In case of a surface data file a text description of the
variable (max 40 characters).

Subroutine read_ctl (ctl, file, [iostat])
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Read the content of a GRADS descriptor file
The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

GRADS data descriptor to read.
file type: character(len=*) ,intent(in)

Name of the (.ctl-)file to read.
iostat type: integer ,intent(out) ,optional

I/O status variable, returns zero if no error occurred. If
an error occurs while the parameter is not present the
routine will abort.

Subroutine add_var (ctl, name, [levels], [comment])

This routine adds a variable entry to the GRADS descriptor. In most cases calling
this routine is not necessary because variables are added as long they are written
by subroutine write_var into the first time slot.
The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

Descriptor data to be modified.
name type: character(len=*) ,intent(in)

Name of the variable.
levels type: integer ,intent(in) ,optional

Number of levels for the variable. If levels is 0, the
variable does not correspond to any vertical level (e.g.
surface variables).

comment type: character(len=*) ,intent(in) ,optional
Description of the variable (max 40 characters).

Subroutine write_ctl (ctl, [unit])

This routine writes the GRADS descriptor file. It must be called when all fields
have been written.
The parameters denote:
ctl type: type (t_ctl) ,intent(in)

Variable holding the content of the GRADS descriptor.
unit type: integer ,intent(in) ,optional

Unit number of the file. If missing, a file unit is opened
by the routine, deriving the file name from the name of
the GRADS data file.

Subroutine destruct (ctl)

Deallocate memory used by components of a variable of type t_ctl.
The parameters denote:
ctl type: type (t_ctl) ,intent(inout)
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Parameter c_month (imonth)

Character array to convert an integer (1..12) to a string (’jan’..’dec’) encoding the
month in the GRADS descriptor file.

The parameter is defined as:
character(len=3) ,parameter :: c_month (12) =
(/’jan’,’feb’,’mar’,’apr’,’may’,’jun’,’jul’,’aug’,’sep’,’oct’,’nov’,’dec’/)

Function mmm2mm (c)

Function to convert a string (’jan’..’dec’ or ’JAN’..’DEC’) to an integer (1..12). 0 is
returned in case of an error.
The parameters denote:
mmm2mm type: integer
c type: character (len=3) ,intent(in)

Subroutine write_var (ctl, x, name, [t], [comment], [yrev], [iostat])

Write a gridded field to the GRADS data file. The file name as well as the position
within the file (depending on the time step and name) is determined from the
descriptor. If the variable is not yet listed in the file descriptor and the first time
step is written, the variable is added to the list.

The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

Variable holding the GRADS file descriptor information.
x (:,:[,:]) type: real(wp) ,intent(in)

2- or 3-dimensional field to write.
name type: character(len=*) ,intent(in)

Name of the field.
t type: integer ,intent(in) ,optional

Time step to be written. Default is 1.
comment type: character(len=*) ,intent(in) ,optional

Description of the variable.
yrev type: logical ,intent(in) ,optional

Indicates that the Y dimension (latitude) in the data
file is passed in the reverse order from what GRADS
assumes.

iostat type: integer ,intent(out),optional
Return status, 0 if no error occurred. If an error occurs
while the parameter is not present the routine will abort.

Subroutine read_var (ctl, x, name, [t], [yrev], [iostat])

A gridded field is read from the GRADS data file.
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The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

Variable holding the GRADS file descriptor information.
x (:,:) type: real(wp) ,intent(out)

Field to be read. currently only 2-d arrays are sup-
ported.

name type: character(len=*) ,intent(in)
Name of the field.

t type: integer ,intent(in) ,optional
Time step to be read. Default is 1.

yrev type: logical ,intent(in) ,optional
Indicates that the Y dimension (latitude) in the data file
shall be passed in the reverse order from what GRADS
assumes.

iostat type: integer ,intent(out),optional
Return status, 0 if no error occurred. If an error occurs
while the parameter is not present the routine will abort.

Subroutine write_stat (ctl, id, lat, lon, [t], [z], [surf], [lev], [new])

The parameters denote:
ctl type: type (t_ctl) ,intent(inout)

Variable holding the GRADS file descriptor information.
id type: character(len=*) ,intent(in)

The station ID uniquely identifies the station. It can be
1 to 7 characters long.

lat, lon type: real(wp) ,intent(in)
Coordinates of the station (degree)

t type: real(wp) ,optional ,intent(in)
Time of the observation. currently disabled!

z type: real(wp) ,optional ,intent(in)
Height of the observation in case of level-dependent
data.

surf(:) type: real(wp) ,optional ,intent(in)
Values of surface observations.

lev (:) type: real(wp) ,optional ,intent(in)
Values of level-dependent observations.

new type: logical ,optional ,intent(in)
Setting this flag to enforces a new station record to be
written or not. In general a new record is written when-
ever the station ID id changes.
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28.5.2 Adaptive estimation of error statistcs – Module
mo_err_tune

Detlef Pingel
The adaptive method:

Tuning ansatz The analysis vector obtained by the 3dVar assimilation system can be
regarded as a linear combination of background and observation data. Ideally, this com-
bination minimises the variance of the analysis with respect to the (unknown) true state
of the atmosphere. However, this requires an optimal choice for the covariance matrices
of the observation and back ground errors used. As these covariances are not known
exactly, approximations are used in the actual data assimilation schemes. Therefore, a
good estimate of the error covariances used is crucial for an efficient operation of the data
assimilation. In the assimilation scheme of the 3dVar, the correlation patterns themselves
are given by NMC approximations using forecast statistics. As correlations are normalised
by definition, the absolute size of the error covariances has to be determined separately.
For the 3dVar assimilation scheme, an optimisation method for the error covariances

has been implemented, following the studies by G.Desrozier + al. (G.Desrozier, S.Ivanov,
Q.J.R. Meteorol. Soc. 2001, 127, p1433 ; B.Chapnik+al, Q.J.R. Meteorol. Soc. 2004,
130, p2253). It tunes the covariance matrices of the observation and background error by
appying a scaling approach as follows: Let B and R the (unknown) optimal background
and observation error covariance matrices, respectively, with B̃ and R̃ the corresponding
matrices as specified in the actual 3dVar assimilation system. Let the observation and
background errors be well represented by R and B, i.e.

