Consortium for Small-Scale Modelling

Technical Report No. 28

RADAR_MIE_LM and RADAR_MIELIB
Calculation of Radar Reflectivity from Model Output

January 2016

DOI: 10.5676/DWD_pub/nwv/cosmo-tr_28

Deutscher Wetterdienst
MeteoSwiss
Aeronautica Militare - Reparto per la Meteorologia
ΕΘΝΙΚΗ ΜΕΤΕΩΡΟΛΟΓΙΚΗ ΥΠΗΡΕΣΙΑ
Instytutu Meteorogii i Gospodarki Wodnej
Administratia Nationala de Meteorologie
ROSHYDROMET
Agenzia Regionale per la Protezione Ambientale del Piemonte
Agenzia Regionale per la Protezione Ambientale dell’Emilia-Romagna
Centro Italiano Ricerche Aerospaziali
Amt für GeoInformationswesen der Bundeswehr

www.cosmo-model.org

Editor: Massimo Milelli, ARPA Piemonte
RADAR_MIE_LM and RADAR_MIELIB

Calculation of Radar Reflectivity from Model Output

Ulrich Blahak∗

∗ Ulrich Blahak
Deutscher Wetterdienst
Frankfurter Str. 135
63067 Offenbach am Main
Germany
Contents

1 Preface 5
2 Introduction 6
3 Factors contributing to the radar "bright band" 7
4 Theoretical basis 7
 4.1 Equivalent radar reflectivity factor .. 7
 4.2 Extinction ... 8
 4.3 Backscattering and extinction by spheres 8
 4.4 Backscattering and extinction by two-layered spheres 10
 4.5 Refractive index of hydrometeors .. 10
 4.5.1 Water ... 12
 4.5.2 Ice ... 13
 4.5.3 Mixtures of ice, air and water ... 14
 4.5.4 Mixtures of ice, air and water — Wiener's formula 14
 4.5.5 Mixtures of ice, air and water — Maxwell-Garnett's formula 16
 4.5.6 Mixtures of ice, air and water — Bruggemann's formula 17
5 Routines in radar_mielib 18
 5.1 Refractive index of pure ice and water 18
 5.1.1 FUNCTION m_complex_water_ray 18
 5.1.2 FUNCTION m_complex_water_liebe 19
 5.1.3 FUNCTION m_complex_ice_ray 20
 5.1.4 FUNCTION m_complex_ice_warren 21
 5.1.5 FUNCTION m_complex_ice_maetzler 22
 5.2 Refractive index of mixture materials 23
 5.2.1 FUNCTION m_complex_oguchi 23
 5.2.2 FUNCTION m_complex_maxwellgarnett 24
 5.2.3 FUNCTION m_complex_bruggemann 25
 5.2.4 FUNCTION get_m_mix .. 26
 5.2.5 FUNCTION get_m_mix_nested ... 28
 5.3 Backscattering cross section for single precipitation particles 31
 5.3.1 SUBROUTINE MIE_DRY_GRAUPEL 31
 5.3.2 SUBROUTINE RAYLEIGH_DRY_GRAUPEL 33
 5.3.3 SUBROUTINE MIE_DRYHAIL .. 35
 5.3.4 SUBROUTINE MIE_DRYSNOW .. 36
 5.3.5 SUBROUTINE MIE_DRYSNOW_TWOSPH 38
 5.3.6 SUBROUTINE MIE_WATERSPH_WETHAIL 40
 5.3.7 SUBROUTINE MIE_SPOGY_WETHAIL 41
 5.3.8 SUBROUTINE MIE_WATERSPH_WETGR 43
 5.3.9 SUBROUTINE MIE_SOAK_TWOSPH_WETGR 45
 5.3.10 SUBROUTINE MIE_MEAN_WETGR 47
 5.3.11 SUBROUTINE MIE_SOAK_WETGR 48
 5.3.12 SUBROUTINE RAYLEIGH_SOAK_WETGR 50
 5.3.13 SUBROUTINE MIE_WETSNOW_TWOSPH 51
6 radar_mie_lm: Interface functions for the LM 54

6.1 An approximation for the degree of melting applicable for bulk microphysical schemes 54
6.2 An efficient Rayleigh-Approximation for melting hydrometeors with Oguchis refractive index formulation .. 59
6.3 Controlling reflectivity calculations in LM — relevant namelist parameters and their setting 60
6.4 Tables of namelist parameter settings for the EMA choice ... 64
6.5 Additions to LM-runscripts to enable reflectivity calculations .. 67

7 Backscattering cross sections of dry ice particles 68

7.1 One-layered sphere .. 68
7.2 Two-layered sphere .. 71

8 Backscattering cross sections for melting ice particles relative to the mass-equivalent water drop 73

8.1 Rayleigh: soaked wet graupel, LM-scheme .. 74
8.2 Rayleigh: soaked wet graupel, Seifert/Beheng-scheme .. 77
8.3 Rayleigh: soaked wet snow, LM-scheme .. 80
8.4 Rayleigh: soaked wet snow, Seifert/Beheng-scheme .. 82
8.5 Mie: soaked twosphere wet graupel, LM-scheme .. 84
8.6 Mie: soaked twosphere wet graupel, Seifert/Beheng-scheme .. 86
8.7 Mie: soaked twosphere wet snow, LM-scheme .. 88
8.8 Mie: soaked twosphere wet snow, Seifert/Beheng-scheme .. 90
8.9 Mie: soaked wet graupel, LM-scheme .. 92
8.10 Mie: soaked wet graupel, Seifert/Beheng-scheme .. 95
8.11 Mie: soaked wet snow, LM-scheme .. 98
8.12 Mie: soaked wet snow, Seifert/Beheng-scheme .. 100
8.13 Mie: watersphere wet graupel, LM-scheme .. 102
8.14 Mie: watersphere wet graupel, Seifert/Beheng-scheme .. 103
8.15 Mie: watersphere wet snow, LM-scheme .. 104
8.16 Mie: watersphere wet snow, Seifert/Beheng-scheme .. 105
8.17 Mie: spongy wet hail, Seifert/Beheng-scheme .. 106
8.18 Mie: watersphere wet hail, Seifert/Beheng-scheme .. 107
8.19 Mie: twosphere soaked wet snow, LM-scheme .. 108
8.20 Mie: twosphere soaked wet snow, Seifert/Beheng-scheme .. 138
Index of the Figures of Section 8

9.1 Rayleigh: soaked wet graupel, LM-scheme .. 168
9.2 Rayleigh: soaked wet graupel, Seifert/Beheng-scheme 168
9.3 Rayleigh: soaked wet snow, LM-scheme ... 168
9.4 Rayleigh: soaked wet snow, Seifert/Beheng-scheme 168
9.5 Mie: soaked twosphere wet graupel, LM-scheme 168
9.6 Mie: soaked twosphere wet graupel, Seifert/Beheng-scheme 169
9.7 Mie: soaked twosphere wet snow, LM-scheme 169
9.8 Mie: soaked twosphere wet snow, Seifert/Beheng-scheme 169
9.9 Mie: soaked wet graupel, LM-scheme ... 169
9.10 Mie: soaked wet graupel, Seifert/Beheng-scheme 169
9.11 Mie: soaked wet snow, LM-scheme ... 169
9.12 Mie: soaked wet snow, Seifert/Beheng-scheme 170
9.13 Mie: watersphere wet graupel, LM-scheme 170
9.14 Mie: watersphere wet graupel, Seifert/Beheng-scheme 170
9.15 Mie: watersphere wet snow, LM-scheme 170
9.16 Mie: watersphere wet snow, Seifert/Beheng-scheme 170
9.17 Mie: spongy wet hail, Seifert/Beheng-scheme 170
9.18 Mie: watersphere wet hail, Seifert/Beheng-scheme 171
9.19 Mie: twosphere soaked wet snow, LM-scheme 171
9.20 Mie: twosphere soaked wet snow, Seifert/Beheng-scheme 173

References

176
1 Preface

This Technical Report describes a new implementation of the computation of radar reflectivity values on the native model grid points, which will soon become available in the COSMO-Model together with the new Efficient Modular VOlume scanning RADar forward Operator (EMVORADO).

While the abovementioned computation of grid point reflectivities is one of several processing steps within the EMVORADO, it can also be used on its own, without the “full” EMVORADO-simulation of polar volumetric radar data. In that sense, it is a replacement for the presently very simple Rayleigh-type ‘DBZ’ computation available in the COSMO module pp_utilities.f90, which is currently used for output diagnosis in the COSMO GRIBOUT-namelist(s). Well, “replacement” is not entirely correct, because the present method will still be available as one of several options. The new options are the more accurate (and more expensive) Mie-scattering, but also two new variants of Rayleigh-type approximations of different complexity and cost, which differ from the current simple one mainly by a better treatment of partially melted particles (the famous radar “bright band”).

The present report is restricted to this “stand-alone” aspect. It covers the theoretical aspects of the unattenuated equivalent radar reflectivity factor (loosely called “reflectivity”), including the refractive index of hydrometeors, which is the basic material parameter, which determines the interaction with electromagnetic radiation. The latter possesses various possible and uncertain definitions for the ice-water-air-mixture of partially melted particles. Moreover, details of the implementation of these aspects into the new libraries radar_mielib_vec.f90 and radar_mie_lm_vec.f90 are described, before the report concludes with an exhaustive sensitivity study on the various (and uncertain!) choosable options for the backscattering cross section of partially melted particles.

Although developed in the framework of the COSMO-model, the new libraries can in principle be coupled to any other NWP model.

I have written most contents of this report alongside the code development during my Post-Doc time at the Institute of Meteorology and Climate Research, Tropospheric Branch (IMK-TRO), Karlsruhe Institute of Technology (KIT) in Germany. This work started in early 2005, when I first came into contact with numerical modeling and the COSMO-model, and was largely finished by 2010 when I started at Deutscher Wetterdienst. In 2005, the model still had its traditional name “Lokalmodell” LM, and I preserved this acronym at many places in the code in order to not forget the roots.

Later, together with Yuefei Zeng and Dorit Jerger (PhD-projects with financial support through DWD’s Extramural Research Programme) as well as our mentor Klaus-Dieter Beheng from IMK-TRO, we built the full EMVORADO-framework on top. But this is a different story.

Ulrich Blahak
2 Introduction

The program package radar_mielib provides Fortran-90 routines for the calculation of gridbox values of the equivalent radar reflectivity factor from model output based on Mie-scattering functions as well as Rayleigh approximation. Water drops and a variety of different kinds of dry and melting ice particles are considered (graupel, snow, cloud ice, hail).

Whereas radar_mielib contains quite general subroutines, the library radar_miel_lm provides the necessary interface routines to use them with the Lokalmodell (LM) of the German Weather Service (DWD) together with the two-moment bulk microphysical scheme of Seifert and Beheng (2006) or the standard one-moment bulk microphysical schemes.

Note that in calculating gridbox values, propagation effects (extinction) and the spatial averaging properties (beam function) of radar systems are not considered. The neglect of attenuation confines the applicability of the calculated reflectivity values to quantitative comparisons at radar wavelengths with negligible attenuation only, e.g., S-band, or to situations or research questions where attenuation is not of primary importance. At shorter wavelengths (C-band, X-band) those effects have to be kept in mind when comparing with real radar data. The shorter the wavelength the stronger is attenuation. However, calculation of the extinction cross section is contained in the basic scattering routines in radar_mielib, but is not used further by routines in radar_mielib and radar_miel_lm which build upon them. Only a full radar forward operator, considering true ray paths from the antenna through the atmosphere, could make use of this information.

Special emphasis is given to the description of melting ice particles. It is well known, however, that this is a highly underdetermined problem, since, on one hand, the particles shapes are different from spherical and, on the other hand, the effective refractive index of the particle material (mixture of ice, water, and air) is very sensitive to the type and topology of mixture and the particles bulk density. Moreover, there is no absolutely precise theoretical description of the effective refractive index of such complex mixtures like in snow- and graupel particles — consequently, a large number of formulas for different applications are on the market.

In radar_mielib, the problem is tackled by providing routines for 3 different mixing formulas for the refractive index (Maxwell-Garnett, Wiener, Bruggemann), whereas only spherical shapes are considered. In case of Mie-scattering, also a concentric two-layer-sphere particle model is implemented, which can be used for, e.g., snowflakes and melting hail- and graupel particles. Moreover, different melting topologies are considered, e.g., accumulation of meltwater on the outside or fully soaked particles, melting taking place only on the outside or partly within the ice structure. Combining the tools leaves one with an infinite number of possibilities to describe a melting particle. Especially the Maxwell-Garnett mixing rule allows 15 different refractive index values for a single set of ice-water-air volume fractions. From this it can clearly be seen that there is a large natural variability, which has to be considered when comparing calculated with measured radar reflectivities. Sensitivity studies with the help of the tools from radar_mielib at least provide a lower bound for this high variability.

In the following sections, the tools of radar_mielib are described in detail. To facilitate their proper use, calculated backscatter coefficients for different types of melting particles (snow, graupel and hail) as a function of the degree of melting and particle mass are presented, considering about 800 different combinations of particle types and mixing rules. The different particle types are taken from the cloud microphysical schemes of the COSMO-model (formerly “Lokalmodell” (LM) of the German Weather Service (DWD) — the standard 1-moment scheme as well as the 2-moment scheme of Seifert and Beheng (2006).
3 Factors contributing to the radar "bright band"

There are different (and sometimes competing) factors contributing to the observed radar bright band:

- Backscattering of single melting particles is enhanced in the presence of meltwater.
- Thinning of the number density (number of particles per volume of air) by increasing fall speed with increasing degree of melting reduces backscattering.
- Upper part of the melting layer: particle breakup is dominant.
- Lower part: particle coalescence is dominant.

It should be emphasized that the backscattering enhancement of single melting particles treatable by the routines in radar_mielib is only one of several processes contributing to the observed radar bright band. Therefore, the results presented later in Section 8 about backscattering cross sections of single particles as function of the degree of melting attribute only to this part of the reflectivity maximum.

4 Theoretical basis

In this section formulas are collected to calculate the unattenuated equivalent radar reflectivity factor Z_e from model output which are implemented in radar_mielib. To simulate a real radar measurement, also attenuation, beam propagation and the beam smoothing function would have to be included, which is omitted here.

4.1 Equivalent radar reflectivity factor

Consider the assumption of incoherent single scattering being the dominant effect in radar backscattering. Then, the equivalent radar reflectivity factor is commonly defined as

$$Z_e = \frac{\lambda_0^4}{\pi^5 |K_{w,0}|^2} \int_0^\infty \sigma_b(D) N(D) dD,$$

where λ_0 is the radar wavelength, $N(D)$ the particle size distribution as a function of the (spherical) particle diameter D, and σ_b denotes the backscattering cross section of a particle having diameter D. $|K_{w,0}|$ is a reference value of the dielectric factor used in the radar software, usually taken as 0.93 (water, $T = 0^\circ C$, $\lambda_0 \approx 5 - 10$ cm). $N(D)$ depends also on time and location, but the explicit dependence is omitted for brevity. Z_e would be output by a radar in case of a homogeneous spatial hydrometeor distribution across the range cell and no attenuation on the path to the cell. Written in the above notation, it is implicitly assumed that there is a unique relation between size (D) and $\sigma_b(D)$ as it is the case for water drops to a good degree of approximation. Taking into account also ice particles complicates the description, since then, this uniqueness breaks down and we have to extend the dependencies of N and σ to particle shape and particle effective refractive index ($\sigma_b(\text{shape}, D, \lambda_0, m)$).

As a compromise, one might define different types of ice hydrometeors (e.g., graupel, snow, hail) in a way that for these subtypes, a unique relation of σ and D exists. Then, Z_e is the sum of the contribution of each hydrometeor type. In fact, current microphysical descriptions in numerical weather prediction models classify ice hydrometeors in different types in a way to also let σ only depend on D. As an example, the procedure to calculate Z_e from the output of a two-moment bulk microphysical scheme is as follows:
- \(f(D) \): assume certain master function for \(N(D) \), e.g., a four-parametric generalized gamma distribution. 2 free parameters are then deduced from the model predicted two moments (e.g., hydrometeor number- and mass density), and the other two parameters have to be fixed.

- Hydrometeors are a mixture of ice, air and water.
 - Choose appropriate formula to calculate \(m \) as a function of \(T, \lambda, \) material, density and the degree of melting \(f_{\text{melt}} \). For this, several state-of-the-art effective medium approximations could be used, but this is always a delicate choice. A huge uncertainty and variability has to be expected there.
 - If the microphysics scheme does not predict \(f_{\text{melt}} \), it has to be estimated from whatever information is available (temperature, particle size, etc.). This is a particularly difficult thing especially if there is no information about the particles history. Temperature and ventilation factors along backwards trajectories would be desirable for this task but are very costly to determine.

- \(\sigma_b \): apply Mie-scattering (one- or twolayered sphere) or Rayleigh-Approximation to calculate \(\sigma_b \).

- \(Z_e = \sum \) (all hydrometeor categories)

For the LM, these tasks are accomplished by interface subroutines in the library `radar_mie_lm`, building on the more general tools provided by `radar_mie_lib`.

4.2 Extinction

For completeness, the formula for the twoway attenuation coefficient \(k_2 \) is given here:

\[
k_2 = \frac{20}{\ln 10} \int_0^\infty \sigma_{\text{ext}}(D) \, N(D) \, dD .
\]

\(\sigma_{\text{ext}} \) is the extinction cross section, depending on \(D \) as well as \(\lambda_0 \). Applying Lambert-Beer’s extinction law, integration of \(k_2 \) along the radar beam yields the attenuation factor. Again, there are issues about beam smoothing and propagation path which render an accurate calculation from model data very difficult and costly (apart from considering different hydrometeor types).

The calculation of \(\sigma_{\text{ext}} \) is implemented in all basic scattering subroutines but is not used further up to now (2008). This could however be extended by users who wish to develop, e.g., a complete radar simulator including propagation effects.

4.3 Backscattering and extinction by spheres

Consider a plane parallel electromagnetic wave incident on a spherical object with refractive index \(m \) (complex) different to that of the surrounding medium, \(m_0 \) (real, no extinction). The Mie-solution of maxwells equations at a large distance from the scatterer leads to the formula for \(\sigma_b \),

\[
\sigma_b = \frac{4 \pi}{k^2} \left| \sum_{n=1}^{\infty} (-1)^n \left(n + \frac{1}{2} \right) (a_n - b_n) \right|^2 .
\]

\(a_n \) und \(b_n \) are the socalled Mie scattering coefficients of order \(n \) which depend only on the Mie-parameter \(\alpha = \pi \lambda_0 m_0 / D \) and the relative refractive index \(m/m_0 \) of the particle.
material. They in turn involve spherical bessel functions of the arguments α and $\alpha m/m_0$ and are omitted here.

As an alternative, a_n and b_n can be efficiently calculated by recurrence formulas derived by, e.g., Deirmendjian (1969) or Bohren and Huffman (1983). These formulas themselves build on recurrence relations for the involved spherical bessel functions. The subroutine SPHERE_SCATTER_BH() of radar_mieilib makes use of these relations.

A further simplification is the so-called Rayleigh-approximation for particles having D small compared to λ_0. Series expansions of a_n and b_n in equation (3) and retention of only the leading term yield the approximation

$$\sigma_b = \frac{\pi^5}{\lambda_0^3} \left| \frac{m^2 - 1}{m^2 + 2} \right|^2 D^6 = \frac{\pi^5}{\lambda_0^3} |K|^2 D^6 \quad \text{with} \quad \frac{m^2 - 1}{m^2 + 2} = K$$

where m_0 is set to 1 (air), so m/m_0 reduces to just m. K is called the dielectric factor. The validity of the approximation depends on the Mie parameter and m/m_0. Generally, larger m/m_0 yield a more restrictive size criterion. For water spheres a comparison of exact formula and approximation yields $D < \lambda_0/20$, for ice spheres $D < \lambda_0/5$. Bohren and Huffman (1983) formulate the condition as $|m/m_0| \pi D/\lambda_0 < 1$.

When the particles are very small compared with the wavelength, the Rayleigh-approximation is also valid for nonspherical particles. The smaller the particle the less important is its shape. D has then to be taken as the diameter of the volume equivalent sphere.

In case of $m = \text{const.}$ (e.g., for water drops or dry ice spheres) and application of the Rayleigh approximation for σ_b, Z_e is simply given by the 6. moment of the size distribution $N(D)$,

$$Z_e = \frac{|K_w|^2}{|K_{w,0}|^2} \int_0^\infty D^6 N(D) \, dD \quad ,$$

where water drops have been assumed in the formula without loss of generality. Z_e is equivalent to the 6. moment of the size distribution of (hypothetically) measured water drops, which explains the name “equivalent reflectivity factor”. In cases of $N(D)$ being a certain type of function (e.g., a generalized gamma distribution), the integral in (5) can be solved analytically, involving gamma functions.

The extinction coefficient σ_{ext} for spherical particles is given by

$$\sigma_{ext} = \frac{4 \pi}{k^2} \Re \left\{ \sum_{n=1}^\infty \left(n + \frac{1}{2} \right) (a_n + b_n) \right\} \quad .$$

A similar approximation as in equation (4) yields

$$\sigma_{ext} = \frac{\pi^2}{\lambda_0} \Im \{-K\} D^3 + \frac{2}{3} \frac{\pi^5}{\lambda_0^3} |K|^2 D^6 \quad ,$$

with K having the same meaning as in equation (4). Two terms have been retained here since they might be of same order in certain situations. The first term describes the losses by absorption, second term the losses by scattering in all directions.

In case of a small water drop σ_{ext} is dominated by the absorption term (example with subscript w for water: $\lambda_0 = 1$ cm, $m_w = 4.97 - 2.79i \ (10^6^\circ \text{C})$ after Ray (1972), $|K_w|^2 = 0.91$, $\Im\{-K\} = 0.07$, $D = 0.1$ mm \Rightarrow absorption term $= 7 \cdot 10^{-11}$ m2, scattering term $= 3 \cdot 10^{-14}$ m2, geometrical cross section $= 8 \cdot 10^{-9}$ m2. In case of small ice particles both
Figure 1: Convention for the refractive indices m_0, m_1, m_2 and for the radii r_1, r_2 in the calculation of the scattering functions for a two-layered sphere.

terms are important, since $\Im\{−K_i\} ≪ |K_i|^2$ (subscript i for ice). Ice absorbs microwave radiation much less than water.

For water droplets in the microwave region, the approximation (7) is only valid for $D < \lambda_0/100$, whereas for ice spheres $D < \lambda_0/2$, which is by far less restrictive. The same rule of thumb as in the case of backscattering applies here as well: the larger $|m/m_0|$, the more restrictive is the size criterion on D. As soon as the particles contain water in any volume fraction, one should not calculate σ_{ext} by the above approximation, but with the exact formula (6).

4.4 Backscattering and extinction by two-layered spheres

Today, exact solutions to the scattering problem of N-layered spheres are available which reduce to the classical Mie-formula for a simple sphere. Since some hydrometeors like melting hail (ice core, spongy ice/water-shell) can be well approximated by a two-layered sphere, formulas for backscattering- and extinction cross sections for this configuration are included into radar_mielib as well.

As in the case of simple spheres, important parameters are the two Mie-parameters

$$\alpha_1 = \frac{2\pi r_1 m_0}{\lambda_0}; \quad \alpha_2 = \frac{2\pi r_2 m_0}{\lambda_0}.$$ \hspace{1cm} (8)

defined by the shell and core radii r_1 and r_2, resp., as well as the corresponding relative refractive indices m_1 and m_2 (see Figure 1).

Depending on these parameters, the scattering coefficients a_n and b_n can be calculated analytically and then plugged into equation (3) and (6). To this end, formulas for a_n and b_n given by, e.g., Kerker (1969) are implemented into radar_mielib (subroutine COATEDSPHERE SCATTER()) or, as a second alternative, an efficient subroutine making advantage of the recurrence relations for the spherical Bessel and Hankel functions given in the appendix of Bohren and Huffman (1983) is provided (subroutine COATEDSPHERE_SCATTER_BH()). The rather long and cumbersome formulas for a_n and b_n are omitted here. We refer the reader to the cited literature.

Note that numerical instabilities in calculating Bessel-functions by utilizing efficient recurrence relations (as is done here) are known to be problematic in case of large arguments to the Bessel functions. In the radar_mielib-subroutine COATEDSPHERE_SCATTER(), backward recurrence for the Bessel- and Hankel functions (programs taken from Zhang and Jin, 1996) are utilized, which is more stable than the forward recurrence implemented into subroutine COATEDSPHERE_SCATTER_BH(). However, COATEDSPHERE_SCATTER() is slower than COATEDSPHERE_SCATTER_BH(). Application of these routines to hydrometeor scattering in the microwave region should not be problematic, so both routines can be used.

4.5 Refractive index of hydrometeors

Up to this point, general formulas for the computation of the backscatter- and extinction cross section of spherical particles were given. An important parameter herein is the complex refractive index of the particle material $m = m' + im''$ (m_1, m_2 for the two-layered
sphere), which will be presented in the next sections. m is connected to the relative dielectric constant $\epsilon = \epsilon' + i\epsilon''$ by the relation $\epsilon = m^2$. Note that in this paper the convection with negative imaginary part of m and ϵ is used which corresponds to a timefactor $\exp(i\omega t)$ in the description of electromagnetic waves. Under the assumption $\epsilon'' < 0$, $m'' < 0$ the following conversion formulas apply:

\begin{align}
\epsilon' &= m'^2 - m''^2 \\
\epsilon'' &= 2m' m'' \\
m' &= \sqrt{\frac{\sqrt{\epsilon'^2 + \epsilon''^2} + \epsilon'}{2}} \\
m'' &= -\sqrt{\frac{\sqrt{\epsilon'^2 + \epsilon''^2} - \epsilon'}{2}}.
\end{align}

The last two equations define the principal arm of the complex root function, as it is implemented also in most programming languages.

Hydrometeors consist of air, ice and/or water, so values of m for these materials are needed. For air, $m = 1$ is a very good approximation. For ice and water, m basically depends on wavelength and temperature. With these values, pure water and ice particles can be treated. These are given in subsubsection 4.5.1 and 4.5.2.

Things get by far more complicated in the case of dry snow particles (mixture of ice and air) or melting snow particles (mixture of ice, air and water). Here the task is to find an effective value m_{eff}, which leads to the same scattering functions when applied in the Mie-formulae that are observed for the mixture particle, whose scattering pattern highly depends on the topology of the mixture. This is a very difficult task, and consequently, there are a lot of mixing formulas on the market applicable to certain special situations. A general solution to the problem seems to be not existent. Moreover, mixing rules applicable for backscattering might not be applicable for extinction and vice versa (e.g., for granular mixtures with spatially inhomogeneous material distribution), since it is sometimes not possible to describe the directional scattering by a single value of m_{eff}.

In subsubsection 4.5.4 to subsubsection 4.5.6, some mixing formulas are presented which are currently used by the radar meteorological community for the mixture topologies encountered in dry and melting hydrometeors.
Figure 2: Complex refractive index of water after Ray (1972) as a function of wavelength λ_0 in m and temperature in °C (only his equations (5) and (6) are used). Red: real part, blue: negative imaginary part. Several curves are shown at constant temperatures of -10°C to 30°C in steps of 10°C.

Figure 3: Complex refractive index of water after Liebe et al. (1991) as a function of wavelength λ_0 in m and temperature in °C. Red: real part, blue: negative imaginary part. Several curves are shown at constant temperatures of -10°C to 30°C in steps of 10°C.

4.5.1 Water

Two models (formulas) for the complex index of refraction of water, m_w, are implemented into radar_mielib as functions. They give m_w as a function of wavelength λ_0 and temperature T. The first is the model of Ray (1972), which is applicable to the temperature range from -10°C to 30°C and to the wavelength range of about 1 mm to 1 m. Figure 2 depicts the real and imaginary parts of m_w for this model as a function of λ_0 and T. One clearly sees the anomalous dispersion signal connected to a classical Debye relaxation mode in the microwave region. With higher frequency (shorter wavelength) the real part drops down reflecting an increase in propagation phase speed, whereas in the same frequency range, the imaginary part has a distinct maximum, reflecting strong absorption. The complete formulas of Ray (1972) also contain several rotational and absorption bands in the infrared region, parameterized as gaussian peaks, but this is omitted in the radar_mielib function. Only the formulas (5) and (6) of Ray (1972) are used, which limits the applicability to the microwave region.

Another model is given by Liebe et al. (1991) with a slightly different application range, namely 300 µm < λ_0 < 0.3 m and -3°C < T < 30°C. Figure 3 shows the real and imaginary parts of m_w for this model. The prominent Debye relaxation mode is also present here, as it should.

A comparison of both models can be found in Figure 4 for a temperature of 25°C, together with a model based on measurements of Segelstein (1981). The latter is only available for the temperature of 25°C. Nearly no differences between these descriptions are visible the wavelength range 5 mm to 20 cm, so all descriptions equally can be used in the microwave region, all giving similar results. Looking at other temperatures, nearly no differences between Rays and Liebes model can be found for the wavelength range 1 cm to 10 cm. At larger wavelength, the imaginary part is larger for Rays model, whereas at shorter wavelengths, the opposite is found. Liebes model should be used for $\lambda_0 < 1$ cm, whereas both models are applicable from 1 cm to 10 cm, and Rays model is better from 10 cm to 1 m.

4.5.2 Ice

For the complex refractive index of ice, m_i, three models are available in radar_mie1ib. The first is again a model of Ray (1972), from the same paper as previously the model for water. The corresponding real and imaginary parts of m_i are depicted in Figure 5 as functions of λ_0 and T. The range of validity is given by the author to be $0.001 \, \text{m} < \lambda_0 < 10^7 \, \text{m}$ and $-20^\circ \text{C} < T < 0^\circ \text{C}$. Ray (1972) deduced it from then available measurements from the literature, but not fulfilling the Kramers-Kronig-relations (see, e.g., Bohren and Huffman, 1983), as criticized, e.g., by Warren (1984). The use of this model is therefore not recommended.

As a second and better model, the discrete m_i-tables given by Warren (1984) are implemented, as shown in Figure 6. The author critically and carefully reviewed the existing measurements in literature, combined with own measurements to deduce his lookup tables. Here the Kramers-Kronig-relations are fulfilled. Values of m_i at intermediate values of λ_0 and T are linearly interpolated. In the original paper, the range of validity is given as $45 \, \text{nm} < \lambda_0 < 8.6 \, \text{m}$ and $-60^\circ \text{C} < T < 0^\circ \text{C}$.

Third, the formula of Mätzler (1998) is available (see Figure 7). The author gives the range of validity as $0.1 \, \text{mm} < \lambda_0 < 30 \, \text{m}$ and $-250^\circ \text{C} < T < 0^\circ \text{C}$.
While very similar for the real part of m_i, it can be seen from Figure 8 that especially the model of Ray (1972) predicts a totally different behaviour of the imaginary part of m_i with wavelength than the other two models. Here, the models of Warren (1984) and Mätzler (1998) are in qualitative agreement, but Mätzler (1998) gives lower values of the imaginary part up to a factor of 8 compared to Warren (1984). The author of this document feels not to be in a position to recommend using one or the other, but using the model of Ray (1972) is not recommended because of the abovementioned reasons.

4.5.3 Mixtures of ice, air and water

In literature, many different formulations of the refractive index of a mixture material are presented termed "Effective Medium Approximations" (EMA). Mostly they have their origin in the field of physical chemistry. It is a very old concept dating back to the late 19th century but nevertheless still an actual topic in research. In the meteorological community dealing with radar measurements, mostly three formulations are used which are also part of

4.5.4 Mixtures of ice, air and water — Wiener’s formula

Otto Wiener (1912) presented a quite general theory for a homogeneous mixture of inclusions (grains, fibres, layers, etc.) of N materials which are embedded in a homogeneous background medium with dielectric constant ϵ_0. In case of spherical inclusions, he states

$$\frac{\epsilon_{\text{eff}} - \epsilon_0}{\epsilon_{\text{eff}} + f \epsilon_0} = \sum_{j=1}^{N} p_j \frac{\epsilon_j - \epsilon_0}{\epsilon_j + f \epsilon_0}.$$ \hspace{1cm} (13)

p_j denotes the relative volume fraction of the species j on the overall particle volume,

$$p_j = \frac{V_j}{V_m}, \text{ where } V_m = \text{Volume of mixture particle}$$ \hspace{1cm} (14)

and ϵ_j is its dielectric constant. **Note that in fact $N+1$ materials are contained in the mixture!** The parameter f in general depends on the shape, orientation, mutual distance and alignment within the mixture body. Let us denote the partial volume fraction of the background medium with p_0 and the partial volume by V_0, then it is

$$p_0 + \sum_{j=1}^{N} p_j = 1 \quad \text{and} \quad V_0 + \sum_{j=1}^{N} V_j = V_m$$ \hspace{1cm} (15)

A good review of the original paper by Wiener is given by Lichtenecker (1926).
Formula (13) was derived under the assumption of a mixture of equally shaped and equally sized inclusions of N species into the background medium. In order to be applicable, one has to specify a value for the parameter f. Wiener (1912) showed that this can be accomplished under the following constraints:

- All inclusions have to be sufficiently separated so that the electromagnetic field in between can be regarded as homogeneous. This implies $p_0 > 0$ (in fact $p_0 \gg p_1, p_2$) so that the condition of large grain separation distances can be fulfilled.

- ϵ_0 has to be either the largest or the smallest value of all ϵ_x involved and it has to be significantly different to the adjacent ϵ_x.

- Isotropic distribution of the grains within the matrix medium.

Under these circumstances the parameter f depends largely only on the shape of the inclusions and attains the value 2 for spherical inclusions (Wiener then denotes f by "Formzahl" — shape number). A more detailed discussion of these constraints can be found in the original literature. However, since the classical derivations were done for real ϵ_x, it remains somehow unclear how to formulate these constraints for complex ϵ_x.

Often a seemingly similar formula is used by the radarmeteorological community in a way to set $\epsilon_0 = 1$ (vacuum, air) (see e.g., the review article by Oguchi (1983)) and at the same time assuming that there is no contribution of the background medium to the particles volume ($p_0 = 0$). The formula then reduces to an older formula (Lorenz-Lorentz, Clausius, Mosotti et others, see, e.g., Wiener, 1912 or Lichtenecker, 1926),

$$\frac{\epsilon_{eff} - 1}{\epsilon_{eff} + u} = \sum_{j=1}^{N} p_j \frac{\epsilon_j - 1}{\epsilon_j + u}$$

In the following, formula (16) is referred to as Oguchis\(^1\) formula. Oguchi (1983) designates the parameter u as shape parameter, similar to f in equation (13), and states that in case of spherical inclusions u attains the value 2.

The problem with this formula is that in neglecting the partial volume of the background medium, the assumption of mutual "large enough" distances between the inclusions is violated and the formula seems not to be applicable in general. Debye (1929) therefore restricts the formula to weak dielectrics and to the case of molecular mixtures which he regards as suspended spheres (single atoms) in vacuum (same argumentation in Bohren and Huffman (1983)). It is clearly not applicable to a melting ice particle with low air contribution since water is a strong dielectric. This was also found experimentally by Joss and Aufdermaur (1965).

However, when the background medium within the particle is air ($\epsilon_0 = 1$) with a considerable volume fraction and the particle is a mixture of ice and air (dry snow flake, graupel), the formula might be applicable since ice is a weak dielectric. The mixing term containing the air volume in (16) then vanishes and a "classical" formula used by radar meteorologists for many years (e.g., Battan, 1973) is recovered (also by appropriately using formula (13), which corroborates the validity of (16) for this special case).

\(^1\)Oguchi (1983) wrongly attributes equation (16) to Otto Wiener, whereas the latter showed in his 1912 paper, why and under what circumstances this formula is not applicable. Wiener derived equation (13) instead, among formulas for other mixing topologies.
4.5.5 Mixtures of ice, air and water — Maxwell-Garnetts formula

Maxwell-Garnetts formula (Maxwell Garnett, 1904) is a special case of a more general formulation, see Stroud (1975), in the limiting case of small spherical inclusions of random size suspended in a background medium ("matrix"), similar as is the Wiener-formula, except for the random size. (In fact, it will be shown later in this section to be exactly equal to Wieners formula in case of spherical inclusions.)

Bohren and Huffman (1983) derive the following formulation similar to the original paper of Maxwell Garnett (1904)

\[
\epsilon_{eff} = \frac{p_1 \epsilon_1 + \sum_{j=2}^{N} p_j \beta_j \epsilon_j}{p_1 - \sum_{j=2}^{N} p_j \beta_j},
\]

where \(p_j \) denotes again the relative volume fraction of the species \(j \) on the overall particle volume,

\[
p_j = \frac{V_j}{V_m}, \quad \text{where} \ V_m = \text{Volume of mixture particle}
\]

and \(\epsilon_j \) is its dielectric constant. It is

\[
\sum_{j=1}^{N} p_j = 1.
\]

in this case. Here, index 1 corresponds to the matrix medium and indices larger than 1 denote inclusion materials.

Bohren and Battan (1982) extended this model to spheroidal inclusions, which have random size, which are randomly oriented within the matrix medium and which have random principal axes ratios (shapes). For this, only the coefficients \(\beta_j \) have to be replaced by

\[
\beta_j = 2 \frac{\epsilon_1}{\epsilon_j - \epsilon_1} \left(\frac{\epsilon_j}{\epsilon_j - \epsilon_1} \ln \left(\frac{\epsilon_j}{\epsilon_j} \right) - 1 \right).
\]

The complex logarithm denotes the principal arm. Note that this formulation is not invariant to a change in the matrix-species, but it is invariant to interchange the inclusions.

In case of a three-component mixture (as is the case with melting snow and graupel particles), formula (17) leads to numerous possibilities to specify matrix and inclusions. There are 3 possibilities to specify one material as matrix and the other two as inclusions. 12 additional possibilities arise by a two-fold application of a two-component mixture: one material is regarded as the matrix (3 possibilities), whereas the inclusion itself is regarded as a two-component mixture with 2 possibilities to specify matrix and inclusion. This leads to 6 possibilities. Changing further the roles of matrix and inclusion for the hosting material and the two-component sub-mixture, another 6 possibilities arise. Every possibility leads to different results. The degree of freedom (and the uncertainty about what to do) is therefore very large. In addition spherical and spheroidal inclusions can be discriminated, further doubling the number of possible choices.
An interesting comparison to the Wiener-formula can be made in rewriting equation (17) for spherical inclusions (β_j with equation (4.5.5)). After some manipulation,

$$\frac{\epsilon_{\text{eff}} - \epsilon_1}{\epsilon_{\text{eff}} + 2\epsilon_1} = \sum_{j=2}^{N} p_j \frac{\epsilon_j - \epsilon_1}{\epsilon_j + 2\epsilon_1} . \tag{21}$$

Changing the index convention to Wiener's formula ($1 \to 0, N \to N - 1$) leads to the formula

$$\frac{\epsilon_{\text{eff}} - \epsilon_0}{\epsilon_{\text{eff}} + 2\epsilon_0} = \sum_{j=1}^{N} p_j \frac{\epsilon_j - \epsilon_0}{\epsilon_j + 2\epsilon_0} . \tag{22}$$

Now the species 1 to N are the inclusions and the species 0 is the matrix. Comparing to equation (13) with $f = 2$ (spherical inclusions), both formulas turn out to be exactly equal. Therefore, the same constraints concerning the applicability as for the Wiener-formula also apply to Maxwell-Garnetts formula. In particular, in the case of $p_1 \to 0$, the matrix material vanishes and the Maxwell-Garnett formula might no longer be applicable. In this case, another formula might be better suited, which will be described in subsubsection 4.5.6. On the other hand, Wiener's formula with $f = 2$ does not require the spherical inclusions to be all of equal size.

In recent studies, mainly the Maxwell-Garnett formulation with the assumption of randomly oriented and randomly shaped small spheroidal inclusions is preferred in the literature, but with different assumptions about matrix and inclusions.

4.5.6 Mixtures of ice, air and water — Bruggemann formula

Another limiting case of the more general formulation of Stroud (1975) is the formula given by Bruggemann (1935),

$$\sum_{j=1}^{N} p_j \frac{\epsilon_j - \epsilon_{\text{eff}}}{\epsilon_j + 2\epsilon_{\text{eff}}} = 0 \tag{23}$$

$$p_j = \frac{V_j}{V_m}, \quad \text{where } V_m = \text{Volume of mixture particle}$$

$$\sum_{j=1}^{N} p_j = 1 .$$

It is applicable for a homogeneous mixture of subscale macroscopic granules of different materials (index j) in "dense packing" configuration without giving a special meaning to one of the component materials (Chylek and Srivastava, 1983). In that sense, the mixing topology assumed for this formula might be regarded as the limiting case of vanishing matrix material (cf. end of subsubsection 4.5.5). It is based on an approximation of the Mie forward scattering function $S_1(0) = S_2(0)$ for the single granules in that only the leading term with coefficient a_1 in equation (3) is retained. The single granules therefore have to be very small compared to the wavelength. Formula (23) is invariant to interchanging the species, as is Oguchi’s formula (16).

The implicit equation (23) leads to the problem of finding the roots of a complex polynomial of order N in ϵ_{eff}. After the fundamental theorem of algebra there are exactly N complex roots. For $N \leq 3$ there exist analytical solutions ($N = 3$: Cardani’s formula, e.g.), and for $N > 3$, these can be found, e.g., iteratively by Laguerre’s method (Press et al., 2001). However, only one of these roots has physical meaning and can be assigned to $m_{\text{eff}} = \sqrt{\epsilon_{\text{eff}}}$.