B = E{(xb − xt)(xb − xt)T} (28.40)
R = E{(y −H(xt))(y −H(xt))T} (28.41)

with the unknown true state xt of the atmosphere, the bachground state xb, the observa-
tion vector y and the forward operator H.

The tuning approach relies on the assumption that B̃ and R̃ can be brought closer to
the optimal matrices B and R by a scaling relation

B = B(sb) = sbB̃ (28.42)
R = R(so) = soR̃ (28.43)

using the tuning coefficients sb and so. Multiplication of the covariance matrices in this
way to approximate the true covariance matrices basically represents the tuning operation.

Expectation value of the cost function In 3dVar, the analysis vector

xa = xb + δx

minimises the cost function

J(δx) = J b(δx) + Jo(δx) (28.44)

=
1

2
δxTB−1δx +

1

2
(d−Hδx)TR−1(d−Hδx)
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with the innovation vector
d = y −H(xb)

and the linearised forward operator H. The analysis increment δx is given as

δx = BHT (HBHT + R)−1d = Kd

with the Kalman gain matrix

K = BHT (HBHT + R)−1

For the evaluation of the covariance errors the value of the cost function in its minimum
is of relevance. Generally (as in the case of the 3dVar) the cost function J is composed
of several terms J j,

J =
∑
j

J j

each of which is the sum of mj elements. Each term J j can be associated with an error
covariance matrix Sj and a corresponding linearised interpolation operator Γj. The expec-
tation value of each term J j can then be specified under certain assumptions (O.Talagrand,
Proceedings ECMWF, 1999). Then the minimum expectation values of the components
J j of the cost function are given by

E{J j} =
1

2
{mj − Tr(ΓTj S−1

j ΓjP
a)}

In this relation Pa indicates the covariance matrix of the estimated analysis error of
the analysis including the complete set of observations. For a proof of this relation, see
above reference and G.Desroziers and S.Ivanov, Q.J.R. Meteorol. Soc. (2001), 127, pp.
1433-1452.
For the tuning of error statistics within the 3dVar, the relation (28.5.2) can be employed

in the following way: For tuning of the background or observation error statistics, the
matrices Γj and Sj are either (j = b and j = o, resp.)

background cost functionJ b Γj = Γb = H, Sj = Sb = B

observation cost functionJo Γj = Γo = I, Sj = So = R

with the identity matrix I. For this application, the analysis error covariance matrix is
Pa = B − KHB. An expectation value of the background cost function J j = J b can,

using mj = mb = n background data, therefore be obtained as

E{J b} =
1

2
{n− Tr(B−1(B−KHB))}

=
1

2
{n− Tr(In −B−1KHB)}

=
1

2
Tr(KH)

=
1

2
Tr(HK) (28.45)
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with the Kalman gain matrix K = PaHTR−1 and In indcating the identity matrix of size
n. In a similair way, using mj = mo = p observations, the value of the observation cost
function J j = Jo can be determined by

E{Jo} =
1

2
{p− Tr(HTR−1HPa)}

=
1

2
{p− Tr(HTKT )}

=
1

2
Tr(Ip −HK) (28.46)

Combination of the two above results yields the value of the complete cost function

E{J} = E{Jo + J b} = E{Jo}+ E{J b} = Tr(Ip)/2 = p/2

The expectation value of the cost function is therefore proportional to the number of
observations, if B and R are specified consistently. However, a deviation of the value of
E{J} from p/2 indicates ill-specified observation- and/or background errors.
The equations (28.45) and (28.46) relate expectation values of the cost function to

expectation values of error covariance matrices (via assumptions (28.40) and (28.41)),
to be valid when considering large ensembles of obsevation and background data. For
the actual application of the tuning algorithm, it is assumed that these relations hold
also for a single realization of these data (i.e. for data in a single assimilation time
window). Therefore, in the following the expectation value of the cost function E{J} is
approximated by its value of a single realization J . The covariance matrices B and R
are supposed to reflect the error statistics of the given set of data according to equations
(28.40) and (28.41) except for an overall scaling coefficient (which is to be optimised in
the tuning algorithm).

Application to tuned covariance matrices: When considering the scaling relation
of the tuned covariance matrices, equations (28.42) and (28.43), the left sides of above
equations (28.45) and (28.46) read

J b(δx) = =
1

2
δxT [B(sb)]−1δx =

1

2
δxT

B̃−1

sb
δx

=
J̃ b(δx)

sb

Jo(δx) = =
1

2
(d−Hδx)T [B(so)]−1(d−Hδx) =

1

2
(d−Hδx)T

B̃−1

sb
(d−Hδx)

=
J̃ b(δx)

sb

Note that, although the cost function terms J̃ b and J̃o in equations (28.47) and (28.47)
are calculated using the untuned covariance matrices B̃ and R̃, the analysis increment δx
is derived using the tuned covariance matrices B and R:

δx = B(sb)HT [HB(sb)HT + R(so)]−1d = K(sb, so)d (28.47)
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The right sides of equations (28.45) and (28.46) depend on the traces of the Kalman gain
matrix obtained from the tuned matrices as in equation (28.47).
The equations (28.45) and (28.46) relating the expectation value of the cost function

to the trace of the Kalman gain matrix therefore read for the tuned matrices:

J b(δx) =
sb

2
Tr(HK(sb, so)) (28.48)

Jo(δx) =
so

2
Tr(Ip −HK(sb, so)) (28.49)

Uncorrelated subparts: For more specific results, independent scaling coefficients can
be assigned to subparts of B̃ and R̃ with no or only negligible correlation. This is an
assumption which is reasonable at least for the observation errors. Let these subparts be

B̃k = Πb
kB̃ΠbT

k , 1 ≤ k ≤ νb

R̃l = Πo
l R̃ΠoT

l , 1 ≤ l ≤ νo

with the projection operators Πb
k and Πo

l :

B̃ =

νb∑
k=1

ΠT
k B̃lΠk

R̃ =
νo∑
l=1

ΠT
l R̃lΠl

The corresponding subset of background and observation data is then given by

xk = Πb
kx , 1 ≤ k ≤ νb

yl = Πo
ly , 1 ≤ l ≤ νo

The tuning relations for these subparts now read

Bk = Bk(s
b
k) = sbkB̃k , 1 ≤ k ≤ νb (28.50)

Rl = Rl(s
o
l ) = sol R̃l , 1 ≤ l ≤ νo (28.51)

with the sets of tuning coefficients

sb = (sb1, ..., s
b
νb

)

so = (so1, ..., s
o
νo)

Extended to uncorrelated subparts of the untuned covariance matrices B̃ and R̃ with
νb background data and νo observations, the cost function for the individual subparts J̃ bk
and J̃ol of the untuned cost function J̃ read according to equation (28.44)

J̃ b(δx̃) =

νb∑
k=1

J̃ bk(δx̃) =
1

2

νb∑
k=1

δx̃Tk B̃−1
k δx̃k

J̃o(δx̃) =
νo∑
l=1

J̃ol (δx̃) =
1

2

νo∑
l=1

(d−Hδx̃)Tl R̃−1
l (d−Hδx̃)l
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with the subparts of background and observation vectors obtained as

δx̃k = Πb
kδx̃ , 1 ≤ k ≤ νb

(d−Hδx̃)l = Πo
l (d−Hδx̃)l , 1 ≤ l ≤ νo

The cost function J of the tuned assimilation system now reads

J b(δx(s)) =

νb∑
k=1

J bk(δx) =
1

2

νb∑
k=1

δxk(s)T
B̃−1

k

sbk
δxk(s) =

νb∑
k=1

J̃ bk(δx(s))

sbl

Jo(δx(s)) =
νo∑
l=1

Jol (δx(s)) =
1

2

νb∑
k=1

δxk(s)T
B̃−1

k

sbk
δxk(s) +

1

2

νo∑
l=1

(d−Hδx(s))Tl
R̃−1

l

sol
(d−Hδx(s))l

=
νo∑
l=1

J̃ol (δx(s))

sol

Equations (28.48) and (28.49) now read for each statistically independent component
of the cost function of the tuned system

J bk(δx(s)) =
sbk
2
Tr(Πb

kHK(s)ΠbT
k ) , 1 ≤ k ≤ νb (28.52)

Jol (δx(s)) =
sol
2
Tr(Ip −Πo

lHK(s)ΠoT
l ) , 1 ≤ l ≤ νo (28.53)

Fixed point algorithm: According to equations (28.52) and (28.53), the tuning coef-
ficients obey the implicit equations

sbk =
2J bk{δx(s)}

Tr(Πb
kHK(s)ΠbT

l )
, 1 ≤ k ≤ νb

sol =
2Jol {δx(s)}

Tr(Πo
l (Ip −HK(s)ΠoT

l ))
, 1 ≤ l ≤ νo

As K(s) and δx(s) both depend on the tuning coefficients s, these relations are nonlinear.
An approximate solution can be obtained by performing successive steps with the following
iteration rule:

sbki+1 =
2J bk{δx(si)}

Tr(Πb
kHK(si)ΠbT

k )
(28.54)

sol i+1 =
2Jol {δx(si)}

Tr(Πo
l (Ip −HK(si)ΠoT

l ))
(28.55)

Starting with a given value s = 1.0 of the scaling coefficient, the right side of equations
(28.54) and (28.55) is calculated, resulting in an updated value of the scaling coefficients.
The cost function as well as the trace are determined as sums over the corresponding
submatrices of B(s), B̃ and R(s), R̃. It is of importance to calculate the cost function
with the analysis vector of the tuned system, but with the untuned matrices B̃ and R̃.
The Kalman gain matrix, however, is determined with the tuned matrices B und R

K(si) = B(si)[B(si) + R(si)]
−1
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The equations (28.52) and (28.53) have trivial solution ssok = 0 and sbl = 0. However,
calculations performed with actual data sets of the 3dVar assimilations scheme never
converged in these solutions.

Validation of tuning: The values of sok and sbl represent the statistical character of
the data set and are statistical quantities themselves. An estimate of the variance and
reliability of the values of the scaling coefficients can be achieved by tuning the error
covariance matrices with a data set of observations that is in ideal consistency with the
specified B̃ and R̃ (see equations (28.40), (28.41)). To create the set of simulated data,
the first guess data as used in the 3dVar is considered as the “true” background xt. The
background actual data x is then constructed by

xb = xt + B̃1/2ζb

using a n-dimensional random vector ζb with Gaussian distribution and unit variance
and the square root of the background error covariance matrix B̃1/2. The simulated
observation data is then obtained as

y = Hxt + R̃1/2ζo

with the p-dimensional random vector ζo with Gaussian distribution and unit variance.
Within this setup, the statistical properties that are preconditions for the equation (28.5.2)
to be valid are fullfilled: The simulated observations are consistent with the background
and observation error statistics und have a covariance matrix R̃. Therefore, the tuning
algorithm is expected to yield values s ≈ 1.0 for the scaling coefficients. Deviations of
the actual values from this expected one measure the statistical reliability of the scaling
coefficients that can be determined using this set of data. The number of observation and
background data and their horzontal distribution seem to have the strongest influence
on the broadening of the distribution of the scaling coefficients. see also G.Desroziers
and S.Ivanov, Q.J.R. Meteorol. Soc. (2001), 127, pp. 1433-1452; Chapnik+al, Q.J.R.
Meteorol. Soc. 2004, 130, p2253 and Zhuo Liu, M.Buehner and P.Gauthier, proceedings of
the 21st Conference on Weather Analysis and Forecasting/17th Conference on Mumerical
Weather Prediction, 15B.8.