Usually, the constraints of a negative imaginary part of ϵ_{eff} (by convention in radar_mielib) together with the real part of ϵ_{eff} being inbetween the range of real parts of the ϵ_j, the physical meaningful root ϵ_{eff} can be identified, at least for a three-component mixture of ice, air and water, as is needed for our purpose.
5 Routines in radar_mielib

To calculate Z_e by integration of equation (1) (Page 7), information about the particle size distribution and about the backscattering cross section σ_b as function of particle type, size and degree of melting is needed, which in turn requires information about the effective particle refractive index m_{eff}. The theoretical basics for σ_b (one- and two-layered Mie scattering, Rayleigh approximation) and m_{eff} were briefly discussed in earlier sections, and, in particular, different EMA approximations for m_{eff} were summarized. Up to now and in the remainder of this document, the particle size distributions itself are not treated in detail, since their proper treatment depends strongly on the application: for a bin microphysical scheme resolving explicitly the size distributions of different hydrometeor types, no assumptions have to be drawn about it, whereas for a bulk microphysical scheme, usually a parametric function prototype ("master function" approach) is chosen whose free parameters are diagnosed from model variables. Therefore, the main focus of this document is on the properties of single particles, whereas the integration over the entire size distribution is left for the user.

Before we turn to more detailed investigations of the differences caused by applying different combinations of EMA formulations and melting models for single particles (one-layered or two-layered spheres, different mixing material assumptions) in subsequent sections, a complete list of subroutines and functions from radar_mielib will be given in the following subsections providing tools for calculation of σ_b and m_{eff} of single particles.

Later in Section 6, the library radar_mie_lm is exemplified to show how these tools can be combined for reflectivity calculations in a mesoscale NWP-model. radar_mie_lm provides interface reflectivity calculation subroutines for the LM.

5.1 Refractive index of pure ice and water

5.1.1 FUNCTION m_complex_water_ray

(lambda, T)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_water_ray
DOUBLE PRECISION :: T, lambda

Description:
Refractive index of water after Ray (1972), see subsubsection 4.5.1 on Page 12. Valid for $-10^\circ\text{C} < T < 30^\circ\text{C}$, $0.001 \text{ m} < \lambda_0 < 1 \text{ m}$.

Input parameters:

kinddp kind parameter for double precision
lambda radar wavelength in m
T temperature in $^\circ\text{C}$

Example:
mwater = m_complex_water_ray(0.055, 10.0)
5.1.2 FUNCTION m_complex_water_liebe
(lambda, T)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_water_liebe
DOUBLE PRECISION :: T, lambda

Description:
Refractive index of water after Liebe et al. (1991), see subsubsection 4.5.1 on Page 12.
Valid for \(-3^\circ C < T < 30^\circ C, 0.0003 \text{ m} < \lambda_0 < 0.3 \text{ m.}\)

Input parameters:

- kinddp: kind parameter for double precision
- lambda: radar wavelength in m
- T: temperature in °C

Example:

\[\text{mwater} = m_\text{complex_water_liebe}(0.055, 10.0) \]
5.1.3 FUNCTION m_complex_ice_ray
 (lambda, T)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_ice_ray
DOUBLE PRECISION :: T, lambda

Description:
Refractive index of ice after Ray (1972), see subsubsection 4.5.2 on Page 13.
Valid for -20°C < T < 0°C, 0.001 m < λ < 10^7 m.

Input parameters:

kinddp kind parameter for double precision
lambda radar wavelength in m
T temperature in °C

Example:
mice = m_complex_ice_ray(0.055, -10.0)
5.1.4 FUNCTION m_complex_ice_warren
 (lambda, T)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_ice_warren
DOUBLE PRECISION :: T, lambda

Description:
Refractive index of ice after Warren (1984), see subsubsection 4.5.2 on Page 13.
Valid for $-60^\circ C < T < 0^\circ C$, $45 \cdot 10^{-9} \text{ m} < \lambda_0 < 8.6 \text{ m}$.

Input parameters:

- kinddp: kind parameter for double precision
- lambda: radar wavelength in m
- T: temperature in °C

Example:

mice = m_complex_ice_warren(0.055, -10.0)
5.1.5 FUNCTION m_complex_ice_maetzler
(lambda, T)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_ice_maetzler
DOUBLE PRECISION :: T, lambda

Description:
Refractive index of ice after Mätzler (1998), see subsubsection 4.5.2 on Page 13.
Valid for \(-250^\circ C < T < 0^\circ C\), \(0.0001 \, \text{m} < \lambda_0 < 30 \, \text{m}\).

Input parameters:

kinddp kind parameter for double precision
lambda radar wavelength in m
T temperature in °C

Example:
mice = m_complex_ice_maetzler(0.055, -10.0)
5.2 Refractive index of mixture materials

5.2.1 FUNCTION m_complex_oguchi

\(m_{\text{eff}}\) of a three-component mixture material after Oguchi (1983), see equation (16) in subsubsection 4.5.4 on Page 15.

Input parameters:

- **kinddp**: kind parameter for double precision
- **m1, m2, m3**: complex index of refraction for the three mixture components 1, 2 and 3
- **vol1, vol2, vol3**: corresponding volume fractions (conform with \(p_1, p_2, p_3\) from equation (16), \(\sum p_j = 1\))

Output parameters:

- **m_complex_oguchi**: complex refractive index \(m_{\text{eff}}\) of the mixture material, function result
- **fehler**: error status (side effect): 0 = no error, 1 = error encountered

Example:

\[\text{mmix} = \text{m_complex_oguchi}(0.5, 0.3, 0.2, \text{mwater, mice, mair, errorflag})\]
5.2.2 FUNCTION m_complex_maxwellgarnett
 (vol1, vol2, vol3, m1, m2, m3, inclusionstring, fehler)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: m_complex_maxwellgarnett
COMPLEX(kind=kinddp) :: m1, m2, m3
DOUBLE PRECISION :: vol1, vol2, vol3
CHARACTER(len=*) :: inclusionstring
INTEGER, INTENT(out) :: fehler

Description:
Refractive index of a three-component mixture material after Maxwell Garnett (1904), see
subsubsection 4.5.5 on Page 16. Both formulas for spherical (equation (18)) and spheroidal
(equation (20)) inclusions are implemented and can be chosen via a keyword parameter. The
choice which material is the matrix and which are the inclusions is done via the order number
of the material: No. 1 denotes the matrix, No. 2 and 3 represent the inclusions (see below).

Input parameters:

kinddp
 kind parameter for double precision

m1, m2, m3
 complex index of refraction for the three mixture com-
 ponents 1, 2 and 3. Index 1 denotes the matrix material
 and 2 and 3 represent the inclusions

vol1, vol2, vol3
 corresponding volume fractions (conform with \(p_1, p_2, p_3 \)
 from equation (17), \(\sum p_j = 1 \))

inclusionstring
 A string constant to choose if spherical or spheroidal
 inclusions should be assumed:
 'spherical' — spherical inclusions
 'spheroidal' — spheroidal inclusions

Output parameters:

m_complex_maxwellgarnett
 complex refractive index \(m_{\text{eff}} \) of the mixture material,
 function result

fehler
 error status (side effect): 0 = no error, 1 = error en-
 countered

Example:

mmix = m_complex_maxwellgarnett(0.5, 0.3, 0.2, mwater, mice, mair, 'spheroidal', errorflag)
5.2.3 FUNCTION m_complex_bruggemann
 (volair, volice, volwater, mair, mice, mwater, fehler)

 INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
 COMPLEX(kind=kinddp) :: m_complex_bruggemann
 COMPLEX(kind=kinddp) :: mair, mice, mwater
 DOUBLE PRECISION :: volair, volice, volwater
 INTEGER, INTENT(out) :: fehler

 Description:
 Refractive index of a three-component mixture of air, ice and water after Bruggemann (1935),
 see equation (23) in subsubsection 4.5.6 on Page 17.

 [Note: This routine is especially designed for mixtures of air, ice and water!]

 Input parameters:
 kinddp kind parameter for double precision
 mair, mice, mwater complex index of refraction for air, ice and water
 volair, volice, volwater corresponding volume fractions (conform with p_1, p_2, p_3
 from equation (23), $\sum p_j = 1$)

 Output parameters:
 m_complex_bruggemann complex refractive index m_{eff} of the mixture material,
 function result
 fehler error status (side effect): 0 = no error, 1 = error en-
 countered

 Example:
 mmix = m_complex_bruggemann(0.5, 0.3, 0.2, mwater, mice, mair, errorflag)
5.2.4 FUNCTION get_m_mix

\(\text{get}_m\text{mix}(m_a, m_i, m_w, \text{volair}, \text{volice}, \text{volwater}, \text{mixingrulestring}, \text{matrixstring}, \text{inclusionstring}, \text{fehler}) \)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: get_m_mix
COMPLEX(kind=kinddp), INTENT(in) :: m_a, m_i, m_w
DOUBLE PRECISION, INTENT(in) :: volair, volice, volwater
CHARACTER(len=*) , INTENT(in) :: mixingrulestring
CHARACTER(len=*) , INTENT(in) :: matrixstring
CHARACTER(len=*) , INTENT(in) :: inclusionstring
INTEGER, INTENT(out) :: fehler

Description:
Interface routine to the basic functions \texttt{m_complex_oguchi()}, \texttt{m_complex_maxwellgarnett()} and \texttt{m_complex_bruggemann()} for a three-component mixture. Three keyword parameter strings determine, which mixing rule and, if necessary, which matrix material should be chosen. \textbf{Note: This routine is especially designed for mixtures of air, ice and water!}

Input parameters:

\begin{itemize}
 \item \texttt{kinddp} \quad \text{kind parameter for double precision}
 \item \texttt{m_a, m_i, m_w} \quad \text{complex index of refraction for air, ice and water, resp.}
 \item \texttt{volair, volice, volwater} \quad \text{corresponding volume fractions (conform with } p_1, p_2, p_3 \text{ from equation (23), } \sum p_j = 1 \text{)}
 \item \texttt{mixingrulestring} \quad \text{A string constant to choose the mixing rule: 'oguchi' — \texttt{m_complex_oguchi()}, spherical inclusions 'maxwellgarnett' — \texttt{m_complex_maxwellgarnett()} 'bruggemann' — \texttt{m_complex_bruggemann()}}
 \item \texttt{matrixstring} \quad \text{In case of \texttt{mixingrulestring} = 'maxwellgarnett', choice of the matrix material: 'air' — air 'ice' — ice 'water' — water}
 \item \texttt{inclusionstring} \quad \text{A string constant to choose if spherical or spheroidal inclusions should be assumed: 'spherical' — spherical inclusions 'spheroidal' — spheroidal inclusions}
\end{itemize}

Output parameters:

\begin{itemize}
 \item \texttt{get}_m\text{mix} \quad \text{complex refractive index } m_{\text{eff}} \text{ of the mixture material, function result}
 \item \texttt{fehler} \quad \text{error status (side effect): } 0 = \text{no error, } 1 = \text{error encountered}
\end{itemize}
Example:

\[
\text{mmix} = \text{get}_m_\text{mix}(\text{mair}, \text{mice}, \text{mwater}, 0.2, 0.3, 0.5, \text{'maxwellgarnett'}, \& \text{'ice'}, \text{'spheroidal'}, \text{errorflag})
\]
5.2.5 FUNCTION get_m_mix_nested
(m_a, m_i, m_w, volair, volice, volwater, mixingrulestring, hoststring, matrixstring, inclusionstring, hostmatrixstring, hostinclusionstring, kumfehler)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
COMPLEX(kind=kinddp) :: get_m_mix_nested
COMPLEX(kind=kinddp), INTENT(in) :: m_a, m_i, m_w
DOUBLE PRECISION, INTENT(in) :: volair, volice, volwater
CHARACTER(len=*), INTENT(in) :: mixingrulestring
CHARACTER(len=*), INTENT(in) :: hoststring
CHARACTER(len=*), INTENT(in) :: matrixstring
CHARACTER(len=*), INTENT(in) :: inclusionstring
CHARACTER(len=*), INTENT(in) :: hostmatrixstring
CHARACTER(len=*), INTENT(in) :: hostinclusionstring
INTEGER, INTENT(out) :: kumfehler

Description:
Interface routine to the basic functions m_complex_oguchi(), m_complex_maxwellgarnett() and m_complex_bruggemann() for a three-component mixture. The difference to get_m_mix() (subsubsection 5.2.4) is that, once a particular mixing rule is chosen, additionally a twofold mixing of two two-component mixtures is possible. This offers for the Maxwell-Garnett rule 30 different choices in total. If this twofold mixing is specified, first m_{eff} of a mixture of two of the three components is calculated ("inner" mixing material), and later, this effective medium is mixed with the remaining third component ("outer" mixture). **Note that the twofold application of two two-component mixtures with different mixing rules is not implemented so far.** In case of Bruggemann- and Oguchi-rule, it does not make any difference if choosing the three-component or twofold two-component mixing.

Six keyword parameter strings determine, which mixingrule and (if necessary) if twofold two-component or three-component mixture with which matrix material(s) should be chosen (see below for details). **Note: This routine is especially designed for mixtures of air, ice and water!**

Input parameters:

- **kinddp**: kind parameter for double precision
- **m_a, m_i, m_w**: complex index of refraction for air, ice and water, resp.
- **volair, volice, volwater**: corresponding volume fractions (conform with p_1, p_2, p_3 from equation (23), $\sum p_j = 1$)
- **mixingrulestring**: A string constant to choose the mixing rule:
 - 'oguchi’ — m_complex_oguchi(), spherical inclusions
 - 'maxwellgarnett’ — m_complex_maxwellgarnett()
 - 'bruggemann’ — m_complex_bruggemann()
- **hoststring**: Determines which material should be the hosting ("outer") material in a twofold two-component mixture or if a three-component mixture should be chosen:
 - 'none' — onefold three-component mixture
 - 'air' — air
 - 'ice' — ice
 - 'water' — water
matrixstring

In case of twofold two-component mixture (hoststring ≠ 'none') and Maxwell-Garnett mixing rule, choice of the matrix material of the "inner" mixture:

'air' — air
'ice' — ice
'water' — water
(not equal to hoststring!)

In case of three-component mixture (hoststring = 'none'), the usual choice of the matrix material:

'air' — air
'ice' — ice
'water' — water

inclusionstring

A string constant to choose if spherical or spheroidal inclusions should be assumed (in case of twofold two-component mixture, for the "inner" mixture):

'spherical' — spherical inclusions
'spheroidal' — spheroidal inclusions

hostmatrixstring

In case of mixingrulestring = 'maxwellgarnett' and twofold two-component mixture, choice of the matrix material of the "outer" mixture (no meaning in case of hoststring = 'none'):

'air' — air
'ice' — ice
'water' — water
'airice' — air/ice-mixture
'airwater' — air/water-mixture
'icewater' — ice/water-mixture

hostinclusionstring

In case of twofold two-component mixture, for the "outer" mixture, a string constant to choose if spherical or spheroidal inclusions should be assumed:

'spherical' — spherical inclusions
'spheroidal' — spheroidal inclusions

Note that not all combinations of these six keyword parameter strings do make sense. Nonsense combinations will lead to an error ($m_{eff} = -999.99$), a corresponding error message and kumfehler ≠ 0.

Output parameters:

get_m_mix

complex refractive index m_{eff} of the mixture material, function result

kumfehler

error status (side effect): 0 = no error, 1 = error encountered

Example:
\texttt{mmix = get_m_mix_nested(mair, mice, mwater, 0.2, 0.3, 0.5, &}
\texttt{ 'maxwellgarnett', 'air', 'water', 'spherical', &}
\texttt{ 'icewater', 'spheroidal', errorflag)}
5.3 Backscattering cross section for single precipitation particles

5.3.1 SUBROUTINE MIE_DRY_GRAUPEL
(x_g,a_geo,b_geo,m_i,lambda,C_back, mixingrulestring, matrixstring, inclusionstring)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_g, lambda, a_geo, b_geo
COMPLEX(kind=kinddp), INTENT(in) :: m_i
CHARACTER(len=*), INTENT(in) :: mixingrulestring
CHARACTER(len=*), INTENT(in) :: matrixstring
CHARACTER(len=*), INTENT(in) :: inclusionstring
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscattering cross section σ_b (Mie-scattering) of a dry graupel/snow/hail particle, assumed as a sphere of homogeneous ice-air mixture material. The particle bulk density is derived from the inverse mass-size-relation (40) with coefficients a_{geo} and b_{geo} assuming spherical shape. mixingrulestring, matrixstring and inclusionstring determine the effective medium approximation used to calculate the effective refractive index of the particles, which is done by function get_m_mix (Subsection 5.2).

For relatively small particles, the Rayleigh approximation can be applied instead by using subroutine RAYLEIGH_DRY_GRAUPEL() (subsubsection 5.3.2).

Input parameters:

kinddp
kind parameter for double precision

x_g
Mass of particle in kg (without air fraction)

a_geo
Coefficient a_{geo} of the inverse mass-size-relation (40)

b_geo
Coefficient b_{geo} of the inverse mass-size-relation (40)

m_i
Complex refractive index of ice

lambda
Radar wavelength in m

mixingrulestring
A string constant to choose the mixing rule:
'oguchi' — m_complex_oguchi(), spherical inclusions
'maxwellgarnett' — m_complex_maxwellgarnett()
'bruggemann' — m_complex_bruggemann()

matrixstring
In case of mixingrulestring = 'maxwellgarnett', choice of the matrix material:
'air' — air
'ice' — ice
'water' — water (does not make sense here)

inclusionstring
A string constant to choose if spherical or spheroidal inclusions should be assumed:
'spherical' — spherical inclusions
'spheroidal' — spheroidal inclusions
Output parameters:

C_back Backscattering cross section σ_b in m2

Example:

CALL MIE_DRY_GRAUPEL(2.3e-3, a_geo, b_geo, m_i, 0.055, C_back, &
 'maxwellgarnett', 'ice', 'spheroidal')
5.3.2 SUBROUTINE RAYLEIGH_DRY_GRAUPEL
 (x_g,a_geo,b_geo,m_i,lambda,C_back, mixingrulestring, matrixstring, inclusionstring)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_g, lambda, a_geo, b_geo
COMPLEX(kind=kinddp), INTENT(in) :: m_i
CHARACTER(len=*) , INTENT(in) :: mixingrulestring
CHARACTER(len=*) , INTENT(in) :: matrixstring
CHARACTER(len=*) , INTENT(in) :: inclusionstring
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscattering cross section σ_b (Rayleigh approximation) of a dry graupel/snow/hail particle, assumed as a *sphere of homogeneous ice-air mixture material*. The particle bulk density is derived from the inverse mass-size-relation (40) with coefficients a_{geo} and b_{geo} assuming spherical shape. mixingrulestring, matrixstring and inclusionstring determine the effective medium approximation used to calculate the effective refractive index of the particles, which is done by function get_m_mix (Subsection 5.2).

Input parameters:

- **kinddp**
 kind parameter for double precision
- **x_g**
 Mass of particle in kg (without air fraction)
- **a_geo**
 Coefficient a_{geo} of the inverse mass-size-relation (40)
- **b_geo**
 Coefficient b_{geo} of the inverse mass-size-relation (40)
- **m_i**
 Complex refractive index of ice
- **lambda**
 Radar wavelength in m
- **mixingrulestring**
 A string constant to choose the mixing rule:
 - 'oguchi' — m_complex_Oguchi()
 - 'maxwellgarnett' — m_complex_MaxwellGarnett()
 - 'bruggemann' — m_complex_Bruggemann()
- **matrixstring**
 In case of mixingrulestring = 'maxwellgarnett', choice of the matrix material:
 - 'air' — air
 - 'ice' — ice
 - 'water' — water (does not make sense here)
- **inclusionstring**
 A string constant to choose if spherical or spheroidal inclusions should be assumed:
 - 'spherical' — spherical inclusions
 - 'spheroidal' — spheroidal inclusions
Output parameters:

C_back

Backscattering cross section σ_b in m2

Example:

CALL RAYLEIGH_DRY_GRAUPEL(2.3e-3, a_geo, b_geo, m_i, 0.055, C_back, &
 'maxwellgarnett', 'ice', 'spheroidal')
5.3.3 SUBROUTINE MIE_DRYHAIL

(x_h,a_geo,b_geo,m_i,lambda,C_back)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_h, lambda, a_geo, b_geo
COMPLEX(kind=kinddp), INTENT(in) :: m_i
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscattering cross section σ_b (Mie-scattering) of a dry hail particle, assumed as a homogeneous ice sphere. It is an approximation to MIE_DRY_GRAUPEL() (subsubsection 5.3.1) in the sense that although the particle bulk density is permitted to deviate from pure ice, but solid ice is assumed for the particles refractive index (m_i). The purpose of this is to save computation time in case of high density ice particles. Therefore, this routine is only applicable to particle types whose coefficients a_{geo} and b_{geo} of the inverse mass-size-relation (40) represent nearly solid ice particles.

For smaller particles, the Rayleigh approximation can be applied by subroutine RAYLEIGH_DRY_GRAUPEL instead (subsubsection 5.3.2).

Input parameters:

kinddp kind parameter for double precision
x_h Mass of hail particle in kg
a_geo Coefficient a_{geo} of the inverse mass-size-relation (40)
b_geo Coefficient b_{geo} of the inverse mass-size-relation (40)
m_i Complex refractive index of ice
lambda Radar wavelength in m

Output parameters:

C_back Backscattering cross section σ_b in m2

Example:

CALL MIE_DRYHAIL(2.3e-3, a_geo, b_geo, m_i, 0.055, C_back)
5.3.4 SUBROUTINE MIE_DRY_SNOW

\begin{verbatim}
(x_s,a_geo,b_geo,m_i,lambda,C_back, mixingrulestring, matrixstring,
inclusionstring)
\end{verbatim}

\begin{verbatim}
INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_s, lambda, a_geo, b_geo
COMPLEX(kind=kinddp), INTENT(in) :: m_i
CHARACTER(len=*)(*, INTENT(in) :: mixingrulestring
CHARACTER(len=*)(*, INTENT(in) :: matrixstring
CHARACTER(len=*)(*, INTENT(in) :: inclusionstring
DOUBLE PRECISION, INTENT(out) :: C_back
\end{verbatim}

Description:

Backscattering cross section \(\sigma_b \) (Mie-scattering) of a dry graupel/snow/hail particle, assumed
as a sphere of homogeneous ice-air mixture material. The particle bulk density is derived from the inverse mass-size-relation (40) with coefficients \(a_{\text{geo}} \) and \(b_{\text{geo}} \) assuming spherical shape. \(\text{mixingrulestring} \), \(\text{matrixstring} \) and \(\text{inclusionstring} \) determine the effective medium approximation used to calculate the effective refractive index of the particles, which is done by function \text{get_mix} \ (Subsection 5.2).

For smaller particles, the Rayleigh approximation can be applied by using subroutine \text{RAYLEIGH_DRY_GRAUPEL} instead (subsubsection 5.3.2).

The only difference to subroutine \text{MIE_DRY_GRAUPEL} (subsubsection 5.3.1) is that \(a \) equivalent spherical diameter threshold of \(10^{-12} \) m is used instead of \(10^{-6} \) m below which \(C_{\text{back}} \) is set to 0 to save computation time.

Input parameters:

\begin{itemize}
\item \text{kinddp} \quad \text{kind parameter for double precision}
\item \text{x_s} \quad \text{Mass of particle in kg (without air fraction)}
\item \text{a_geo} \quad \text{Coefficient \(a_{\text{geo}} \) of the inverse mass-size-relation (40)}
\item \text{b_geo} \quad \text{Coefficient \(b_{\text{geo}} \) of the inverse mass-size-relation (40)}
\item \text{m_i} \quad \text{Complex refractive index of ice}
\item \text{lambda} \quad \text{Radar wavelength in m}
\item \text{mixingrulestring} \quad \text{A string constant to choose the mixing rule:}
\begin{itemize}
\item \text{’oguchi’} — \text{m_complex_oguchi()}\text{, spherical inclusions}
\item \text{’maxwellgarnett’} — \text{m_complex_maxwellgarnett()}\text{, spherical inclusions}
\item \text{’bruggemann’} — \text{m_complex_bruggemann()}\text{, spherical inclusions}
\end{itemize}
\item \text{matrixstring} \quad \text{In case of \text{mixingrulestring} = \text{’maxwellgarnett’}, choice of the matrix material:}
\begin{itemize}
\item \text{’air’} — air
\item \text{’ice’} — ice
\item \text{’water’} — water (does not make sense here)
\end{itemize}
\item \text{inclusionstring} \quad \text{A string constant to choose if spherical or spheroidal inclusions should be assumed:}
\begin{itemize}
\item \text{’spherical’} — spherical inclusions
\item \text{’spheroidal’} — spheroidal inclusions
\end{itemize}
\end{itemize}
Output parameters:

C_back

Backscattering cross section \(\sigma_b \) in \(\text{m}^2 \)

Example:

CALL MIE_DRYSNOW(3.4e-5, a_geo, b_geo, m_i, 0.055, C_back, &

'maxwellgarnett', 'ice', 'spheroidal')
5.3.5 SUBROUTINE MIE_DRYSNOW_TWOSPH
(x_s,a_geo,b_geo,m_i,radienverh,lambda,C_back, mixingrulestring_shell, matrixstring_shell, inclusionstring_shell, mixingrulestring_core, matrixstring_core, inclusionstring_core)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_s, lambda, a_geo, b_geo
DOUBLE PRECISION, INTENT(in) :: radienverh
COMPLEX(kind=kinddp), INTENT(in) :: m_i
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_shell
CHARACTER(len=*) , INTENT(in) :: matrixstring_shell
CHARACTER(len=*) , INTENT(in) :: inclusionstring_shell
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_core
CHARACTER(len=*) , INTENT(in) :: matrixstring_core
CHARACTER(len=*) , INTENT(in) :: inclusionstring_core
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscattering cross section σ_b (Mie-scattering) of a dry snowflake, assumed as a two-
layered sphere of homogeneous ice-air mixture material in each layer, the core
having higher bulk density than the shell (see Subsection 7.2). The overall particle
bulk density is derived from the inverse mass-size-relation (40) with coefficients a_{geo} and b_{geo}
assuming spherical shape. Note that b_{geo} has to represent a decreasing bulk density with
size.

To model a snowflake by a two-layered sphere with a denser core and a less dense shell,
additional information is necessary to assign the different bulk densities to core and shell,
preserving overall particle mass. To this end, as additional parameter, the ratio of the inner
to the outer sphere radius, radienverh, has to be specified with a value between 0 and 1.
With this parameter, the procedure described later in Subsection 7.2 on Page 71 is applied
to assign different bulk densities to core and shell.

Further, the input parameters mixingrulestring_shell/ mixingrulestring_core,
matrixstring_shell/matrixstring_core and inclusionstring_shell/inclusionstring_core
determine the effective medium approximation used to calculate the effective refractive index
of the particles shell/core, which is done by function get_m_mix (Subsection 5.2).

This routine uses the formulae of Bohren and Huffman (1983) for the backscattering cross section
of a two-layered sphere (subroutine COATEDSPHERE_SCATTER_BH()), see Subsection 4.4.

Input parameters:

kinddp kind parameter for double precision
x_s Mass of particle in kg (without air fraction)
a_geo Coefficient a_{geo} of the inverse mass-size-relation (40)
b_geo Coefficient b_{geo} of the inverse mass-size-relation (40)
radienverh Ratio of the inner to the outer sphere radius
m_i Complex refractive index of ice
lambda Radar wavelength in m
mixingrulestring_shell/mixingrulestring_core

String constants to choose the mixing rule:

- `oguchi` — m_complex_oguchi(), spherical inclusions
- `maxwellgarnett` — m_complex_maxwellgarnett()
- `bruggemann` — m_complex_bruggemann()

matrixstring_shell/matrixstring_core

In case of `mixingrulestring = 'maxwellgarnett'`, choice of the matrix material:

- `air` — air
- `ice` — ice
- `water` — water (does not make sense here)

inclusionstring_shell/inclusionstring_core

String constants to choose if spherical or spheroidal inclusions should be assumed:

- `spherical` — spherical inclusions
- `spheroidal` — spheroidal inclusions

Output parameters:

C_back

Backscattering cross section σ_0 in m2

Example:

\[
\text{CALL MIE_DRYSNOW_TWOSP}(3.4e-5, \ a_\text{geo}, \ b_\text{geo}, \ m_i, \ 0.055, \ C_\text{back}, \ &
\ 'maxwellgarnett', \ 'air', \ 'spheroidal', \ &
\ 'maxwellgarnett', \ 'ice', \ 'spheroidal')
\]
5.3.6 SUBROUTINE MIE_WATERSPH_WETHAIL
(x_h,fmelt,m_i,m_w,lambda,C_back)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_h, fmelt, lambda
DOUBLE PRECISION, INTENT(out) :: C_back
COMPLEX(kind=kinddp), INTENT(in) :: m_i, m_w

Description:
Backscattering cross section σ_b of a melting hail particle, assumed as a solid spherical ice core with spherical water coating, calculated by the two-sphere Mie-formulae. Here, the formulae of Kerker (1969) are applied (subroutine COATEDSPHERE_SCATTER()), see Subsection 4.4.

To speed up computation (but with some loss of stability), the subroutine MIE_WATERSPH_WETHAIL_BH() can be used instead with exactly the same input- and output parameters. This routine utilizes the formulae of Bohren and Huffman (1983) (subroutine COATEDSPHERE_SCATTER_BH()) instead of Kerker (1969), see Subsection 4.4.

Input parameters:
- kinddp: kind parameter for double precision
- x_h: Mass of hail particle in kg
- fmelt: degree of melting, $f_{melt} = x_w/x_h$ (x_w = mass of water contained in the particle)
- m_i: Complex refractive index of ice
- m_w: Complex refractive index of water
- lambda: Radar wavelength in m

Output parameters:
- C_back: Backscattering cross section σ_b in m2

Example:
CALL MIE_WATERSPH_WETHAIL(2.3e-3, 0.7, m_i, m_w, 0.055, C_back)

Example sensitivity studies:
The dependence of σ_b on the degree of melting and on particle size for a specific temperature of $T = 5^\circ$C is studied in detail in Subsection 8.18 on Page 107.
5.3.7 SUBROUTINE MIE_SPONGY_WETHAIL

\((x_h, f_{melt}, f_{\text{water}}, m_i, m_w, \lambda, C_{\text{back}}, \text{mixingrulestring}, \text{matrixstring}, \text{inclusionstring}) \)

\[
\text{INTEGER, PARAMETER} :: \text{kinddp} = \text{KIND}(1.0d0)
\]
\[
\text{DOUBLE PRECISION, INTENT(in)} :: x_h, f_{melt}, f_{\text{water}}, \lambda
\]
\[
\text{COMPLEX(kind=kinddp), INTENT(in)} :: m_i, m_w
\]
\[
\text{CHARACTER(len=*), INTENT(in)} :: \text{mixingrulestring}
\]
\[
\text{CHARACTER(len=*), INTENT(in)} :: \text{matrixstring}
\]
\[
\text{CHARACTER(len=*), INTENT(in)} :: \text{inclusionstring}
\]
\[
\text{DOUBLE PRECISION, INTENT(out)} :: C_{\text{back}}
\]

\textbf{Description:}

Backscattering cross section \(\sigma_b \) of a melting hail particle, assumed as a \textbf{solid spherical ice core with a spherical coating of a "spongy" ice-water mixture}, calculated by the two-sphere Mie-formulae. Here, the formulae of Kerker (1969) are applied (subroutine \textsc{coatedsphere} \textsc{scatter}()), see Subsection 4.4. The mass fraction of water (\(f_{\text{water}} \)) in the outer spongy shell has to be preset and is held fixed throughout the melting process, as long as the inner ice core is not completely melted. After the inner core has completely vanished, \(f_{\text{water}} \) is increased automatically to represent now the melted fraction of the remaining homogeneous spherical particle.

It seems reasonable to assume larger values of \(f_{\text{water}} \) during later melting stages (larger \(f_{melt} \)) than for earlier melting stages (small \(f_{melt} \)).

\begin{itemize}
\item To speed up computation (but with some loss of stability), the \textbf{subroutine} \textsc{mie_spongy_wethail} \textsc{bh}() \textbf{can be used instead with exactly the same input- and output parameters.} This routine utilizes the formulae of Bohren and Huffman (1983) (subroutine \textsc{coatedsphere} \textsc{scatter} \textsc{bh}()) instead of Kerker (1969), see Subsection 4.4.
\end{itemize}

\textbf{Input parameters:}

- \textbf{kinddp} \hfill \text{kind parameter for double precision}
- \textbf{x_h} \hfill \text{Mass of hail particle in kg}
- \textbf{f_{melt}} \hfill \text{Degree of melting, } f_{\text{melt}} = x_w / x_h \text{ (} x_w = \text{mass of water contained in the particle)}
- \textbf{f_{water}} \hfill \text{Mass fraction of water in the outer spongy shell} \((x_{\text{water}} / (x_{\text{ice}} + x_{\text{water}}))\)
- \textbf{m_i} \hfill \text{Complex refractive index of ice}
- \textbf{m_w} \hfill \text{Complex refractive index of water}
- \textbf{lambda} \hfill \text{Radar wavelength in m}
- \textbf{mixingrulestring} \hfill \text{A string constant to choose the mixing rule for the ice-water shell: 'oguchi' — m_complex_oguchi(), spherical inclusions 'maxwellgarnett' — m_complex_maxwellgarnett() 'bruggemann' — m_complex_bruggemann()}
matrixstring

In case of mixingrulestring = 'maxwellgarnett', choice of the matrix material for the ice-water shell:

'air' — air (does not make sense here)
'ice' — ice
'water' — water

inclusionstring

A string constant to choose if spherical or spheroidal inclusions should be assumed for the ice-water shell:

'spherical' — spherical inclusions
'spheroidal' — spheroidal inclusions

Output parameters:

C_back

Backscattering cross section σ_b in m2

Example:

CALL MIE_SPONGY_WETHAIL(2.3e-3, 0.7, 0.5, m_i, m_w, 0.055, C_back)

Example sensitivity studies:

The dependence of σ_b on the degree of melting and on particle size for a specific temperature of $T = 5^\circ$C is studied in detail in Subsection 8.17 on Page 106.
5.3.8 SUBROUTINE MIE_WATERSPH_WETGR

\begin{verbatim}
(x_g, a_geo, b_geo, fmelt, m_w, m_i, lambda, C_back, mixingrulestring, matrixstring, inclusionstring)
\end{verbatim}

Description:

Backscattering cross section \(\sigma_b \) (Mie-scattering, two-layered sphere) of a melting graupel particle, assumed as a **two-layered sphere composed of a homogeneous ice-air mixture core and a spherical water shell**. The bulk density (ice mass per particle volume) of the original unmelted particle is derived from the inverse mass-size-relation (40) with coefficients \(a_{geo} \) and \(b_{geo} \) assuming spherical shape. \(fmelt \) denotes the melted mass fraction or the degree of melting, \(f_{melt} \), resp. It is assumed that the particle melts entirely at the outside of the ice-air core and that the meltwater is accumulated in a spherical shell. \texttt{mixingrulestring}, \texttt{matrixstring} and \texttt{inclusionstring} determine the effective medium approximation used to calculate the effective refractive index of the particle ice-air core, which is done by function \texttt{get_m_mix} (Subsection 5.2). Such a melting model should be applicable to relatively high-density graupel and/ or at later melting stages (\(fmelt > \approx 0.5 \)).

For the calculation of the two-sphere backscattering cross section, the formulae of Kerker (1969) are applied (subroutine \texttt{COATEDSPHERE_SCATTER()}), see Subsection 4.4.

Input parameters:

- **kinddp**: kind parameter for double precision
- **x_g**: Mass of particle in kg (without air fraction)
- **a_geo**: Coefficient \(a_{geo} \) of the inverse mass-size-relation (40)
- **b_geo**: Coefficient \(b_{geo} \) of the inverse mass-size-relation (40)
- **fmelt**: Degree of melting, \(f_{melt} = x_w/x_g \) (\(x_w \) = mass of water contained in the particle)
- **m_w**: Complex refractive index of water
- **m_i**: Complex refractive index of ice
- **lambda**: Radar wavelength in m

To speed up computation (but with some loss of stability), the subroutine \texttt{MIE_WATERSPH_WETGR_BH()} can be used instead with exactly the same input- and output parameters. This routine utilizes the formulae of Bohren and Huffman (1983) (subroutine \texttt{COATEDSPHERE_SCATTER_BH()}) instead of Kerker (1969), see Subsection 4.4.
mixingrulestring A string constant to choose the mixing rule for the ice-air core:
'oguchi' — m_complex_oguchi(), spherical inclusions
'maxwellgarnett' — m_complex_maxwellgarnett()
'bruggemann' — m_complex_bruggemann()

matrixstring In case of mixingrulestring = 'maxwellgarnett', choice of the matrix material for the ice-air core:
'air' — air
'ice' — ice
'water' — water (does not make sense here)

inclusionstring A string constant to choose if spherical or spheroidal inclusions should be assumed for the ice-air core:
'spherical' — spherical inclusions
'spheroidal' — spheroidal inclusions

Output parameters:

C_back Backscattering cross section σ_b in m^2

Example:

CALL MIE_WATERSPH_WETGR(2.3e-3, a_geo, b_geo, &
0.45, m_w, m_i, 0.055, C_back, &
'maxwellgarnett', 'ice', 'spheroidal')

Example sensitivity studies:
The dependence of σ_b on the degree of melting and on particle size for a specific temperature of $T = 5^\circ C$ is studied in detail in subsequent sections for the 4 different inverse mass-size-relations given in Subsection 7.1. These are:

- for inverse mass-size-relation (36) in Subsection 8.9 on Page 92,
- for inverse mass-size-relation (37) in Subsection 8.10 on Page 95,
- for inverse mass-size-relation (38) in Subsection 8.11 on Page 98,
5.3.9 SUBROUTINE MIE_SOAK_TWOSPH_WETGR

\[(x_g, a_{\text{geo}}, b_{\text{geo}}, f_{\text{melt}}, m_w, m_i, \lambda, C_{\text{back}}, \text{mixingrulestring}_{\text{iceair}}, \text{matrixstring}_{\text{iceair}}, \text{inclusionstring}_{\text{iceair}}, \text{mixingrulestring}_{\text{icewater}}, \text{matrixstring}_{\text{icewater}}, \text{inclusionstring}_{\text{icewater}}) \]

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: \(x_g \), \(\lambda \), \(a_{\text{geo}} \), \(b_{\text{geo}} \), \(f_{\text{melt}} \)
COMPLEX(kind=kinddp), INTENT(in) :: \(m_w \), \(m_i \)
CHARACTER(len=*) , INTENT(in) :: mixingrulestring
CHARACTER(len=*) , INTENT(in) :: matrixstring
CHARACTER(len=*) , INTENT(in) :: inclusionstring
DOUBLE PRECISION, INTENT(out) :: \(C_{\text{back}} \)

Description:

Backscattering cross section \(\sigma_b \) (Mie-scattering, two-layered sphere) of a melting graupel/snow particle, assumed as a two-layered sphere composed of a homogeneous ice-air mixture core and a spherical ice-water mixture shell. The bulk density (ice mass per particle volume) of the original unmelted particle is derived from the inverse mass-size-relation (40) with coefficients \(a_{\text{geo}} \) and \(b_{\text{geo}} \) assuming spherical shape. \(f_{\text{melt}} \) denotes the melted mass fraction or the degree of melting, \(f_{\text{melt}} \), resp. It is assumed that the particle melts entirely on its outside and that the meltwater is soaked into the particle, displacing the air inclusions entirely from the outside. In this way, a spherical ice-water mixture shell forms around the ice-air core, growing to the inside with growing melt fraction, up to the melt fraction where the particle is completely soaked and the core has vanished. For a larger melt fraction, the particle is assumed as a sphere of homogeneous ice-water mixture.

Such a melting model should be applicable to graupel with intermediate density at all melting stages or to high-density graupel during an early melting stage (\(f_{\text{melt}} < \) approx. 0.5).

mixingrulestring_{iceair}/ mixingrulestring_{icewater}, matrixstring_{iceair}/ matrixstring_{icewater} and inclusionstring_{iceair}/ inclusionstring_{icewater} determine the effective medium approximation used to calculate the effective refractive index of the particle ice-air core/ ice-water shell. Both calculations are performed using the function get_m_mix (Subsection 5.2).

For the calculation of the two-sphere backscattering cross section, the formulae of Kerker (1969) are applied (subroutine COATEDSPHERE_SCATTER()), see Subsection 4.4.

To speed up computation (but with some loss of stability), the subroutine MIE_SOAK_TWOSPH_WETGR_BH() can be used instead with exactly the same input- and output parameters. This routine utilizes the formulae of Bohren and Huffman (1983) (subroutine COATEDSPHERE_SCATTER_BH()) instead of Kerker (1969), see Subsection 4.4.