Relation to maximum-likelihood method: There is a relation of the solution of
equations (28.54) and (28.54) to the “maximum-likelihood” method for parameter estima-
tion, given a set of observatiuonal data. (D.Dee, A.da Silva, Mon.Weather Rev. 1998, 124,
p1822). It can be shown (B.Chapnik+al, Q.J.R. Meteorol. Soc. 2004,130,p2253) that the
non-trivial solutions sok and sbl of (28.54) and (28.54) maximise the likelihood-function.

Aspects of the tuning method in 3dVar For the application within the 3dVar
assimilation scheme, a few minor adjustments of the tuning method are to be done.

• The specified background error covariance matrix B̃ is readily available in the obser-
vation space. Therefore, the linearised observation operator H in above equations
can simply replaced by the identity matrix I. Furthermore, B̃ and R̃ are of equal
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size, as the number of background data in observation space equals the number of
observation data, n = p.

• In the 3dVar, observation errors are supposed to be statistically independent (not
correlated) as long as they refer to

– different observation operators:
SYNOP, TEMP, AIREP, PILOT, PAOB, DRIBU, AMV, TOVS ...

– different observed quantities:
geopotential, temperature, relative humidity, wind (u,v)

– different pressure level of the observation (actually implemented: TEMP main
pressure levels)

• Within the background error covariance matrix B̃, the quantities geopoten-
tial/temperature/realtive humidity/wind are supposed to be generally correlated
(default). However, the correlation of temperature and relative humidity might not
be significant. Optionally, these two quantities can be treated as statistically inde-
pendent variable within the tuning algorithm. Similarly, an uncorrelated treatment
of geopotential/temperature and wind data can be reasonable for certain areas (e.g.
the tropics). A decoupling of these blocks can be obtained optionally.

Entry data of the tuning method:

In the module mo_psas.f90, the tuning routine mo_err_tune.f90 is called with the
arguments

Rj_0: observation error covariance matrix for error tuning, untouched by VQC

HBHi: forecast error covariances

obs: vector of observations distributed over boxes, obs% o(:)% obs

yb: vector of forecast (background,first guess) data distributed over boxes, yb% s(:)%
x

w_qc: vector of VQC probability for correct data

name: file basename for output file

namelist TUNE_ERRORS

Namelist parameters for the tuning algorithm

real(wp) :: lev_top ! top height boundary
real(wp) :: lev_bot ! bottom height boundary
real(wp) :: lat_n ! latitude boundary north
real(wp) :: lat_s ! latitude boundary south
real(wp) :: lon_w ! longitude boundary west
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real(wp) :: lon_e ! longitude boundary east
character(len=12) :: type ! observation type operator
integer :: obstype ! observation type quantity
logical :: sep_geop_wind ! T: no correlation bg geop/wind
logical :: sep_temp_hum ! T: no correlation bg temp/hum
logical :: sep_temp_hum ! T: no correlation bg temp/hum
logical :: ck_consist ! consistency check
logical :: no_hor_corr ! no horizontal correlations in B
integer :: n_iter ! no. of iterations
real(wp) :: w_qcc ! critical value of vqc statistical weight

The namelist can be read repeatedly. The different sets of namelist parameters are
stored in an array of type t_tune_errors. Therefore, the setup for the tuning algorithm
can be altered e.g. to successively tune the error statistics of the different data types that
are assimilated in the 3dVar assimilation scheme.

data structures

type t_te_level
real(wp) :: lev_top = rud ! top height boundary
real(wp) :: lev_mid = rud ! mid height of level
real(wp) :: lev_bot = rud ! bottom height boundary
real(wp),allocatable :: s_b(:) ! scaling coefficient bg, n_par_b bg types
real(wp),allocatable :: s_o(:) ! scaling coefficient obs, n_par_o obs types
real(wp),allocatable :: diff_s_b(:) ! size of last iteration step, n_par_b bg types
real(wp),allocatable :: diff_s_o(:) ! size of last iteration step, n_par_o obs types
integer, allocatable :: n_b(:) ! accepted no. of bg, n_par_b types
integer, allocatable :: n_o(:) ! accepted no. of obs, n_par_o types
integer :: n_init = iud ! initial no. of obs
integer :: n_obs = iud ! accepted no. of obs

end type t_te_level

type t_tune_errors
integer :: obstype = iud ! observation type (int)
logical :: sep_geop_wind = .false. ! T: no correlation bg geop/wind
logical :: sep_temp_hum = .false. ! T: no correlation bg temp/hum
logical :: ck_consist = .false. ! consistency check
logical :: no_hor_corr = .false. ! no horizontal correlations in B
integer :: n_iter = iud ! no. of iterations
integer :: ils = iud ! SYNOP land/sea flag
real(wp) :: lat_n = rud ! latitude boundary north
real(wp) :: lat_s = rud ! latitude boundary south
real(wp) :: lon_w = rud ! longitude boundary west
real(wp) :: lon_e = rud ! longitude boundary east
integer :: n_par_b = iud ! no. of bg type
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integer :: n_par_o = iud ! no. of obs type
integer :: n_boxes = iud ! no. of boxes
integer :: nlev = iud ! no. of levels
real(wp) :: w_qcc = rud ! critical value of vqc statistical weight
type(t_te_level) :: lev(40) ! data on levels
type(t_te_level) :: average ! data average

end type t_tune_errors

Steps of the tuning algorithm:

To determine the scaling coefficients, the following steps are performed successively:

1. Selection of observation data:

(a) Read input data:

i. background error covariance matrix in observation space B̃ =
HBphysicalH

T (derived from the background error covariance matrix in
physical space Bphysical)

ii. observation error covariance matrix (diagonal elements only) R̃

iii. first guess vector in observation space H(xb)

iv. observation vector y

v. vector with first guess statistical weights wqcc

vi. vector with ovservation quantity type t_int

(b) Identification and elimination of observation data that are apparently identi-
cal (identical station name, observation type, latitude, longitude, observation
height)

(c) optional: selection of SYNOP land/sea observation

(d) selection of observation with a VQC weight less than the critical value wqcc
specified in the namelist

(e) Construct the block matrices of B̃k, R̃l and the corresponding vectors xk, yl,
wqccl , t_intl

(f) Determination of the number of observations of the individual observation
types

i. geopotential geop
ii. temperature t
iii. relative humidity h
iv. wind speed u,v

2. Begin of iteration loop to solve implicit equation:

(a) Initialization of the tuning coefficients sbk = 1, sol = 1



428 DWD DA System Documentation March 4, 2019

(b) Start of the iteration loop to iteratively determine the tuning coefficients as
solutions of the fixed point equation criterion for determination: fixed number
of iteration steps

i. Scaling of matrices R̃l and B̃k with the actual value of tuning coefficients
si.
Obtain the scaled matrices R(si), B(si)

ii. determine [B(si) + R(si)]
−1 applying function inverse in mo_matrix (sin-

gular value decomposition)
iii. determine Kalman gain matrix K(si) = B(si) ∗ [B(si) + R(si)]

−1 applying
function matmul(,)

iv. determine trace of K(si) for each observation type by summing up the
diagonal elements

v. determine value of cost function J in successive steps:
A. determine inverse B̃−1, R̃−1 of the untuned matrices B̃, R applying

the function inverse in mo_matrix (singular value decomposition)
B. determine innovation vector d = y −H(xb)

C. determine the analysis vector y(si) = K(si) ∗ (obs− fg) + fg applying
function matmul(,)

D. right hand side of cost function: Multiply B−1, R−1 with difference
vectors ana− fg and ana− obs, respectively
This is done by multiplication of the complete matrices without any
distinction of the observation types

E. left hand side of cost function: Multiplication of the corresponding
vector from step 4 with ana − fg and ana − obs, rescectively. Scale
with 0.5.
In this step, distinguish between different observation types. Results
in a cost function for each observation type.

vi. Update the values of the tuning coefficients by equation (??), using cost
functions of traces, for each observation type

End of iteration loop

3. Write into file tune_errors.info: tuning coefficients, number of observa-
tion/bachground data used, convergence properties (absolute value of last iteration
step)

28.5.3 Tuning the error statistics in 3dVar: Results

Tuning og observation errors: Based of the 3dVar reference experiment 5293 with
untuned error statistics, a first set of scaling coefficients is determined to optimise the
specified observation errors. The tuning algorithm is applied to sets of observation and
background data of a single analysis. The size of the data sets for each of the observation
quantities geopotential, temperature, relative humidity and wind speed is of about 200
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type TEMP TEMP AIREP AIREP PILOT SATOB SATOB SATOB
parameter t u,v t u,v u,v u,v TR u,v NH, SH u,v MODIS

ass. system IFS OI IFS OI OI IFS IFS IFS
10 hPa 2.5 (1.0) 3.0 (1.0) 2.2 (1.0) 4.0 (1.0) 3.0 (1.0) 5.7 (1.0) 5.7 (1.0) 5.7 (1.0)
20 hPa 2.2 (1.0) 2.5 (1.0) 2.0 (1.0) 4.0 (1.0) 2.5 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
30 hPa 2.0 (1.0) 2.0 (1.0) 1.8 (1.0) 4.0 (1.0) 2.0 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
50 hPa 1.9 (1.0) 2.0 (1.0) 1.6 (1.0) 4.0 (1.0) 2.0 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
70 hPa 1.8 (1.0) 2.0 (1.0) 1.5 (1.0) 4.0 (1.0) 2.0 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
100 hPa 1.7 (1.0) 2.0 (1.0) 1.4 (1.0) 4.0 (1.0) 2.2 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
150 hPa 1.6 (1.0) 2.2 (1.0) 1.4 (1.0) 4.0 (1.0) 2.4 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
200 hPa 1.5 (1.0) 2.4 (1.0) 1.4 (1.0) 4.0 (1.0) 3.2 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
250 hPa 1.5 (1.0) 3.2 (1.0) 1.3 (1.0) 4.0 (1.0) 3.2 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
300 hPa 1.4 (1.0) 3.2 (1.0) 1.3 (1.0) 4.0 (1.0) 3.8 (1.0) 5.0 (1.0) 5.0 (1.0) 5.0 (1.0)
400 hPa 1.2 (1.0) 3.8 (1.0) 1.2 (1.0) 3.5 (1.0) 3.6 (1.0) 4.3 (1.0) 4.3 (1.0) 4.3 (1.0)
500 hPa 1.2 (1.0) 3.6 (1.0) 1.2 (1.0) 3.0 (1.0) 3.4 (1.0) 3.5 (1.0) 3.5 (1.0) 3.5 (1.0)
700 hPa 1.3 (1.0) 3.4 (1.0) 1.2 (1.0) 3.0 (1.0) 2.5 (1.0) 2.0 (1.0) 2.0 (1.0) 2.0 (1.0)
850 hPa 1.5 (1.0) 2.4 (1.0) 1.3 (1.0) 3.0 (1.0) 2.4 (1.0) 2.0 (1.0) 2.0 (1.0) 2.0 (1.0)
1000 hPa 1.7 (1.0) 2.0 (1.0) 1.4 (1.0) 3.0 (1.0) 2.0 (1.0) 2.0 (1.0) 2.0 (1.0) 2.0 (1.0)