Input parameters:

kinddp kind parameter for double precision
\(x_g \) Mass of particle in kg (without air fraction)
\(a_{\text{geo}} \) Coefficient \(a_{\text{geo}} \) of the inverse mass-size-relation (40)
\(b_{\text{geo}} \) Coefficient \(b_{\text{geo}} \) of the inverse mass-size-relation (40)
Degree of melting, \(f_{\text{melt}} = \frac{x_w}{x_g} \) (\(x_w \) = mass of water contained in the particle)

Complex refractive index of water

Complex refractive index of ice

Radar wavelength in m

String constants to choose the mixing rule for the ice-air core/ice-water shell:
- \('oguchi'\) — m_complex_oguchi() , spherical inclusions
- \('maxwellgarnett'\) — m_complex_maxwellgarnett()
- \('bruggemann'\) — m_complex_bruggemann()

In case of mixirulestring = 'maxwellgarnett', choice of the matrix material for the ice-air core/ice-water shell:
- \('air'\) — air (not for matrixstring_icewater)
- \('ice'\) — ice
- \('water'\) — water (not for matrixstring_iceair)

String constants to choose if spherical or spheroidal inclusions should be assumed for the ice-air core/ice-water shell:
- \('spherical'\) — spherical inclusions
- \('spheroidal'\) — spheroidal inclusions

Backscattering cross section \(\sigma_b \) in m\(^2\)

Example:

```
CALL MIE_SOAK_TWOSPH_WETGR(2.3e-3, a_geo, b_geo, 0.45, m_w, m_i, 0.055, C_back, 'maxwellgarnett', 'ice', 'spheroidal', 'maxwellgarnett', 'water', 'spheroidal')
```

Example sensitivity studies:

The dependence of \(\sigma_b \) on the degree of melting and on particle size for a specific temperature of \(T = 5^\circ C \) is studied in detail in subsequent sections for the 4 different inverse mass-size-relations given in Subsection 7.1. These are:

- for inverse mass-size-relation (36) in Subsection 8.5 on Page 84,
- for inverse mass-size-relation (37) in Subsection 8.6 on Page 86,
- for inverse mass-size-relation (38) in Subsection 8.7 on Page 88,
- for inverse mass-size-relation (39) in Subsection 8.8 on Page 90.
5.3.10 SUBROUTINE MIE_MEAN_WETGR
(x_g, a_geo, b_geo, fmelt, m_w, m_i, lambda, C_back, mixingrulestring_iceair, matrixstring_iceair, inclusionstring_iceair, mixingrulestring_icewater, matrixstring_icewater, inclusionstring_icewater)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_g, lambda, a_geo, b_geo, fmelt
COMPLEX(kind=kinddp), INTENT(in) :: m_w, m_i
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_iceair
CHARACTER(len=*) , INTENT(in) :: matrixstring_iceair
CHARACTER(len=*) , INTENT(in) :: inclusionstring_iceair
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_icewater
CHARACTER(len=*) , INTENT(in) :: matrixstring_icewater
CHARACTER(len=*) , INTENT(in) :: inclusionstring_icewater
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscattering cross section σ_b of a melting graupel particle (Mie-scattering, two-layered sphere model), assumed as melt fraction weighted mean of the backscattering coefficients calculated with the subroutines MIE_WATERSPH_WETGR() (subsubsection 5.3.8) and MIE_SOAK_TWOSPH_WETGR() (subsubsection 5.3.9):

$$C_{\text{back}} = f_{\text{melt}} C_{\text{watersphere}} + (1.0 - f_{\text{melt}}) C_{\text{soaktwosphere}}.$$

In this way, the melting particle is assumed to soak the meltwater during the early stage of melting and to accumulate more and more meltwater on the outside at later melting stages. mixingrulestring_iceair, matrixstring_iceair and inclusionstring_iceair determine the choice of the effective medium approximation for the two-component ice-air core in subroutine MIE_WATERSPH_WETGR() as well as in subroutine MIE_SOAK_TWOSPH_WETGR(). mixingrulestring_icewater, matrixstring_icewater and inclusionstring_icewater do the same for the ice-water shell in MIE_SOAK_TWOSPH_WETGR().

Input- and output parameters are virtually the same as in subsubsection 5.3.9 on Page 45!

Example:

CALL MIE_MEAN_WETGR(2.3e-3, a_geo, b_geo, &
0.45, m_w, m_i, 0.055, C_back, &
'maxwellgarnett', 'ice', 'spheroidal', &
'maxwellgarnett', 'water', 'spheroidal')

Example sensitivity studies:
Not shown in the present document.
5.3.11 SUBROUTINE MIE_SOAK_WETGR

(x_g,a_geo,b_geo,fmelt,meltratio_outside,m_w,m_i,lamba,C_back,
mixingrulestring,matrixstring,inclusionstring,hoststring,
hostmatrixstring,hostinclusionstring)

Description:

Backscatter cross section σ_b (Mie-scattering) of a melting graupel/snow particle, assumed as a sphere composed of a homogeneous ice-water-air mixture material. The bulk density (ice mass per particle volume) of the original unmelted particle is derived from the inverse mass-size-relation (40) with coefficients a_{geo} and b_{geo} assuming spherical shape. $fmelt$ denotes the melted mass fraction or the degree of melting, f_{melt}, resp.

It is assumed that the particle melts partly on the outside and on the inside, within the ice structure, and that the meltwater is completely soaked and distributed homogeneously within the particle, displacing the air inclusions. The fraction of meltwater coming from the outside has to be preselected as input parameter $meltratio_{outside}$ (between 0 and 1), which is the ratio when melting starts ($f_{melt}=0$). Choosing $meltratio_{outside}<1$ leads to larger particles compared to $meltratio_{outside}=1$.

If f_{melt} is large enough (depending on bulk density and the actual $meltratio_{outside}$, see below), the meltwater completely fills the ice structure. Now the ice core melts homogeneously and the particle is assumed to be a homogeneous mixture of ice and water.

However, if $meltratio_{outside}$ is sufficiently small, it could happen that the entire ice skeleton would be melted before all the air inclusions are filled with meltwater. Such particle would be unstable and splash into pieces sooner or later. To avoid this unrealistic asymptotic behaviour, the actual value of $meltratio_{outside}$ increases linearly with growing f_{melt} from its value at $f_{melt}=0$ (input parameter) to a value of 1 for $f_{melt}=1$. In this way, the particle in any case converges to a water drop for $f_{melt} \to 1$.

Once the volume fractions of ice, water and air are derived based on the above assumptions, the effective refractive index of the particle is calculated by the function get_m_mix_nested, subsubsection 5.2.5. By proper choice of the input parameters mixingrulestring, matrixstring, inclusionstring, hoststring, hostmatrixstring and hostinclusionstring, the application of many different EMAs is possible, see subsubsection 5.2.5 on Page 28. Mie scattering is finally applied to calculate the backscattering cross section.

For small particles, the Rayleigh approximation can be applied instead to speed up the computation, by using subroutine RAYLEIGH_SOAK_WETGR() instead (subsubsection 5.3.12).
Input parameters:

- **kinddp**
 - kind parameter for double precision
- **x_g**
 - Mass of particle in kg (without air fraction)
- **a_geo**
 - Coefficient a_{geo} of the inverse mass-size-relation (40)
- **b_geo**
 - Coefficient b_{geo} of the inverse mass-size-relation (40)
- **fmelt**
 - Degree of melting, $f_{melt} = x_w/x_g$ (x_w = mass of water contained in the particle)
- **meltratio_outside**
 - Subpart ratio of the meltwater mass x_w which melts on the outside of the particle when melting starts ($f_{melt} = 0$). Value between 0 and 1. The complementary subpart of x_w is assumed to melt within the ice structure. The actual value depends on f_{melt} and increases linearly to 1 for $f_{melt} = 1$.
- **m_w**
 - Complex refractive index of water
- **m_i**
 - Complex refractive index of ice
- **lambda**
 - Radar wavelength in m
- **mixingrulestring**
 - see subroutine `get_m_mix_nested()`, subsubsection 5.2.5.
- **hoststring**
 - **hostmatrixstring**
 - **hostinclusionstring**

Output parameters:

- **C_back**
 - Backscattering cross section σ_b in m2

Example:

CALL MIE_SOAK_WETGR(2.3e-3, a_geo, b_geo, &
 0.45, 0.7, m_w, m_i, 0.055, C_back, &
 'maxwellgarnett', 'water', 'spheroidal', &
 'air', 'icewater', 'spheroidal')

Example sensitivity studies:

The dependence of σ_b on the degree of melting and on particle size for a specific temperature of $T = 5^{\circ}C$ is studied in detail in subsequent sections for the 4 different inverse mass-size-relations given in Subsection 7.1. These are:

- for inverse mass-size-relation (36) in Subsection 8.13 on Page 102,
- for inverse mass-size-relation (37) in Subsection 8.14 on Page 103,
- for inverse mass-size-relation (38) in Subsection 8.15 on Page 104,
5.3.12 SUBROUTINE RAYLEIGH_SOAK_WETGR

\[
\text{(x,g,a,geo,b,geo,fmelt,meltratio_outside,m,w,m,i,lambda,C,back,}
\text{mixingrulestring, matrixstring, inclusionstring, hoststring,}
\text{hostmatrixstring, hostinclusionstring)}
\]

\text{INTEGER, PARAMETER :: kinddp = KIND(1.0d0)}
\text{DOUBLE PRECISION, INTENT(in) :: x_g, lambda, a_geo, b_geo, fmelt}
\text{DOUBLE PRECISION, INTENT(in) :: meltratio_outside}
\text{COMPLEX(kind=kinddp), INTENT(in) :: m_w, m_i}
\text{CHARACTER(len=*)}, INTENT(in) :: mixingrulestring
\text{CHARACTER(len=*)}, INTENT(in) :: matrixstring
\text{CHARACTER(len=*)}, INTENT(in) :: inclusionstring
\text{CHARACTER(len=*)}, INTENT(in) :: hoststring
\text{CHARACTER(len=*)}, INTENT(in) :: hostmatrixstring
\text{CHARACTER(len=*)}, INTENT(in) :: hostinclusionstring
\text{DOUBLE PRECISION, INTENT(out) :: C_back}

\text{Description:}

Backscatter cross section \(\sigma_b\) according to Rayleigh approximation of a melting graupel/snow particle, assumed as a \textit{sphere composed of a homogeneous ice-water-air mixture material}. This subroutine uses the same principles to determine the effective refractive index of the melting particle as MIE_SOAK_WETGR() except that the backscattering cross section is calculated applying Rayleigh approximation instead of Mie-scattering. See subroutine MIE_SOAK_WETGR() in subsubsection 5.3.11 for further details.

\text{Input- and output parameters the same as in subsubsection 5.3.11 on Page 48!}

\text{Example:}

\text{CALL MIE_SOAK_WETGR(2.3e-3, a_geo, b_geo, \\
0.45, 0.7, m_w, m_i, 0.055, C_back, &
'maxwellgarnett', 'water', 'spheroidal', &
'air', 'icewater', 'spheroidal')}

\text{Example sensitivity studies:}

The dependence of \(\sigma_b\) on the degree of melting and on particle size for a specific temperature of \(T = 5^\circ\text{C}\) is studied in detail in subsequent sections for the 4 different inverse mass-size-relations given in Subsection 7.1. These are:

- for inverse mass-size-relation (36) in Subsection 8.1 on Page 74,
- for inverse mass-size-relation (37) in Subsection 8.2 on Page 77,
- for inverse mass-size-relation (38) in Subsection 8.3 on Page 80,
- for inverse mass-size-relation (39) in Subsection 8.4 on Page 82.
5.3.13 SUBROUTINE MIE_WETSNOW_TWOSPH
(x_s,a_geo,b_geo,fmelt,meltingratio_outside,m_w,m_i,lambda,radienverh,C_back,
mixingrulestring_shell, matrixstring_shell, inclusionstring_shell, mixingrulestring_core, matrixstring_core, inclusionstring_core,
hoststring_shell, hostmatrixstring_shell, hostinclusionstring_shell, hoststring_core, hostmatrixstring_core, hostinclusionstring_core)

INTEGER, PARAMETER :: kinddp = KIND(1.0d0)
DOUBLE PRECISION, INTENT(in) :: x_g, lambda, a_geo, b_geo, fmelt
DOUBLE PRECISION, INTENT(in) :: meltingratio_outside
DOUBLE PRECISION, INTENT(in) :: radienverh
COMPLEX(kind=kinddp), INTENT(in) :: m_w, m_i
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_shell
CHARACTER(len=*) , INTENT(in) :: matrixstring_shell
CHARACTER(len=*) , INTENT(in) :: inclusionstring_shell
CHARACTER(len=*) , INTENT(in) :: hoststring_shell
CHARACTER(len=*) , INTENT(in) :: hostmatrixstring_shell
CHARACTER(len=*) , INTENT(in) :: hostinclusionstring_shell
CHARACTER(len=*) , INTENT(in) :: mixingrulestring_core
CHARACTER(len=*) , INTENT(in) :: matrixstring_core
CHARACTER(len=*) , INTENT(in) :: inclusionstring_core
CHARACTER(len=*) , INTENT(in) :: hoststring_core
CHARACTER(len=*) , INTENT(in) :: hostmatrixstring_core
CHARACTER(len=*) , INTENT(in) :: hostinclusionstring_core
DOUBLE PRECISION, INTENT(out) :: C_back

Description:
Backscatter cross section σ_b (Mie-scattering, two-layered sphere) of a melting soaked graupel/snow particle, assumed as a spherical core of a homogeneous ice-water-air mixture material and a shell of a similar ice-water-air mixture material but with lower bulk density.

This subroutine uses the same principles to determine the effective refractive index of the melting particle as MIE_SOAK_WETGR(), applied to core and shell. A further input parameter is the ratio between the outer and inner sphere radii, radienverh. The initial masses of the unmelted core and shell are derived from the inverse mass-size-relation (40) with coefficients a_{geo} and b_{geo} assuming spherical shape, in a similar way as in subroutine MIE_DRYSNOW_TWOSPH(), subsubsection 5.3.5. See subroutine MIE_SOAK_WETGR() in subsubsection 5.3.11 for further details. Note that the input parameter meltingratio_outside from MIE_SOAK_WETGR() is termed meltingratio_outside here.

To calculate the backscattering coefficient of the two-layered spherical particle, the formulae of Bohren and Huffman (1983) are applied (subroutine COATEDSPHERE_SCATTER_BH()), see Subsection 4.4.

Input parameters:

kinddp kind parameter for double precision
x_s Mass of particle in kg (without air fraction)
a_geo Coefficient a_{geo} of the inverse mass-size-relation (40)
b_geo
Coefficient b_{geo} of the inverse mass-size-relation (40)

fmelt
Degree of melting, $f_{melt} = x_w/x_s$ (x_w = mass of water contained in the particle). Same value for core and shell.

meltingratio_outside
Subpart ratio of the meltwater mass x_w which melts on the outside of the particle when melting starts ($f_{melt} = 0$). Value between 0 and 1. The complementary subpart of x_w is assumed to melt within the ice structure. The actual value depends on f_{melt} and increases linearly to 1 for $f_{melt} = 1$. Same value for core and shell.

radienverh
Ratio of the inner to the outer sphere radius

m_w
Complex refractive index of water

m_i
Complex refractive index of ice

lambda
Radar wavelength in m

mixingrulestring_shell, matrixstring_shell, inclusionstring_shell, hoststring_shell, hostmatrixstring_shell, hostinclusionstring_shell
Parameters determining the effective refractive index of the shell ice-water-air mixture material, see subroutine get_m_mix_nested(), subsubsection 5.2.5.

mixingrulestring_core, matrixstring_core, inclusionstring_core, hoststring_core, hostmatrixstring_core, hostinclusionstring_core
Parameters determining the effective refractive index of the core ice-water-air mixture material, see subroutine get_m_mix_nested(), subsubsection 5.2.5.

Output parameters:

C_back
Backscattering cross section σ_b in m²

Example:

CALL MIE_WETSNOW_TWOSPH(2.3e-3, a_geo, b_geo, &
0.45, 0.7, m_w, m_i, 0.055, 0.5, C_back, &
'maxwellgarnett', 'water', 'spheroidal', &
'maxwellgarnett', 'ice', 'spheroidal', &
'air', 'icewater', 'spheroidal', &
'water', 'water', 'spheroidal')

Example sensitivity studies:

The dependence of σ_b on the degree of melting and on particle size for a specific temperature of $T = 5^\circ$C is studied in detail in subsequent sections for the 2 different inverse mass-size-relations for snow given in Subsection 7.1. These are:
• for inverse mass-size-relation (38) in Subsection 8.19 on Page 108,
6 radar_mie_lm: Interface functions for the LM

As previously mentioned, the library radar_mie_lm provides interface routines for the LM to calculate Z_e as a sum of Integrals of the form equation (1) (Page 7) over the different hydrometeor types which are implemented into the LM microphysical schemes (cloud droplets, rain, cloud ice, snow, graupel and, depending on the scheme, hail). These interface functions call the subroutines for the basic particle properties m_{eff} and σ_b, which are provided by radar_mielib and were previously described in Section 5. For the particle size distributions, generalized gamma distributions are assumed for all hydrometeor types, which is consistent with the assumption in the bulk microphysical schemes of the LM. The parameters of these size distributions are derived from model variables (mass density, and in case of two-moment scheme, number density) consistent to the assumptions drawn for the applied microphysical scheme. Note that the exponential and gamma size distribution are a special case of the generalized gamma distribution.

For Mie-scattering as well as for Rayleigh approximation with general EMA approximation, the integration of Z_e is done over a finite size interval $[D_{min}; D_{max}]$ being prescribed in a reasonable way within the interface routines and being generally different for each hydrometeor category. There are also two much more efficient approaches implemented in radar_mielib utilizing Rayleigh approximation together with Oguchis EMA approximation, which enables analytical solutions of the reflectivity integral (see Subsection 6.2).

The degree of melting f_{melt} (melted mass fraction) of the single particles is estimated as a function of size and ambient temperature by a parameterization which will be presented in Subsection 6.1. Two important parameters of this parameterization, T_{min} and $f_{meltbegin}$ (see Subsection 6.1), are also specified in the interface routines in a reasonable way, but can certainly be changed by the user. Note that the estimated degree of melting can only be regarded as a very simplified and uncertain approximation since important information is not available for a more thorough description, e.g., the temperature and riming rate along the particle backward trajectories (the "melting history"). See Subsection 6.1 for a more detailed description.

The user can choose by appropriate settings of certain namelist parameters (described in Subsection 6.3), if full Mie-scattering or Rayleigh approximation with one of 3 different levels of simplification for m_{eff} of snow, graupel and hail is applied (see also Subsection 6.5 for an example of the relevant namelist parameters added to namelist GRIBOUT). These different levels of simplification can lead to largely different results for Z_e in case of melting hydrometeors, whereas in case of dry ice particles no significant differences are observed. The physical reason for this behaviour is that ice is only a weak dielectric whereas water is a strong dielectric (permanently polar molecules) so that the choice of a certain EMA-formulation becomes important primarily in the presence of water within a mixture particle.

6.1 An approximation for the degree of melting applicable for bulk microphysical schemes

This section describes a simple parameterization of the degree of melting f_{melt} (melted mass fraction) of hydrometeors, which can be used with bulk microphysical models which in turn do not explicitly predict the degree of melting. First of all, let us recall the definition of f_{melt},

$$f_{melt} = \frac{x_w}{x_{i,0}},$$

(24)

where x_w is the mass of meltwater and $x_{i,0}$ is the unmelted mass of the particle, only counting the ice fraction, not the enclosed air. Values for f_{melt} are in the range of $[0, 1]$. 0 means unmelted and 1 means fully melted.
Generally, f_{melt} depends on the time a certain particle has spent in a certain environment (T, riming rate, rate of turbulent heat transfer towards the particle, determined by, e.g., Reynolds number and particle surface roughness, etc.). This means that for an accurate calculation, the exact trajectory of each single particle has to be known together with a detailed solution of the equation of heat exchange of particles with the environment, considering also the feedback on the environmental temperature. In a numerical weather prediction model, this can hardly be done.

Therefore, to construct a parameterization f_{melt}, some assumptions have to be made to simplify the problem. We draw the following assumptions:

- In the environment, T decreases with height and no intense vertical motions are present, so that particles found at a specific time and place originate from regions above, not below.
- Every hydrometeor category can be assigned its own parameterization of f_{melt}, following the same master function (see below), but with different parameters.
- Within each hydrometeor class, the rate of heat exchange with the environment is a function of particle size only.
- It follows from the previous assumptions, that the particles all begin to melt at a certain temperature level T_{min}, e.g., 0°C or slightly below.
- that f_{melt} only depends on the environmental temperature T and particle diameter D,
- in particular that at a given temperature, f_{melt} is larger for smaller particles — we assume a simple dependence $f_{\text{melt}} \sim D^{-a}$ with $a > 0$.
- It is further assumed that below the height of a certain temperature level T_{max}, all particles are fully melted.

From these assumptions it follows that for a given environmental temperature there is a certain particle size $D_{f_{\text{m}}}$ at which the particles are just melted. Larger particles obey $f_{\text{melt}} < 1$. $D_{f_{\text{m}}}$ has to be 0 for $T = T_{\text{min}}$ and $D_{f_{\text{m}}} \Rightarrow \infty$ for $T \Rightarrow T_{\text{max}}$. A simple ansatz for $D_{f_{\text{m}}}$ fulfilling these constraints is, for example, an inverse exponential formula with respect to temperature,

$$D_{f_{\text{m}}}^a = D_{\text{ref}}^a \ln \left(\frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}} - T} \right),$$

with $T_{\text{min}} \leq T < T_{\text{max}}$. The exponent a has been introduced here for later convenience. D_{ref} is a scaling parameter and has to be specified properly. D_{ref} represents the value of $D_{f_{\text{m}}}$ at a temperature $T = T_{1/e}$, where

$$T_{1/e} = T_{\text{max}} - \frac{1}{e} (T_{\text{max}} - T_{\text{min}}),$$

the e-folding value of T within the interval $[T_{\text{min}}, T_{\text{max}}]$.

Now, requiring that $f_{\text{melt}}(D_{f_{\text{m}}}) = 1$ and $f_{\text{melt}} \sim D^{-a}$ immediately leads to

$$f_{\text{melt}} = \left(\frac{D_{f_{\text{m}}}}{D} \right)^a = \left(\frac{D_{\text{ref}}}{D} \right)^a \ln \left(\frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}} - T} \right) = \text{fct}(D, T).$$

(27)
again for $T_{\text{min}} \leq T < T_{\text{max}}$. This function has to be limited to the codomain $f_{\text{melt}} \in [0, 1]$ and extended to arbitrary temperatures by the constraints $f_{\text{melt}}(D_{\text{fm}}) = 0$ for $T < T_{\text{min}}$ and $f_{\text{melt}}(D_{\text{fm}}) = 0$ for $T < T_{\text{max}}$, which finally leads to the formulation

$$
 f^*_{\text{melt}} = \begin{cases}
 0, & T < T_{\text{min}} \\
 (\frac{D_{\text{ref}}}{D})^a \ln \left(\frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}} - T} \right), & T_{\text{min}} \leq T < T_{\text{max}} \\
 1, & T \geq T_{\text{max}}
\end{cases}
$$

This formulation is intended to describe f_{melt} in a temperature regime in which the sensible heat flux from the environment to the particle is an important mechanism in enhancing the temperature of the particle. The parameter T_{min} denotes the temperature where this melting process starts. In that regime, the abovementioned assumptions leading to formula (27) may be more or less reasonable.