Table 28.4: Untuned observation errors, experiments 5393, 5322, 5338/5405,5339, 5340

type TEMP TEMP AIREP AIREP PILOT SATOB SATOB SATOB
parameter t u,v t u,v u,v u,v TR u,v NH, SH u,v MODIS

ass. system IFS OI IFS OI OI IFS IFS IFS
10 hPa 1.3 (0.5) 2.1 (0.7) 1.1 (0.5) 2.8 (0.7) 2.1 (0.7) 4.0 (0.7) 4.0 (0.7) 4.0 (0.7)
20 hPa 1.1 (0.5) 1.8 (0.7) 1.0 (0.5) 2.8 (0.7) 1.8 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
30 hPa 1.0 (0.5) 1.4 (0.7) 0.9 (0.5) 2.8 (0.7) 1.4 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
50 hPa 1.0 (0.5) 1.4 (0.7) 0.8 (0.5) 2.8 (0.7) 1.4 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
70 hPa 0.9 (0.5) 1.4 (0.7) 0.7 (0.5) 2.8 (0.7) 1.4 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
100 hPa 0.9 (0.5) 1.4 (0.7) 0.7 (0.5) 2.8 (0.7) 1.4 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
150 hPa 0.8 (0.5) 1.5 (0.7) 0.7 (0.5) 2.8 (0.7) 1.5 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
200 hPa 0.8 (0.5) 1.7 (0.7) 0.7 (0.5) 2.8 (0.7) 1.7 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
250 hPa 0.8 (0.5) 2.2 (0.7) 0.6 (0.5) 2.8 (0.7) 2.2 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
300 hPa 0.7 (0.5) 2.2 (0.7) 0.6 (0.5) 2.8 (0.7) 2.2 (0.7) 3.5 (0.7) 3.5 (0.7) 3.5 (0.7)
400 hPa 0.6 (0.5) 2.7 (0.7) 0.6 (0.5) 2.5 (0.7) 2.7 (0.7) 3.0 (0.7) 3.0 (0.7) 3.0 (0.7)
500 hPa 0.6 (0.5) 2.5 (0.7) 0.6 (0.5) 2.1 (0.7) 2.5 (0.7) 2.5 (0.7) 2.5 (0.7) 2.5 (0.7)
700 hPa 0.7 (0.5) 2.4 (0.7) 0.6 (0.5) 2.1 (0.7) 2.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7)
850 hPa 0.8 (0.5) 1.7 (0.7) 0.7 (0.5) 2.1 (0.7) 1.7 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7)
1000 hPa 0.9 (0.5) 1.4 (0.7) 0.7 (0.5) 2.1 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7)

Table 28.5: 1st set of tuned observation errors, experiments 5345, 5346, 5364, 5406/5477,
5417, 5419, 5420, 5429
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type TEMP TEMP AIREP AIREP PILOT SATOB SATOB SATOB
parameter t u,v t u,v u,v u,v TR u,v NH, SH u,v MODIS

ass. system IFS OI IFS OI OI IFS IFS IFS
10 hPa 1.8 (0.7) 3.0 (1.0) 1.5 (0.7) 4.0 (1.0) 3.0 (1.0) 2.9 (0.5) 4.0 (0.7) 4.6 (0.8)
20 hPa 1.5 (0.7) 2.5 (1.0) 1.4 (0.7) 4.0 (1.0) 2.5 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
30 hPa 1.4 (0.7) 2.0 (1.0) 1.3 (0.7) 4.0 (1.0) 2.0 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
50 hPa 1.3 (0.7) 2.0 (1.0) 1.1 (0.7) 4.0 (1.0) 2.0 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
70 hPa 1.8 (0.7) 2.0 (1.0) 1.1 (0.7) 4.0 (1.0) 2.0 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
100 hPa 1.7 (0.7) 2.0 (1.0) 1.0 (0.7) 4.0 (1.0) 2.2 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
150 hPa 1.6 (0.7) 2.2 (1.0) 1.0 (0.7) 4.0 (1.0) 2.4 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
200 hPa 1.5 (0.7) 2.4 (1.0) 1.0 (0.7) 4.0 (1.0) 3.2 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
250 hPa 1.5 (0.7) 3.2 (1.0) 0.9 (0.7) 4.0 (1.0) 3.2 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
300 hPa 1.4 (0.7) 3.2 (1.0) 0.9 (0.7) 4.0 (1.0) 3.8 (1.0) 2.5 (0.5) 3.5 (0.7) 4.0 (0.8)
400 hPa 1.2 (0.7) 3.8 (1.0) 0.8 (0.7) 3.4 (0.96) 3.6 (1.0) 2.2 (0.5) 3.0 (0.7) 3.5 (0.8)
500 hPa 1.2 (0.7) 3.6 (1.0) 0.8 (0.7) 2.7 (0.91) 3.4 (1.0) 1.8 (0.5) 2.5 (0.7) 2.8 (0.8)
700 hPa 1.3 (0.7) 3.4 (1.0) 0.8 (0.7) 2.5 (0.83) 2.5 (1.0) 1.0 (0.5) 1.4 (0.7) 1.6 (0.8)
850 hPa 1.5 (0.7) 2.4 (1.0) 0.9 (0.7) 2.3 (0.76) 2.4 (1.0) 1.0 (0.5) 1.4 (0.7) 1.6 (0.8)
1000 hPa 1.7 (0.7) 2.0 (1.0) 1.0 (0.7) 2.1 (0.70) 2.0 (1.0) 1.0 (0.5) 1.4 (0.7) 1.6 (0.8)