However, it may be desirable to also include the effects of melting at lower temperatures $T < T_{\text{min}}$ caused by high riming rates and too small a transfer of latent heat of freezing away from the particle, as it is sometimes observed for, e.g., high density graupel particles. This effect may be active for large particles in the temperature range of $-10 < T < 0^\circ$C. To this end, a simple extension to formula (27) is proposed, based on the (maybe contradictory) assumption that the effect on f_{melt} does not depend on particle size. Without a more sound theoretical basis, we would not dare to go any further than a linear dependence on size or a stepfunction, and we limit ourselves to the even simpler constance assumption above.

Concerning the temperature dependence at fixed size, a linear ansatz is used.

Introducing the two new parameters T_{mb} and f_{tmin} ($T_{\text{mb}} =$ Temperature, at which riming induced melting starts, $f_{\text{tmin}} =$ degree of melting reached at T_{min}), the following extended formula

$$
 f^*_{\text{melt}} = \begin{cases}
 0, & T < T_{\text{mb}} \\
 \frac{f_{\text{tmin}}}{T_{\text{min}} - T_{\text{mb}}} (T - T_{\text{mb}}), & T_{\text{mb}} \leq T < T_{\text{min}} \\
 (1 - f_{\text{tmin}}) \left(\frac{D_{\text{ref}}}{D} \right)^a \ln \left(\frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}} - T} \right) + f_{\text{tmin}}, & T_{\text{min}} \leq T < T_{\text{max}} \\
 1, & T \geq T_{\text{max}}
\end{cases}
$$

is implemented into radar_mie_lm.

Formula (29) is used if $T_{\text{mb}} < T_{\text{min}}$ whereas the extension is switched off choosing $T_{\text{mb}} \geq T_{\text{min}}$, which leads to application of formula (28).

Figure 9 shows f_{melt} as function of T and D after formula (29) for an exemplaric parameter set of $T_{\text{mb}}, T_{\text{min}}, T_{\text{max}}, f_{\text{tmin}}$ and D_{ref}, suitable for high density graupel or hail particles. It can be seen that a distinct transition between the riming- and environmental temperature-induced melting processes can be modeled by appropriate parameter settings of the parameterization (29).
Figure 9: Parameterization function for the degree of melting f_{melt} as function of temperature in °C and particle diameter in mm for an exemplaric parameter set of formula (29), applicable to graupel or hail particles, see annotations. The exponent parameter a is 1.0.
The implementation into radar_mie_lm is as follows: for graupel- and hail particles, the parameters T_{mb} and f_{tmin} are set equal to the values annotated in Figure 9 by default. T_{min} is set to 0°C for all species. D_{ref} is chosen as $\min [6 \text{ mm}, \bar{D}(\pi)]$, with $\bar{D}(\pi)$ being the mean mass spherical equivalent diameter of the particle spectrum. For snow- and cloud ice particles, the riming-induced melting is switched off by choosing $T_{mb} > T_{min}$ by default, and D_{ref} is the same as for graupel and hail. Based on explicit simulations of melting particles carried out with a spectral bin microphysical model (Hebrew University Cloud Model HUCM), the exponent a is chosen as 0.5 for snow and cloud ice, 0.6 for graupel and 0.8 for hail particles.

To give the user some more control over the riming-induced melting degree parameterization at $T < 0°C$, the parameters T_{mb} and f_{tmin} are available as namelist parameters for the snow-, graupel- and hail categories.

So far the parameter T_{max} remains to be discussed. This parameter denotes the temperature above which even the largest particles are assumed to be fully melted. From physical arguments it would seem reasonable to specify a fixed value (e.g., 10°C). However, there might be situations, e.g., strong convective downdrafts, in which the particles may "survive" longer. To account for this, a dynamic approach is chosen to make use of the information about the melting process and T_{max} which is provided by the melting parameterization of the cloud microphysical scheme itself: If there are particles of the specific type are present at locations with T exceeding the above fixed value, T_{max} is dynamically adjusted to the temperature of the lowest model height level where these melting hydrometeors are present. The fixed minimum value is presently chosen as 5°C for snow and cloud ice, 10°C for graupel and 20°C for hail. This is done every timestep at every horizontal gridpoint. This "precipitation-column"-approach should be reasonable in case of coarse numerical horizontal grid resolution and/or low windspeed. To prevent problems in case of high grid resolution and high windspeed, T_{max} is further set to its maximum value within a "search area" of 10 x 10 km2 centered around each gridpoint, providing a certain degree of smoothing.

The following subroutines in radar_mie_lm are connected to the f_{melt}-parameterization:

- **degree_of_melting_fun()**:
 master function (29), input parameters are D, T_{mb}, T_{min}, T_{max}, f_{tmin} and D_{ref}. Output parameter is f_{melt}.

- **initialize_tmax()**:
 Determination of T_{max}, separately for every hydrometeor category.

- **Subroutines which itself call degree_of_melting_fun() with suitable input parameter sets for each hydrometeor type:**
 - **degree_of_melting_ice(), degree_of_melting_ice_sb()**
 - **degree_of_melting_snow(), degree_of_snow_hail_sb()**
 - **degree_of_melting_graupel(), degree_of_graupel_hail_sb()**
 - **degree_of_melting_hail(), degree_of_melting_hail_sb()**

The results of the reflectivity calculations using the presented parameterization for f_{melt} look qualitatively promising for stratiform precipitation (radar "bright band"), but there will almost certainly be problems in case of deep convective events. It has to be mentioned, too, that up to now no attempt to verify or calibrate the formula (29) and its parameters has been undertaken aside the abovementioned tests using the HUCM bin microphysical model. Therefore, the above parameterization remains speculative to some degree. However, since almost no suitable measurements of the degree of melting in clouds are existing, the verification/calibration would have to rely on further simulations with HUCM or on a suitable detailed Lagrangian melting model. But even such a Lagrangian model would require...
certain assumptions on the vertical and horizontal structure of precipitation and horizontal and vertical windspeed and therefore it is unclear whether the results of such a verification/calibration approach would be applicable in general.

6.2 An efficient Rayleigh-Approximation for melting hydrometeors with Oguchis refractive index formulation

There is a nice closed analytical solution for Z_e in Rayleigh approximation if a generalized gamma distribution is assumed for the particle mass distribution and Oguchis EMA formula for m_{eff} with shape factor $u = 2$ (equation (16) on Page 15) is applied. A further precondition is that the same degree of melting is assumed for all particles, regardless of their size. However, this EMA approximation is not valid in case of a mixture of strong and/or strongly differing dielectric materials, as is the case with melting hydrometeors. Nevertheless, this approach is implemented into radarmie_lm because of its computational efficiency. It has to be remembered that it can be safely applied for rain and for dry ice particles but may lead to much too small reflectivity values for melting hydrometeors.

Now, recalling that the dielectric factor K in the Rayleigh approximation equals $(\epsilon - 1)/(\epsilon + 2)$, Oguchis formula (16) with $u = 2$ for the effective refractive index of an ice-water-air mixture reads

$$\frac{\epsilon_{eff} - 1}{\epsilon_{eff} + 2} \epsilon_i - 1 \frac{p_i}{\epsilon_i + 2} + \frac{\epsilon_w - 1}{\epsilon_w + 2} \frac{p_w}{\epsilon_w + 2} + \frac{\epsilon_a - 1}{\epsilon_a + 2} \frac{p_a}{\epsilon_a + 2}$$

$$K_{eff} = K_i \frac{m_i}{\rho_i} + K_w \frac{m_w}{\rho_w} + K_a \frac{m_a}{\rho_a}$$

(30)

where indices i, w, a and s denote ice, air, water and the mixture particle, and p_i, p_w, p_a are the respective volume fractions. Since

$$p_x = \frac{V_x}{V} = \frac{m_x}{\rho_x V} \quad x \in i, w, a$$

(31)

where V_x is partial volume of material x, V is total particle volume, m_x is partial mass of material x and ρ_x is the material’s density, equation (30) can be rewritten to

$$K_{eff} = \frac{1}{V} \left(K_i \frac{m_i}{\rho_i} + K_w \frac{m_w}{\rho_w} + K_a \frac{m_a}{\rho_a} \right)$$

(32)

To a very good approximation, $K_a = 0$, and using the definition of partial densities $\rho_{p,s} = m_s/V$ and $\rho_{p,w} = m_w/V$,

$$K_{eff} = K_i \frac{\rho_{p,s}}{\rho_i} + K_w \frac{\rho_{p,w}}{\rho_w}$$

(33)

K_x are complex numbers, $K_x = K_{x,r} + i K_{x,i}$, so the square of the modulus of K_{eff} is

$$|K_{eff}|^2 = |K_i|^2 \left(\frac{\rho_{p,s}}{\rho_i} \right)^2 + |K_w|^2 \left(\frac{\rho_{p,w}}{\rho_w} \right)^2 + 2 \frac{\rho_{p,s} \rho_{p,w}}{\rho_i \rho_w} (K_{i,r} K_{w,r} + K_{i,i} K_{w,i})$$

(34)
Defining \(x = m_i + m_w \) as mass of a melting particle without its air contribution and \(f_{\text{melt}} \) as its degree of melting, so that \(m_i = (1 - f_{\text{melt}})x \) and \(m_w = f_{\text{melt}}x \), the Rayleigh reflectivity (equation (5)) for a population of melting particles is

\[
Z_e = \frac{1}{|K_{w,0}|^2} \int_0^\infty |K_{i,eff}|^2 D^6 N(D) \, dD
\]

\[
= \frac{1}{|K_{w,0}|^2} \int_0^\infty |K_{i,eff}|^2 D(x)^6 N(x) \, dx
\]

\[
= \frac{1}{|K_{w,0}|^2} \left[\frac{|K_{w}|^2}{\rho_w^2} \int_0^\infty \left(\frac{6V}{\pi} \right)^2 \frac{m_i^2}{V^2} N(x) \, dx + \frac{|K_{w}|^2}{\rho_i^2} \int_0^\infty \left(\frac{6V}{\pi} \right)^2 \frac{m_i m_w}{V^2} N(x) \, dx \right]
\]

\[
= \frac{6^2}{\pi^2 |K_{w,0}|^2} \left[\frac{|K_i|^2}{\rho_i^2} \int_0^\infty (1 - f_{\text{melt}})^2 x^2 N(x) \, dx + \frac{|K_w|^2}{\rho_w^2} f_{\text{melt}} N(x) \, dx \right]
\]

\[
= \frac{6^2}{\pi^2 |K_{w,0}|^2} \left[\frac{|K_i|^2}{\rho_i^2} (1 - f_{\text{melt}})^2 + \frac{|K_w|^2}{\rho_w^2} f_{\text{melt}}^2 + 2 \frac{K_{i,i} K_{w,w} + K_{i,i} K_{w,i}}{\rho_i \rho_w} f_{\text{melt}} (1 - f_{\text{melt}}) \right] M_2 \quad (35)
\]

where \(M_2 \) denotes the second moment of the particle mass distribution function. The last equality in equation (35) is only valid if all particles obey the same degree of melting, independent of their size. Equation (35) is especially attractive since it only enforces the calculation of the second moment with respect to mass, which in most cases is far more efficient since, for certain types of distribution functions \(N(x) \) (e.g., generalized gamma distribution), \(M_2 \) can be written in closed analytical form.

Note, however, that a systematical underestimation of \(Z_e \) might possibly occur, since it is assumed here (as in all other routines of radar.mie.lm) that the mass of meltwater is contained in the particle mass \(x \) and the second moment \(M_2 \), which contrasts the treatment of melting in most microphysical schemes, where the meltwater is (partially or completely) shedded to rainwater.

6.3 Controlling reflectivity calculations in LM — relevant namelist parameters and their setting

To enable output of radar reflectivity in LM, the user simply has to specify the output variable ‘dBZ’ within the list of output variables in the GRIBOUT-namelist. ‘dBZ’ is implemented for model level output as well as for pressure-level- or height-level interpolation. In case of interpolated output, the reflectivity is calculated first on model levels and subsequently interpolated to output pressure/height levels. In standard LM, the interpolation is done by cubic tension splines. However, reflectivity is a positive definite quantity and can vary over several orders of magnitude between adjacent grid points. In this case, cubic splines can lead to serious undershoots producing negative values. We therefore changed the interpolation in
our LM version to simple linear interpolation, but unfortunately this is not available in the operational LM version.

Once reflectivity output is chosen, the basic namelist parameter to control the kind of reflectivity calculation is

- `dbz%itype_refl`, namelist GRIbout (INTEGER: 1, 2, 3, or 4).

The radar wavelength can be specified by

- `dbz%lambda_radar`, namelist GRIbout (REAL).

To choose the parameters of the parameterization for the degree of melting in Subsection 6.1, which influence the riming-induced melting for $T < 0^\circ$C (namelist GRIbout, REAL):

- `dbz%Tmeltbegin_s` (T_{mb} for snow)
- `dbz%meltdegTmin_s` (f_{min} for snow)
- `dbz%Tmeltbegin_g` (T_{mb} for graupel)
- `dbz%meltdegTmin_g` (f_{min} for graupel)
- `dbz%Tmeltbegin_h` (T_{mb} for hail; only for itype_gscp \geq 2000)
- `dbz%meltdegTmin_h` (f_{min} for hail; only for itype_gscp \geq 2000)

To further choose different EMA approximations of m_{eff} for different hydrometeor types, the following namelist parameters apply (namelist GRIbout, CHARACTER(len=12)):

- `dbz%ctype_drysnow_mie`
- `dbz%ctype_wetsnow_mie`
- `dbz%ctype_drygraupel_mie`
- `dbz%ctype_wetgraupel_mie`
- `dbz%ctype_dryhail_mie` (only for itype_gscp \geq 2000)
- `dbz%ctype_wethail_mie` (only for itype_gscp \geq 2000)
- `dbz%ctype_drysnow_ray`
- `dbz%ctype_wetsnow_ray`
- `dbz%ctype_drygraupel_ray`
- `dbz%ctype_wetgraupel_ray`
- `dbz%ctype_dryhail_ray` (only for itype_gscp \geq 2000)
- `dbz%ctype_wethail_ray` (only for itype_gscp \geq 2000)

Their setting depends in turn on `dbz%itype_refl`. The listing below and the subsequently linked tables show the different possible combinations of these parameters and the corresponding radar_mielib functions which are used to calculate radar reflectivity.

Further, in case of graupel particles and application of Mie-scattering (`dbz%itype_refl=1`), the namelist parameter `dbz%igraupel_type` (= 1, 2, or 3) provides three possibilities for the melting model of graupel, see the listing below.

In case of melting hydrometeors, the degree of melting is derived from the parameterization described in Subsection 6.1 before calculating reflectivity according to the following listing.
The following listing shows combinations of the namelist parameter `dbz%itype_refl` with the other namelist parameters mentioned previously in this section. The links in the right column lead to the description of the corresponding `radar_mielib` subroutine and to subsequent tables which describe in detail the possible settings of the corresponding namelist parameter for the EMA approximation:

- **dbz%itype_refl = 1:**

 Mie scattering, general EMA approximation

 - **Cloud drops:**
 Rayleigh approximation, analytical solution of (5)

 - **Cloud ice:**
 dry / melting: Rayleigh approximation (35) with EMA after Oguchi

 - **Rain:**
 Mie scattering, numerical solution using (3): `SPHERE_SCATTER_BH()`

 - **Snow:**
 dry \((T \leq 0{\degree}C)\):
 `MIE_DRYSNOW_TWOSPH()` — `dbz%ctype_drysnow`: 6-character code, composed of two 3-character codes after Table 38 for core and shell, resp.
 melting \((T > 0{\degree}C)\):
 `MIE_WEWSNOW_TWOSPH()` — `dbz%ctype_wetsnow`: 12-character code, composed of two 6-character codes after Table 40 for core and shell, resp.
 `meltingratio_outside = 0.7`
 `radienverh = 0.5`

 - **Graupel:**
 dry \((T \leq -10{\degree}C)\):
 `MIE_DRY_GRAUPEL()` — `dbz%ctype_drygraupel`
 melting \((T > -10{\degree}C)\):
 depends on namelist parameter `dbz%igraupel_type`:
 - `dbz%igraupel_type = 1`:
 `MIE_SOAK_WETGR()` — `dbz%ctype_wetgraupel`
 `meltratio_outside = 0.7`
 - `dbz%igraupel_type = 2`:
 `MIE_SOAK_TWOSPH_WETGR()` — `dbz%ctype_wetgraupel`
 - `dbz%igraupel_type = 3`:
 `MIE_WATERSPH_WETGR()` — `dbz%ctype_wetgraupel`

 - **Hail:**
 dry \((T > 0{\degree}C)\): `MIE_DRY_GRAUPEL()` — `dbz%ctype_dryhail`
 melting \((T \leq 0{\degree}C)\): `MIE_SPONGY_WETHAIL()` — `dbz%ctype_wethail_ray`
 `fwater = 0.5`

- **dbz%itype_refl = 2:**

 Rayleigh approximation with general EMA approximation

 - **Cloud drops:**
 Rayleigh approximation, analytical solution of (5)
• **Cloud ice:**
 dry / melting: Rayleigh approximation with EMA after Oguchi

• **Rain:**
 Rayleigh approximation, analytical solution of (5)

• **Snow:**
 dry \((T > 0^\circ C)\):
 RAYLEIGH_DRY_GRAUPEL() — dbz%ctype_drysnow_ray
 melting \((T \leq 0^\circ C)\):
 RAYLEIGH_SOAK_WETGR() — dbz%ctype_wetsnow_ray

• **Graupel:**
 dry \((T \leq -10^\circ C)\):
 RAYLEIGH_DRY_GRAUPEL() — dbz%ctype_drygraupel_ray
 melting \((T > -10^\circ C)\):
 RAYLEIGH_SOAK_WETGR() — dbz%ctype_wetgraupel_ray

• **Hail:**
 dry \((T \leq 0^\circ C)\):
 RAYLEIGH_DRY_GRAUPEL() — dbz%ctype_dryhail_ray
 melting \((T > 0^\circ C)\):
 RAYLEIGH_SOAK_WETGR() — dbz%ctype_wethail_ray

• **dbz%itype_refl = 3:**
 Rayleigh approximation with EMA after Oguchi for cloud ice, snow, graupel and hail (analytical formula from Subsection 6.2), Rayleigh approximation (5) for cloud droplets and rain drops.

• **dbz%itype_refl = 4:**
 Very simple and efficient Rayleigh approximation from pp_utilities.f90 for all particles, crude description of melting particles
6.4 Tables of namelist parameter settings for the EMA choice

Table 38: 3-character Coding of the namelist-parameters `dbz%ctype_XXX` for two-component ice-air mixture materials and different EMA approximations, controlling the keywords of function `get_m_mix()`. Question marks denote wildcards for arbitrary characters.

<table>
<thead>
<tr>
<th>mixingrulestring (1. character)</th>
<th>matrixstring (2. character)</th>
<th>inclusionstring (3. character)</th>
<th>ctype-Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bruggemann' -- 'b'</td>
<td>N/A</td>
<td>N/A</td>
<td>'b??'</td>
</tr>
<tr>
<td>'oguchi' -- 'o'</td>
<td>N/A</td>
<td>N/A</td>
<td>'o??'</td>
</tr>
<tr>
<td>'maxwellgarnett' -- 'm'</td>
<td>'ice' -- 'i'</td>
<td>'spherical' -- 'k'</td>
<td>'mik'</td>
</tr>
<tr>
<td></td>
<td>'spheroidal' -- 's'</td>
<td>'spheroidal' -- 's'</td>
<td>'mis'</td>
</tr>
<tr>
<td>'air' -- 'a'</td>
<td>'spherical' -- 'k'</td>
<td>'spheroidal' -- 's'</td>
<td>'mak'</td>
</tr>
<tr>
<td></td>
<td>'spheroidal' -- 's'</td>
<td>'spheroidal' -- 's'</td>
<td>'mas'</td>
</tr>
</tbody>
</table>

Table 39: Similar to Table 38: 3-character Coding of the namelist-parameters `dbz%ctype_XXX` for two-component ice-water mixture materials and different EMA approximations, controlling the keywords of function `get_m_mix()`. Question marks denote wildcards for arbitrary characters.