Table 28.6: 2nd set of tuned observation errors, experiments 5447 ff

observations. The tuning procedure results in a set of scaling coefficients given in table
28.5. For reference, table 28.4 shows the values of the untuned observation error statistics.
The analysis fields of the experiment 5345 with tuned error statistics generally deviate

less from the corresponding IFS and GME fields compared to the untuned statistics, most
prominetly in the tropics.
However, this impact seems to be induced by an implicitely stricter variational quality

control: By reducing the observation error, the scaling factor used to transform the set
innovations to a standardised distribution with unitary width within the variational qual-
ity control, increases. Since the cutoff parameters of the quality control are not increased
in the same way, observations with large departures from the background are additionally
rejected. This selection takes place even though the background and observation data
are extracted before entering the variational quality check, as the first guess check (done
before error tuning) is performed in the same way.
In the following experiment 5364 the VQC-bound are increased to avoid this effect. As

a consequence, the positive impact of the tuning in experiment 5345 is more or less neu-
tralised, in some regions it turned even slightly into the opposite. But as the background
error is yet not optimised, only limited conclusions can be drawn from this results.

Tuning of background error: The background error is to be tuned along with the
observation errors to guarantee the balance of the analysis between first guess and ob-
servations in the course of the variational assimilation process. A one-sided reduction of
observation errors would result in a shift of the final analysis towards the observations,
away from the first guess. Additionally, the application of the tuning methods to sets of
background and observation data suggest a reduction of the background error. Different
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to the observation errors which are specified in the 3dVar source code, the background er-
ror of the analysis of a particular date is derived from the analysis error of the assimilation
of the preceeding date. The analysis error is relaxed towards a climatological mean error,
depending on the time intervall between succeeding assimilations. The relaxation is trig-
gered by a zonally dependent relaxation parameter (for documentation, see e.g. Research
Manual 1, ECMWF Data Assimilation, Scientific Documentations, chapter 2.3).
Although a reduction of the observation errors has a reduced analysis error as a conse-

quence, the effect of tuning the observation error statistics turned out to be not sufficient
to yield an adequate reduction of the background error. Also, a straightforward scaling
of the analysis error turned out to be no favourable way, since it results in a successive
reduction of the background error to smaller and smaller values.
Contrary to this, an increase of the relaxation parameter yields a relatively smooth

reduction of the error, that is temporally constant after a sufficiently long onset time
(ca. 4 days). In a series of succesive assimilations without (forecasts) a scaling of the
relaxation parameter yields a reduction of the background error by a factor of about 0.8.
For the southern hemisphere, a scaling of the relaxation parameter by 2 seems sufficient.
An updated set of tuned observation errors is determined, based on the reduced first guess
error obtained with the increased relaxation parameters (see table 28.6).
Generally, the values of the scaling coefficients tend to be slightly larger than the values

of the first tuning process of experiments 5345. This effect is probably caused by the
tendency of the tuning method to shift the existing correlations of the data set according
to the balance of the specified error covariances: The reduction of the background error
causes an increase in the estimated observation errors. Therefore, an update of the tuned
observation error statistics is inevitable. Additionally, the tuning of the SATOB wind
error covariances is done in a more detailed way. The tuning algorithm suggests smaller
observation errors of the SATOB wind observations from geostationary satellite in the
tropics, in contrast to the error values for observations in the extratropical latitudes.
Observations from polar circulating satellites are supposed to have a slightly larger value
of the observation error, but still less than the value specified for the IFS.
A series of experiments with background and observation errors specified in this way

are performed, mostly testing technical modifications.

Background errors with the NMC fitted vertical covariance model: Starting
with experiment 5610, a NMC fitted covariance function is used for modelling the 3-
dimensional background error covariances within the 3dVar. Compared to prior vertical
covariance function of the 3dVar, the new model is characterised by broader correlations
and generally higher values of the background errors themselves in the tropospheric height
levels. In the stratospheric regime, the values of the NMC background error covariances
are generally smaller than the OI-covariance model used so far in the 3dVar. As the
introduction of the new covariance model changes the overall background error statistics,
new values for the global scaling coefficients of the background error covariance matrix
have to be determined.
Since the tuning algorithms proved to be less effective for the optimisation of the back-

ground error covariances (the results of the tuning method show quite diverse results for
the estimation of the overall background error, depending on the observation operator
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Experiment id. relaxation parameter climat. error
NH TR SH

5610 4*144 4*48 2*144 OI
5630 2*144 2*48 1*144 OI
5631 1*144 1*48 0.5*144 OI
5650 1*144 1*48 0.5*144 NMC
5652 2*144 2*48 2*144 NMC

Table 28.7: Tuning background error: Values of relaxation parameters

and the area), the fitting is done in a more ad hoc way, based upon the values applied in
the experiments 5490. As in foregoing experiments, the background error covariances are
tuned by applying scaling coefficients to the time parameters that triggers the relaxation
of the background error covariances towards a climatological mean error. These parame-
ters have the values 144 h in NH and SH and 48 in TR with a smooth transition between
the zonal areas. An increase of the relaxation parameter results in a reduction of the
background error in the particular region. These relaxation parameters have been scaled
by various sets of factors as given in table 28.7.
Since the tropospheric background errors of the NMC method are generally large com-

pared to the backgroud error values employes so far, it is expected that a reduction of the
error, i.e. an increase of the relaxation parameter, is necessary in order to describe the
data statistics properly. As an indicator to judge the quality of the error tuning, the mean
deviation of the 3dVar analysis to the IFS analysis in monitored (average over 24 days).
The fields considered are geopotential at 500 hPa, z1000, relative humidity at 700 hPa as
well as temperature, wind u and v at 850 250 and 50 hPa. The monitoring included the
bias, standard deviation and rms of the deviances. Comparing the results of the three
experiments 5610, 6530 and 6531, a general decrease of standard deviation and rms with
increasing background error (i.e. decreasing relaxation parameter) is noticable.
However, the climatological error used to model the increase of the analysis error with

time depends on the background error covariance model, and has to be adapted addi-
tionally to the tuning of the background error. The values of the climatological error as
used in the experiments 6510, 6530 and 6531 is generally too small for the NMC fitted
errors of the new vertical covariance model. Therefore, the (old) climatological error is
not significantly larger than the analysis error and the value of the relaxation parameter
has nearly no influence on the increase of the analysis error with time. Therefore, a new
climatological error is determined, based on the NMC fitted background error vertical
covariances.
Two experiments (5650 and 5652) are performed using the updated climatological error.