<table>
<thead>
<tr>
<th>mixingrulestring (1. character)</th>
<th>matrixstring (2. character)</th>
<th>inclusionstring (3. character)</th>
<th>ctype-Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bruggemann' -- 'b'</td>
<td>N/A</td>
<td>N/A</td>
<td>'b??'</td>
</tr>
<tr>
<td>'oguchi' -- 'o'</td>
<td>N/A</td>
<td>N/A</td>
<td>'o??'</td>
</tr>
<tr>
<td>'maxwellgarnett' -- 'm'</td>
<td>'ice' -- 'i'</td>
<td>'spherical' -- 'k'</td>
<td>'mik'</td>
</tr>
<tr>
<td></td>
<td>'spheroidal' -- 's'</td>
<td>'spheroidal' -- 's'</td>
<td>'mis'</td>
</tr>
<tr>
<td></td>
<td>'water' -- 'w'</td>
<td>'spherical' -- 'k'</td>
<td>'mws'</td>
</tr>
<tr>
<td></td>
<td>'spheroidal' -- 's'</td>
<td>'spheroidal' -- 's'</td>
<td>'mws'</td>
</tr>
</tbody>
</table>
Table 40: 6-character Coding of the namelist-parameters dbz\%ctype_XXX for three-component ice-water-air mixture materials and different EMA approximations, controlling the keywords of function get_m_mix_nested(). Question marks denote wildcards for arbitrary characters. Note that inclusionstring and hostinclusionstring are only displayed as representing spheroidal inclusions (i.e., character 's'), but both can also specify spherical inclusions by a character 'k' instead, leading to 4 times more possibilities as laid out in the table below.

<table>
<thead>
<tr>
<th>mixingrulestring (1. character)</th>
<th>hoststring (2. character)</th>
<th>matrixstring (3. character)</th>
<th>inclusionstring (4. character)</th>
<th>hostmatrixstring (5. character)</th>
<th>hostinclusionstring (6. character)</th>
<th>ctype-Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bruggemann' -- 'b'</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>'b??????'</td>
</tr>
<tr>
<td>'oguchi' -- 'o'</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>'o??????'</td>
</tr>
<tr>
<td>'none' -- 'n'</td>
<td>'ice' -- 'i'</td>
<td>'spherical' -- 'k'</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>'mnik???'</td>
</tr>
<tr>
<td></td>
<td>'water' -- 'w'</td>
<td>'spherical' -- 'k'</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>'mnwki???'</td>
</tr>
<tr>
<td>'air' -- 'a'</td>
<td>'spherical' -- 'k'</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>'mnak???'</td>
</tr>
<tr>
<td>'maxwellgarnett' -- 'm'</td>
<td>'ice' -- 'i'</td>
<td>'spherical' -- 's'</td>
<td>N/A</td>
<td>'icewater' -- 'm'</td>
<td>'miasms'</td>
<td>'miasms'</td>
</tr>
<tr>
<td></td>
<td>'water' -- 'w'</td>
<td>'spherical' -- 's'</td>
<td>'icewater' -- 'm'</td>
<td>'icewater' -- 'w'</td>
<td>'mwsms'</td>
<td>'mwsms'</td>
</tr>
<tr>
<td></td>
<td>'air' -- 'a'</td>
<td>'spherical' -- 's'</td>
<td>'icewater' -- 'm'</td>
<td>'icewater' -- 'w'</td>
<td>'mwsms'</td>
<td>'mwsms'</td>
</tr>
<tr>
<td>'water' -- 'w'</td>
<td>'icewater' -- 'm'</td>
<td>'spherical' -- 's'</td>
<td>'icewater' -- 'w'</td>
<td>'icewater' -- 'a'</td>
<td>'mawsms'</td>
<td>'mawsms'</td>
</tr>
<tr>
<td>'air' -- 'a'</td>
<td>'icewater' -- 'm'</td>
<td>'spherical' -- 's'</td>
<td>'icewater' -- 'w'</td>
<td>'icewater' -- 'a'</td>
<td>'mawsms'</td>
<td>'mawsms'</td>
</tr>
<tr>
<td>'water' -- 'w'</td>
<td>'spherical' -- 's'</td>
<td>'icewater' -- 'm'</td>
<td>'icewater' -- 'w'</td>
<td>'icewater' -- 'a'</td>
<td>'mawsms'</td>
<td>'mawsms'</td>
</tr>
</tbody>
</table>

Note: 'spherical' and 'spheroidal' in the inclusionstring and hostinclusionstring denote spheroidal inclusions, whereas 's' and 'k' denote spherical inclusions, respectively.
Table 41: 6-character coding of the namelist-parameters \(\text{dbz}\%\text{ctype}_\text{XXX} \) for a two-layered particle, composed of a two-component ice-air mixture core and a two-component ice-water shell, and for different EMA approximations, controlling the keywords of function \(\text{get}_\text{m}_\text{mix}() \). Question marks denote wildcards for arbitrary characters. The code is a combination of two 3-character codes similar to Table 38 and Table 39. There are 36 possibilities altogether, namely all combinations of 3-character codes from part 1 (core material) and part 2 (shell material) of the table.

<table>
<thead>
<tr>
<th>Part 1: 1.-3. character, ice-air mixture of particle core</th>
<th>Part 2: 4.-6. character, ice-water mixture of particle shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>mixingrulestring (1. character)</td>
<td>matrixstring (2. character)</td>
</tr>
<tr>
<td>'bruggemann'</td>
<td>N/A</td>
</tr>
<tr>
<td>'oguchi'</td>
<td>N/A</td>
</tr>
<tr>
<td>'maxwellgarnett'</td>
<td>'ice'</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'air'</td>
</tr>
</tbody>
</table>
6.5 Additions to LM-runscripts to enable reflectivity calculations

An example for the necessary additions to the namelist GRIBOUT to enable reflectivity calculation and output at each output timestep:

```plaintext
yvarml = ..., 'DBZ', ...
yvarzl = ..., 'DBZ', ...
yvarpl = ..., 'DBZ', ...

dbz%itype_refl = 1,

dbz%lambda_radar = 0.055,

dbz%Tmeltbegin_s = 273.16,
dbz%meltdegTmin_s = 0.0,
dbz%Tmeltbegin_g = 263.16,
dbz%meltdegTmin_g = 0.2,
dbz%Tmeltbegin_h = 263.16,
dbz%meltdegTmin_h = 0.2,

! Settings for itype_refl=1
! (effektive refractive index for Mie-scattering):

dbz%ctype_drysnow_mie = 'masmas',
dbz%ctype_wetsnow_mie = 'mawsasmawsas',
dbz%ctype_drygraupel_mie = 'mis',

! Type of melting model for the Mie-calculations for partially melted graupel (1=soak, 2=twosphere, 3=watersphere):
! ( + corresponding ctype_wetgraupel_mie -- change accordingly!)

dbz%igraupel_type = 1,
dbz%ctype_wetgraupel_mie = 'mawsms',

! Effective only for itype_gscp >= 2000:

dbz%ctype_dryhail_mie = 'mis',
dbz%ctype_wethail_mie = 'mws',

! Settings for itype_refl=2
! (effektive refractive index for Rayleigh-scattering):

dbz%ctype_drysnow_ray = 'mas',
dbz%ctype_wetsnow_ray = 'mawsas',
dbz%ctype_drygraupel_ray = 'mis',
dbz%ctype_wetgraupel_ray = 'mawsms',

! Nur bei itype_gscp >= 2000 wirksam:

dbz%ctype_dryhail_ray = 'mis',
dbz%ctype_wethail_ray = 'mawsms',
```
Figure 10: Bulk density of snow/graupel particles in kg m\(^{-3}\) as function of sphere equivalent diameter in mm, deduced from the 4 different inverse mass-size-relations presented in equations (36), (37), (38) and (39).

7 Backscattering cross sections of dry ice particles

We now turn to a more detailed investigation on the backscattering properties of single precipitation particles. In this section, the focus is on results for dry ice particles. In later sections, similar investigations will also be presented for melting ice particles.

For dry ice particles, basically two different particle models are available in radar_mielib if Mie-scattering is assumed. These are the one-layered ordinary sphere (suitable, e.g., for graupel and hail particles) and the two-layered sphere (e.g., for snow flakes). With Rayleigh scattering, only one-layered spheres are accounted for, since the Rayleigh approximation is an approximation to the Mie scattering functions for ordinary spheres.

In the following, the two different particle models are briefly described, together with a short examination of the differences in \(Z_e\) which they produce for the C-Band radar wavelength \(\lambda_0 = 5.5\) cm.

7.1 One-layered sphere

In this section, the differences in \(Z_e\) caused by the application of different EMAs in case of different particle bulk densities is examined at \(\lambda_0 = 5.5\) cm (C-Band) to provide a qualitative guideline what to expect from what combination of these settings. The focus here is on dry ice particles which are assumed to be one-layered spheres of a homogeneous two-component mixture of ice and air. This particle model should be applicable to graupel and hail particles and in case of Rayleigh approximation, it has to be applied to all kinds of ice particles.

To this end, backscatter cross sections of graupel particles were calculated as a function of particle diameter by the radar_mielib subroutine MIE_DRY_GRAUPEL() (subsubsection 5.3.1) or, in case of Rayleigh approximation, by subroutine RAYLEIGH_DRY_GRAUPEL() (subsubsection 5.3.2). This was done for two different temperatures \((T = -10^\circ\text{C}, T = -20^\circ\text{C})\) and for
the mixing rules presented in subsubsection 4.5.4, applied to a two-component mixture. To show the dependence on particle bulk density (important to deduce the volume fractions of ice and air for the EMAs), this parameter is derived alternatively from the four inverse mass-size-relations

\[
\frac{D}{D_0} = 0.19091 \left(\frac{x}{x_0} \right)^{0.32258} \quad \text{("Graupel", standard LM one-moment scheme)} \quad (36)
\]

\[
\frac{D}{D_0} = 0.11 \left(\frac{x}{x_0} \right)^{0.3} \quad \text{("Graupel", SB two-moment scheme)} \quad (37)
\]

\[
\frac{D}{D_0} = 5.12989 \left(\frac{x}{x_0} \right)^{0.5} \quad \text{("Snow", standard LM one-moment scheme)} \quad (38)
\]

\[
\frac{D}{D_0} = 1.33398 \left(\frac{x}{x_0} \right)^{0.41667} \quad \text{("Snow", SB two-moment scheme)} \quad , \quad (39)
\]

assuming equivalent spherical particles. \(x\) is the particle mass (without the mass of the enclosed air), \(D\) its diameter and \(x_0\) and \(D_0\) are constant scaling parameters of 1 kg and 1 m, resp. The general form of the inverse mass-size-relation used throughout this document is

\[
\frac{D}{D_0} = a_{geo} \left(\frac{x}{x_0} \right)^{b_{geo}}
\]

with \(a_{geo}\) and \(b_{geo}\) being dimensionless constants.

equation (36) and (38) are taken from the operational one-moment bulk microphysical scheme of the LM, and equation (37) and (39) from the two-moment bulk microphysical scheme of Seifert and Beheng (2006). Figure 10 presents the resulting particle bulk densities as function of size and shows that, with these 4 different relations, nearly the whole range of possible bulk densities occurring in nature is covered.

For the refractive index of ice, the model of Mätzler (1998) (cf. Figure 6 on Page 13) is used in the following.

The results (Figure 11) show that there is no substantial difference at the two assumed temperatures. In addition, all applied mixing rules lead to nearly the same backscattering cross section for a given particle (the variation range of \(\sigma_b\) for different EMAs is less than 3 dB — a factor of two — which is not much). Considerable differences occur for larger particles when Rayleigh scattering is assumed instead of Mie scattering. Most important, the backscattering cross section shows a strong increase with particle bulk density, as shown by the four different used mass-size-relations.
Figure 11: Backscattering cross section σ_b in m2 as a function of particle diameter, EMA (see legend and explanation in Table 38 in combination with section 5.2.4) for $T = -10^\circ$C.

Panels from top to bottom: Graupel with mass-size-relation (36) from the LM standard microphysics scheme, graupel from Seifert and Beheng two-moment scheme (equation (37)), snow from the LM standard scheme (equation (38)), snow from the two-moment scheme (equation (39)).
7.2 Two-layered sphere

Backscattering cross sections for a two-layered sphere (cf. Figure 1 on Page 10) were calculated by using the radar.mie.lib subroutine MIE_DRYSNOW_TWOSPH() (subsubsection 5.3.5). Here, an additional important parameter is the ratio between the inner sphere and outer sphere radii. This ratio has to be preset and is a fixed input parameter for subroutine MIE_DRYSNOW_TWOSPH(). Without loss of generality, a value of 0.5 is used throughout radar.mie.lib, but this can be changed by the user. As mentioned before, this model is applicable to snow particles, as shown by, e.g., Fabry and Szyrmer (1999).

A similar comparison as presented in the last Subsection 7.1 is repeated here for snow particles of two different mass-size-relations as a function of particle diameter, temperature and mixing rule. The inverse mass-size-relations were given earlier in equation (38) and (39) in Subsection 7.1.

For the refractive index of ice, again the model of Mätzler (1998) (cf. Figure 6 on Page 13) is used in the following.

A comment is necessary on the derivation of the particle bulk densities in the inner and outer spherical shells. Note that for snow flakes, it is observed that the bulk density usually decreases with size, reflected by the mass-size-relations found in literature. To explain this behaviour, Fabry and Szyrmer (1999) present an interesting Gedankenexperiment: Snow flakes preferably form by aggregation of smaller ice and snow particles. Thats why they are called "aggregates" in technical terms. Consider now without loss of generality a population of equally sized snow flakes having equal bulk density. Through collision and sticking, larger flakes are formed. In the extreme case of flakes aggregating around a single "embryonal flake" in dense sphere packing, the resulting flake would be double in diameter with a nearly equal but slightly lower bulk density. In reality, this dense packing will almost never be fully realised and there will always be some voids causing the overall bulk density to be even lower. Generalization to an initial population of differently sized snow flakes, the outcome will always be a decreasing mean bulk density with snow flake diameter.

To model this, the bulk densities of the inner and outer shell of the two-layered spherical particles are calculated in the following way: Given a fixed mass-size-relation representing a decreasing bulk density with diameter, a certain snowflake diameter and an assumed ratio of inner to outer shell diameter (e.g., 0.5), at first the inner core is assigned the density found by applying the inner sphere diameter within the mass-size-relation. Then, given the total mass by applying the outer sphere diameter within the mass-size-relation, the mass of the outer spherical shell is just the difference of total mass minus mass of inner sphere. From this and the preset and fixed ratio of inner to outer sphere radius, the bulk density of the outer shell can be calculated.

From the bulk densities of core and shell, the corresponding volume fractions of ice and air are calculated further. To get m_{eff} of core and shell, the volume fractions are plugged into the different formulas for the EMA approximations presented earlier in this document. Table 38 gives the 6 possible different settings for an ice-air mixture material (cf. subsubsection 5.2.4). With this, backscattering coefficients are calculated as function of size and all implemented combinations of EMA approximations for core and shell ($6 \times 6 = 36$). This was done for both inverse mass-size relations mentioned earlier in this section. In all cases, the temperature was set to \(-10^\circ\text{C}\).

Figure 12 shows the results for both mass-size relations in a simplified way (upper panel: relation (38), lower panel: relation (39)). In each figure, the blue "strip" marks the envelope (variation range) of σ_b as function of size and EMA for the two-layered Mie calculation. For
Figure 12: Variation range of Backscattering cross section σ_b for snow in m2 as a function of particle diameter considering all possible combinations of the implemented EMAs for a two-layered sphere at $T = -10^\circ$C. See text for explanation. **Upper panel:** Snow with mass-size-relation (38) from the LM standard microphysics scheme, **lower panel:** snow from Seifert and Beheng two-moment scheme (equation (39)).

In comparison, the red "strip" gives the corresponding results considering Mie scattering by simple spheres only (6 different EMA approximations), and further applying Rayleigh approximation leads to the grey "strip". It is found that imposing different EMA-approximations leads to only moderate variations of σ_b for a given size. This can be explained by the fact that ice is weak dielectric only and nearly every different choice of an EMA approximation leads to the nearly the same m_{eff}. Moreover, in case of $\lambda_0 = 5.5$ cm as considered here, for particles with $D < 15$ mm it does not make a large difference if choosing a two-sphere particle model or simple spheres, or if choosing an even simpler Rayleigh approximation. For larger particles, the two-sphere model produces slightly smaller backscattering cross sections than the simple sphere model (larger difference for less dense particles) and the Rayleigh approximation becomes unrealistic.

As a result, considering the large numerical effort, application of Mie scattering for dry snowflakes makes sense in case for large snowflakes whereas a further complication by using the two-layered sphere model seems to be unnecessary in this case.

However, it will be shown in the next section that in case of melting snowflakes, the two-layered sphere model leads to significantly different results compared to simple spheres.
8 Backscattering cross sections for melting ice particles relative to the mass-equivalent water drop

For melting ice particles, the presence of water (a strong dielectric) within the ice structure of melting particles poses a particular problem when it comes to the proper choice of an effective medium approximation. In fact, is there a proper choice at all? The answer to this question strongly depends on the mixture topology of the ice-water-air mixture. Whereas for nearly solid hail it seems quite easy, the structure of melting intermediate- or low-density graupel or snowflakes is more difficult to treat.

Therefore, radar_mielib and radar_mie_lm provide no definite answer (the one and only solution) but permit the user to choose between many different possibilities to get a feeling for the range of uncertainty of the resulting reflectivity value. However, there are theoretical and experimental results presented in literature providing guidelines which EMA formulation and particle model should work better for certain hydrometeor types. Some basic discussion was presented earlier in the sections describing different EMA approximations. For more detailed informations, the reader is kindly referred to the corresponding literature. A starting point could be, e.g., the book of Bohren and Huffman (1983) and a number of subsequent articles by C. Bohren and coauthors. The literature is so numerous that we omit further citing here.

For LM users, the “hints” and guidelines from literature are reflected by reasonable default parameter values for the corresponding subroutines in radar_mie_lm, which can, of course, be changed. And to provide some guideline about what happens to Z_e if the default parameter settings are changed, the following sections provide a detailed sensitivity investigation of the backscattering cross sections of melting hydrometeors considering all possible parameter settings for the most basic particle models implemented into radar_mielib.

To this end, the same 4 different inverse mass-size relations as in Subsection 7.1 are applied to deduce the mass of the initially unmelted particle which is varied from small to large values. Subsequent variation of the degree of melting f_{melt} and the particle model together with the EMA approximation leads to a very large compilation of results which is presented in the following subsections.

The results apply to a C-Band radar wavelength of $\lambda_0 = 5.5$ cm and to a temperature of 5°C.
8.1 Rayleigh: soaked wet graupel, LM-scheme

Results are shown for calculations of the backscattering cross section σ_b with subroutine RAYLEIGH_SOAK_WETGRAUPEL() (Rayleigh approximation), see subsubsection 5.3.12 on Page 50. The following figures show the ratio of σ_b to the backscattering cross section $\sigma_{b,\text{drop}}$ of the resulting water drop, if the particle would be completely melted, as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}. The particle bulk density as function of size is determined by equation (36) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (black solid line).

Every figure represents one particular EMA-formulation for m_{eff}, which is obtained by using function get_m_mix_nested() (subsubsection 5.2.5 on Page 28). The input parameter set for get_m_mix_nested() can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter ctype_wetgraupel_ray can be found as 6-character code in the figures title. For explanation of this code, see Table 40. The results of this section apply to the LM for graupel and snow particles in case of application of the standard one-moment bulk microphysical scheme (namelist-parameter itype_gscp < 100) together with itype_refl = 2.
8.2 Rayleigh: soaked wet graupel, Seifert/Beheng-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section \(\sigma_b \) with subroutine \texttt{RAYLEIGH_SOAK_WETGRAUPEL()} (Rayleigh approximation), see sub-subsection 5.3.12 on Page 50, but this time the particle bulk density as function of size is determined by equation (37) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (red solid line). The following figures show the ratio of \(\sigma_b/\sigma_{b,\text{drop}} \) as function of \(f_{\text{melt}} \) and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index \(m_{\text{eff}} \).

Again, every figure represents one particular EMA-formulation for \(m_{\text{eff}} \), which is obtained by using function \texttt{get_mix_nested()} (subsubsection 5.2.5 on Page 28). The input parameter set for \texttt{get_mix_nested()} can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter \texttt{ctype_wetgraupel_ray} can be found as 6-character code in the figures title. For explanation of this code, see Table 40. The results of this section apply to the LM for graupel, snow and hail particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter \texttt{itype_gscp} \(\geq 100 \)) together with \texttt{itype_refl} = 2.
8.3 Rayleigh: soaked wet snow, LM-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine RAYLEIGH_SOAK_WETGRAUPEL() (Rayleigh approximation), see sub-subsection 5.3.12 on Page 50, but this time the particle bulk density as function of size is determined by equation (38) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (blue solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}. Again, every figure represents one particular EMA-formulation for m_{eff}, which is obtained by using function get_m_mix_nested() (subsubsection 5.2.5 on Page 28). The input parameter set for get_m_mix_nested() can be found in the text annotation within each graph. Although not being implemented into the LM interface functions for snow, the corresponding setting of the namelist-parameter ctype_wetsnow_ray (in analogy to ctype_wetgraupel_ray) can be found as 6-character code in the figures title. For explanation of this code, see Table 40.
8.4 Rayleigh: soaked wet snow, Seifert/Beheng-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine \textsc{RAYLEIGH_SOAK_WETGRAUPEL}() (Rayleigh approximation), see sub-subsection 5.3.12 on Page 50, but this time the particle bulk density as function of size is determined by equation (39) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (green solid line). The following figures show the ratio of $\sigma_b/\sigma_b,\text{drop}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff}, which is obtained by using function \texttt{get_m_mix_nested}() (subsubsection 5.2.5 on Page 28). The input parameter set for \texttt{get_m_mix_nested}() can be found in the text annotation within each graph. Although not beeing implemented into the LM interface functions for snow, the corresponding setting of the namelist-parameter \texttt{ctype_wetsnow_ray} (in analogy to \texttt{ctype_wetgraupel_ray}) can be found as 6-character code in the figures title. For explanation of this code, see Table 40.
8.5 Mie: soaked twosphere wet graupel, LM-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_SOAK_TWOSPHERE_WETGRAUPEL() (Mie scattering, two-layered sphere), see subsubsection 5.3.9 on Page 45. The following figures show the ratio of $\sigma_b / \sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive indices m_{eff} of core and shell. The particle bulk density as function of size is determined by equation (36) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (black solid line).