A monitoring of time averages of the same fields and parameters of deviance to the IFS
analysis as for the experiments 6510, 5630 and 5631 is performed. It shows that gener-
ally the 3dVar analysis is closer to the IFS analysis in experiment 5650 in the northern
hemisphere and in experiment 5652 in the southern hemisphere. In the tropics neither
experiment showed a definitely better or worse performance.
Principally, a combination of the background error setup of experiment 5650 in NH and

of experiment 5652 in SH is possible. However, this solution would lack a physically con-
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sistent foundation, as northern and southern hemisphere should be physically described
in the same way. Different relaxation parameters for both hemispheres would result in
first guess error, which are of about the same value in NH and SH, which is contrary
to the much higher density of observations data in the northern hemisphere. Therefore,
the background error setup of the experiment 5652 is chosen as a basis for the following
experiments. Although the NH performs better in 5650 than in 5652, the overall deviance
to IFS is in 5652 generally still better than of the OI reference experiment.

Application of the tuning method to RTTOV radiances: The method to optimise
the error statistics is applicable not only to conventional data, but also to satellite data,
such as RTTOV radiances. A scaling coefficient is determined for the background er-
ror covariance matrix, with an independent treatment of geopotential/temperature/wind
and relative humidity. As for the observation errors, an independent scaling coefficient
is assigned to each assimilated RTTOV channel. The sensitive regions of different RT-
TOV channels are located in different height levels (at least as the dependence on the
temperature is concerned). The profile of tuning coefficients of the different channels,
suitably ordered, therefore corresponds to the vertical profile of tuning coefficients of the
conventional observation operators like TEMP, AIREP, PILOT etc. Storage availability
limits the data used to one satellite and an single device (AMSU-A). The first guess used
for the tuning algorithm is taken from experiment 5668, date 2006051400.
Tuning of suitably modified data sets indicate that, contrary to the conventional ob-

servation operators, the statistics of the radiances seems to be affected by a general bias
as well as by correlations of the observation errors. A first modification consists of the
elimination of the horizontal correlations between different RTTOV observation spots.
By doing this, the 3dVar performs essentially a 1D-Var assimilation for each observation
spot. Application of the tuning method to the modified data set resulted in an increase
in the estimated observation errors. This result is independent from the thinning used
(ni=32, 64). The error tuning method has the property to react with a decrease of the es-
timated error values if correlation in the observation errors are introduced (B.Chapnik+al,
Q.J.R. Meteorol. Soc. 2004, 130, p2253). Therefore, for the RTTOV observation data, a
correlation of observation errors seems probable.
The background fields of the 3dVar differ from the 1D-Var background fields as used

to specify the bias correction. The application of the 1D-Var bias correction to the 3dVar
therefore results in an additional bias, which is located in the stratospheric levels. This
can be avoided by a modification of the RTTOV observation data in such a way that the
resulting innovations (obs-fg) correpond to a correctly bias corrected background field.
The effect of this modified bias correction can be read off the results of the applied
tuning algorithm: As a deficient bias correction appears like a long-distance horizontal
correlation of the RTTOV observation data, generally resulting in an underestimation of
the observation errors, a more adequate bias correction should yield in higher values for
the tuning coefficients. This is in fact the case for the RTTOV channels with sensitivity
maxima close to the stratospheric levels (channels 9,10, 13 of AMSU-A). Channel 312
responded in an indefinite way to the tuning, which may be related to general problems
with this channel’s observation data.
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Part Test Cases is completely empty! As soon as testcases are available, they have
to be described here AND in the User Guide.
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Chapter 29

Writing Guideline

The LATEX-sources of this documentation are available in the repository

git@git.mpimet.mpg.de:dace_doc.git

and can be checked out, edited and updated analogously to the dace-code (Chapter 12).

Structure
The main document is dace.tex. It sets up the document and the packages to be used.
It includes .tex-files for the five parts of the docu, which themselves include further
.tex-files for the chapters.

Compiling
The following commands compile the document with all links and references:

pdflatex dace
makeglossaries dace
pdflatex dace
pdflatex dace

Figure
Figures are stored in the directory /figs as eps- and png files. pdflatex uses by default
the png files.
It is possible to use also the eps-figures for pdflatex using eps-to-pdf first when

compiling the package.
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LATEX packages
The following packages need to be present in the Latex-distribution (e.g. texlive) to
compile:

\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{units}
\usepackage{longtable}
\usepackage{html}
\hypersetup{pdfpagelabels}
\usepackage{placeins}
\usepackage{glossaries}
\usepackage{todonotes}

todo-notes

The todonotes-package enables to include remarks and notes where the docu is in-
complete or something has to be done otherwise. The usage of the package (and
how to enable/disable the todo-notes) is documented in the main file dace.tex or at
http://www.tex.ac.uk/ctan/macros/latex/contrib/todonotes/todonotes.pdf.

glossaries

Some acronyms in the docu use the glossaries-package which defines the acronyms
centrally in one file dace_glossaries and then just pastes them at the places
where they are used. A good documentation for this package is available at
http://en.wikibooks.org/wiki/LaTeX/Glossary.
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