Again, every figure represents one particular EMA-formulation combination for m_{eff} of core and shell, which both are obtained by using function get_m_mix(), applied for two-component mixture materials (subsubsection 5.2.4 on Page 26). The input parameter sets for get_m_mix() can be found in the text annotation within each graph, discriminating ice-air core and ice-water shell. For users of the LM, the corresponding setting of the namelist-parameter ctype_wetgraupel can be found in the figures title as a combination of two 3-character codes. For explanation of this code, see Table 41. The results of this section apply to the LM for graupel particles in case of application of the standard one-moment bulk microphysical scheme (namelist-parameter itype_gscp < 100) together with namelists-parameters itype_refl = 1 and igraupel_type = 2.
8.6 Mie: soaked twosphere wet graupel, Seifert/Beheng-scheme

Similar to Subsection 8.5, results are shown for calculations of the backscattering cross section σ_b with subroutine \texttt{MIE_SOAK_TWO_SPHERE_WET_GRAUPEL()} (Mie scattering, two-layered sphere), see subsubsection 5.3.9 on Page 45. But this time, the particle bulk density as function of size is determined by equation (37) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (red solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive indices m_{eff} of core and shell.

Again, every figure represents one particular EMA-formulation combination for m_{eff} of core and shell, which both are obtained by using function \texttt{get_m_mix()}, applied for two-component mixture materials (subsubsection 5.2.4 on Page 26). The input parameter sets for \texttt{get_m_mix()} can be found in the text annotation within each graph, discriminating ice-air core and ice-water shell. For users of the LM, the corresponding setting of the namelist-parameter \texttt{ctype_wet_graupel} can be found in the figures title as a combination of two 3-character codes. For explanation of this code, see Table 41. The results of this section apply to the LM for graupel particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter \texttt{itype_gscp} \geq 100) together with namelist-parameters \texttt{itype_refl} = 1 and \texttt{igraupel_type} = 2.
8.7 Mie: soaked twosphere wet snow, LM-scheme

Similar to Subsection 8.5, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE SOAK TWOSPHERE WETGRAUPEL() (Mie scattering, two-layered sphere), see subsection 5.3.9 on Page 45. But this time, the particle bulk density as function of size is determined by equation (38) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (blue solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive indices m_{eff} of core and shell.

Again, every figure represents one particular EMA-formulation combination for m_{eff} of core and shell, which both are obtained by using function get_m_mix(), applied for two-component mixture materials (subsubsection 5.2.4 on Page 26). The input parameter sets for get_m_mix() can be found in the text annotation within each graph, discriminating ice-air core and ice-water shell. Although not being implemented into the LM interface functions for snow, the corresponding setting of the (nonexisting) namelist-parameter ctype_wetsnow (in analogy to ctype_wetgraupel) can be found in the figures title as a combination of two 3-character codes. For explanation of this code, see Table 41.
8.8 Mie: soaked twosphere wet snow, Seifert/Beheng-scheme

Similar to Subsection 8.5, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_SOAK_TWOSPHERE_WETGRAUPEL() (Mie scattering, two-layered sphere), see subsubsection 5.3.9 on Page 45. But this time, the particle bulk density as function of size is determined by equation (39) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (green solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive indices m_{eff} of core and shell.

Again, every figure represents one particular EMA-formulation combination for m_{eff} of core and shell, which both are obtained by using function get_m_mix(), applied for two-component mixture materials (subsubsection 5.2.4 on Page 26). The input parameter sets for get_m_mix() can be found in the text annotation within each graph, discriminating ice-air core and ice-water shell. Although not being implemented into the LM interface functions for snow, the corresponding setting of the (nonexisting) namelist-parameter ctype_wetsnow (in analogy to ctype_wetgraupel) can be found in the figures title as a combination of two 3-character codes. For explanation of this code, see Table 41.
8.9 Mie: soaked wet graupel, LM-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_SOAK_WETGRAUPEL() (Mie scattering), see subsubsection 5.3.11 on Page 48. The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}. The particle bulk density as function of size is determined by equation (36) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (black solid line).

Again, every figure represents one particular EMA formulation for m_{eff}, which is obtained by using function get_m_mix_nested() (subsubsection 5.2.5 on Page 28). The input parameter set for get_m_mix_nested() can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter ctype_wetgraupel can be found as 6-character code in the figures title. For explanation of this code, see Table 40. The results of this section apply to the LM for graupel particles in case of application of the standard LM one-moment bulk microphysical schemes (namelist-parameter itype_gscp < 100) together with itype_refl = 1 and igraupel_type = 1.
8.10 Mie: soaked wet graupel, Seifert/Beheng-scheme

Similar to Subsection 8.9, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_SOAK_WETGRAUPEL() (Mie scattering), see subsubsection 5.3.11 on Page 48. But this time, the particle bulk density as function of size is determined by equation (37) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (red solid line). The following figures show the ratio of $\sigma_b/\sigma_b\text{drop}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index $\textit{m}_{\textit{eff}}$.

Again, every figure represents one particular EMA-formulation for $\textit{m}_{\textit{eff}}$, which is obtained by using function get_m_mix_nested() (subsubsection 5.2.5 on Page 28). The input parameter set for get_m_mix_nested() can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter c_type_wetgraupel can be found as 6-character code in the figures title. For explanation of this code, see Table 40.

The results of this section apply to the LM for graupel particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter i_type_gscp ≥ 100) together with i_type_refl = 1 and i_graupel_type = 1.
8.11 Mie: soaked wet snow, LM-scheme

Similar to Subsection 8.9, results are shown for calculations of the backscattering cross section σ_b with subroutine `MIE_SOAK_WETGRAUPEL()` (Mie scattering), see subsubsection 5.3.11 on Page 48. But this time, the particle bulk density as function of size is determined by equation (38) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (blue solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,drop}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff}, which is obtained by using function `get_m_mix_nested()` (subsubsection 5.2.5 on Page 28). The input parameter set for `get_m_mix_nested()` can be found in the text annotation within each graph. Although not beeing implemented into the LM interface functions for snow, the corresponding setting of the (nonexisting) namelist-parameter `ctype_wetsnow` (in analogy to `ctype_wetgraupel`) can be found as 6-character code in the figures title. For explanation of this code, see Table 40.
8.12 Mie: soaked wet snow, Seifert/Beheng-scheme

Similar to Subsection 8.9, results are shown for calculations of the backscattering cross section σ_b with subroutine `MIE_SOAK_WETGRAUPEL()` (Mie scattering), see subsubsection 5.3.11 on Page 48. But this time, the particle bulk density as function of size is determined by equation (39) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (green solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff}, which is obtained by using function `get_m_mix_nested()` (subsubsection 5.2.5 on Page 28). The input parameter set for `get_m_mix_nested()` can be found in the text annotation within each graph. Although not being implemented into the LM interface functions for snow, the corresponding setting of the (provisional) namelist-parameter `ctype_wetsnow` (in analogy to `ctype_wetgraupel`) can be found as 6-character code in the figures title. For explanation of this code, see Table 40.
8.13 Mie: watersphere wet graupel, LM-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine `MIE_WATERSPHERE_WETGRAUPEL()` (Mie scattering, two-layered sphere), see subsubsection 5.3.8 on Page 43. The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core effective refractive index m_{eff}. The particle bulk density as function of size is determined by equation (36) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (black solid line).

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-air core (the shell is composed of pure water), which is obtained by using function `get_m_mix()` (subsubsection 5.2.4 on Page 26). The input parameter set for `get_m_mix()` can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter `ctype_wetgraupel` can be found as 3-character code in the figures title. For explanation of this code, see Table 38. The results of this section apply to the LM for graupel particles in case of application of the standard LM one-moment bulk microphysical schemes (namelist-parameter `itype_gscp < 100`) together with `itype_refl = 1` and `igraupel_type = 3`.

![Watersphere graupel. bas. 1-moment (standard LM)](image1)

![Watersphere graupel. bis. 1-moment (standard LM)](image2)

![Watersphere graupel. mls. 1-moment (standard LM)](image3)

![Watersphere graupel. ols. 1-moment (standard LM)](image4)
8.14 Mie: watersphere wet graupel, Seifert/Beheng-scheme

Similar to Subsection 8.13, results are shown for calculations of the backscattering cross section σ_b with subroutine \texttt{MIE_SOAK_WETGRAUPEL()} (Mie scattering, two-layered sphere), see subsubsection 5.3.8 on Page 43. But this time, the particle bulk density as function of size is determined by equation (37) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (red solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-air core (the shell is composed of pure water), which is obtained by using function \texttt{get_m_mix()} (subsubsection 5.2.4 on Page 26). The input parameter set for \texttt{get_m_mix()} can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter \texttt{ctype_wetgraupel} can be found as 3-character code in the figures title. For explanation of this code, see Table 38. The results of this section apply to the LM for graupel particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter \texttt{itype_gscp} \geq 100) together with \texttt{itype_refl} = 1 and \texttt{igraupel_type} = 3.
8.15 Mie: watersphere wet snow, LM-scheme

Similar to Subsection 8.13, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_SOAK_WETGRAUPEL() (Mie scattering, two-layered sphere), see subsubsection 5.3.8 on Page 43. But this time, the particle bulk density as function of size is determined by equation (38) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (blue solid line). The following figures show the ratio of σ_b/σ_b_drop as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-air core (the shell is composed of pure water), which is obtained by using function get_m_mix() (subsubsection 5.2.4 on Page 26). The input parameter set for get_m_mix() can be found in the text annotation within each graph. Although not being implemented into the LM interface functions for snow, the corresponding setting of the (provisional) namelist-parameter ctype_wetsnow (in analogy to ctype_wetgraupel) can be found as 3-character code in the figures title. For explanation of this code, see Table 38.
8.16 Mie: watersphere wet snow, Seifert/Beheng-scheme

Similar to Subsection 8.13, results are shown for calculations of the backscattering cross section σ_b with subroutine \texttt{MIE SOAK WETGRAUPEL()} (Mie scattering, two-layered sphere), see subsubsection 5.3.8 on Page 43. But this time, the particle bulk density as function of size is determined by equation (39) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (green solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core effective refractive index m_{eff}.

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-air core (the shell is composed of pure water), which is obtained by using function \texttt{get_m_mix()} (subsubsection 5.2.4 on Page 26). The input parameter set for \texttt{get_m_mix()} can be found in the text annotation within each graph. Although not being implemented into the LM interface functions for snow, the corresponding setting of the (provisional) namelist-parameter \texttt{ctype wetsnow} (in analogy to \texttt{ctype wetgraupel}) can be found as 3-character code in the figures title. For explanation of this code, see Table 38.
8.17 Mie: spongy wet hail, Seifert/Beheng-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section \(\sigma_b \) with subroutine `MIE_SPONGY_WETHAIL()` (Mie scattering, two-layered sphere), see subsubsection 5.3.7 on Page 41. The following figures show the ratio of \(\sigma_b / \sigma_{b,\text{drop}} \) as function of \(f_{\text{melt}} \) and the unmelted particle diameter for different EMA-formulations of the particles ice-water shell effective refractive index \(m_{\text{eff}} \). The unmelted particle bulk density does not depend on size here and is that of pure ice. The input parameter \(f_{\text{water}} \) (melt fraction within the ice-water shell) was set to 0.5, independent of size and \(f_{\text{melt}} \).

Again, every figure represents one particular EMA-formulation for \(m_{\text{eff}} \) of the particles ice-water shell (the core is composed of solid ice), which is obtained by using function `get.m.mix()` (subsubsection 5.2.4 on Page 26). The input parameter set for `get.m.mix()` can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter `ctype_wethail` can be found as 3-character code in the figures title. For explanation of this code, see Table 39. The results of this section apply to the LM for hail particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter `itype_gscp` ≥ 100) together with `itype_refl` = 1.
8.18 Mie: watersphere wet hail, Seifert/Beheng-scheme

Similar to Subsection 8.17, results are shown for calculations of the backscattering cross section σ_b with subroutine \texttt{MIE_WATERSPHERE_WETHAIL()} (Mie scattering, two-layered sphere), see subsubsection 5.3.6 on Page 40. The following figure shows the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter. Since the core is composed of pure ice and the shell is assumed to be water, no effective medium approximation for m_{eff} of mixture materials is needed here. Therefore, only one figure is sufficient in the following.

\texttt{MIE_WATERSPHERE_WETHAIL()} is not implemented into the interface subroutines for the LM, but would be a possible choice in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter \texttt{itype_gscp} \geq 100), together with \texttt{itype_refl} = 1.
8.19 Mie: twosphere soaked wet snow, LM-scheme

Similar to Subsection 8.1, results are shown for calculations of the backscattering cross section σ_b with subroutine MIE_WETSNOW_TWOSPHERE() (Mie scattering, two-layered sphere), see subsubsection 5.3.13 on Page 51. The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core and shell effective refractive indices m_{eff}. The particle bulk density as function of size is determined by equation (38) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (blue solid line).

The input parameter meltingratio Outside (see subsubsection 5.3.13 on Page 51) is set to 0.7, and radienverh (inner to outer sphere radius) is set to 0.5, independent of size and f_{melt}.

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-water-air core and ice-water-air shell, which both are obtained by using function get_m_mix_nested() (subsubsection 5.2.5 on Page 28). The input parameter sets of get_m_mix_nested() for core and shell can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter ctype_wetsnow can be found as 12-character code in the figures title. For explanation of the two 6-character parts of this code, see Table 40. The first 6-character sequence corresponds to the core material, the second 6-character sequence to the shell material. The results of this section apply to the LM for snow particles in case of application of the standard LM one-moment bulk microphysical schemes (namelist-parameter itype_gscp < 100) together with itype_refl = 1.
8.20 Mic: twosphere soaked wet snow, Seifert/Beheng-scheme

Similar to Subsection 8.19, results are shown for calculations of the backscattering cross section σ_b with subroutine $\text{MIE_WETSNOW_TWOSPHERE}()$ (Mie scattering, two-layered sphere), see subsubsection 5.3.13 on Page 51. But this time, the particle bulk density as function of size is determined by equation (39) on Page 69. A depiction of the resulting bulk density as function of particle size can be found in Figure 10 (green solid line). The following figures show the ratio of $\sigma_b/\sigma_{b,\text{drop}}$ as function of f_{melt} and the unmelted particle diameter for different EMA-formulations of the particles core and shell effective refractive indices m_{eff}.

The input parameter $\text{meltingratio_outside}$ (see subsubsection 5.3.13 on Page 51) is set to 0.7, and radienverh (inner to outer sphere radius) is set to 0.5, independent of size and f_{melt}.

Again, every figure represents one particular EMA-formulation for m_{eff} of the particles ice-water-air core and ice-water-air shell, which both are obtained by using function $\text{get_m_mix_nested}()$ (subsubsection 5.2.5 on Page 28). The input parameter sets of $\text{get_m_mix_nested}()$ for core and shell can be found in the text annotation within each graph. For users of the LM, the corresponding setting of the namelist-parameter ctype_wetsnow can be found as 12-character code in the figures title. For explanation of the two 6-character parts of this code, see Table 40. The first 6-character sequence corresponds to the core material, the second 6-character sequence to the shell material. The results of this section apply to the LM for snow particles in case of application of the Seifert and Beheng (2006) two-moment bulk microphysical scheme (namelist-parameter $\text{itype_gscp} \geq 100$) together with $\text{itype_refl} = 1$.
Soak twosphere snow, mivrsdnaas, 2-moment (Seifert-Beheng)

Soak twosphere snow, mivrsdnaas, 2-moment (Seifert-Beheng)
9 Index of the Figures of Section 8

9.1 Rayleigh: soaked wet graupel, LM-scheme

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bnasss</td>
<td>74</td>
</tr>
<tr>
<td>maisas</td>
<td>74</td>
</tr>
<tr>
<td>maisms</td>
<td>74</td>
</tr>
<tr>
<td>mawsas</td>
<td>74</td>
</tr>
<tr>
<td>mawsms</td>
<td>74</td>
</tr>
<tr>
<td>miasis</td>
<td>74</td>
</tr>
<tr>
<td>miasrs</td>
<td>75</td>
</tr>
<tr>
<td>miwsis</td>
<td>75</td>
</tr>
<tr>
<td>miwrsrs</td>
<td>74</td>
</tr>
<tr>
<td>mnasms</td>
<td>75</td>
</tr>
<tr>
<td>mnismis</td>
<td>75</td>
</tr>
<tr>
<td>mnwsms</td>
<td>75</td>
</tr>
<tr>
<td>mwasss</td>
<td>75</td>
</tr>
<tr>
<td>mwasws</td>
<td>75</td>
</tr>
<tr>
<td>mwissis</td>
<td>75</td>
</tr>
<tr>
<td>mwissws</td>
<td>75</td>
</tr>
<tr>
<td>onasss</td>
<td>75</td>
</tr>
</tbody>
</table>

9.2 Rayleigh: soaked wet graupel, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bnasss</td>
<td>77</td>
</tr>
<tr>
<td>maisas</td>
<td>77</td>
</tr>
<tr>
<td>maisms</td>
<td>77</td>
</tr>
<tr>
<td>mawsas</td>
<td>77</td>
</tr>
<tr>
<td>mawsms</td>
<td>77</td>
</tr>
<tr>
<td>miasis</td>
<td>77</td>
</tr>
<tr>
<td>miasrs</td>
<td>78</td>
</tr>
<tr>
<td>miwsis</td>
<td>78</td>
</tr>
<tr>
<td>miwrsrs</td>
<td>77</td>
</tr>
<tr>
<td>mnasms</td>
<td>78</td>
</tr>
<tr>
<td>mnismis</td>
<td>78</td>
</tr>
<tr>
<td>mnwsms</td>
<td>78</td>
</tr>
<tr>
<td>mwasss</td>
<td>78</td>
</tr>
<tr>
<td>mwasws</td>
<td>78</td>
</tr>
<tr>
<td>mwissis</td>
<td>78</td>
</tr>
<tr>
<td>mwissws</td>
<td>78</td>
</tr>
<tr>
<td>onasss</td>
<td>78</td>
</tr>
</tbody>
</table>

9.3 Rayleigh: soaked wet snow, LM-scheme

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bnasss</td>
<td>80</td>
</tr>
<tr>
<td>maisas</td>
<td>80</td>
</tr>
<tr>
<td>maisms</td>
<td>80</td>
</tr>
<tr>
<td>mawsas</td>
<td>80</td>
</tr>
<tr>
<td>mawsms</td>
<td>80</td>
</tr>
<tr>
<td>miasis</td>
<td>80</td>
</tr>
<tr>
<td>miasrs</td>
<td>80</td>
</tr>
<tr>
<td>miwsis</td>
<td>80</td>
</tr>
<tr>
<td>miwrsrs</td>
<td>81</td>
</tr>
<tr>
<td>mnasms</td>
<td>81</td>
</tr>
<tr>
<td>mnismis</td>
<td>81</td>
</tr>
<tr>
<td>mnwsms</td>
<td>81</td>
</tr>
<tr>
<td>mwasss</td>
<td>81</td>
</tr>
<tr>
<td>mwasws</td>
<td>81</td>
</tr>
<tr>
<td>mwissis</td>
<td>81</td>
</tr>
<tr>
<td>mwissws</td>
<td>81</td>
</tr>
<tr>
<td>onasss</td>
<td>81</td>
</tr>
</tbody>
</table>

9.4 Rayleigh: soaked wet snow, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bnasss</td>
<td>82</td>
</tr>
<tr>
<td>maisas</td>
<td>82</td>
</tr>
<tr>
<td>maisms</td>
<td>82</td>
</tr>
<tr>
<td>mawsas</td>
<td>82</td>
</tr>
<tr>
<td>mawsms</td>
<td>82</td>
</tr>
<tr>
<td>miasis</td>
<td>82</td>
</tr>
<tr>
<td>miasrs</td>
<td>82</td>
</tr>
<tr>
<td>miwsis</td>
<td>82</td>
</tr>
<tr>
<td>miwrsrs</td>
<td>83</td>
</tr>
<tr>
<td>mnasms</td>
<td>83</td>
</tr>
<tr>
<td>mnismis</td>
<td>83</td>
</tr>
<tr>
<td>mnwsms</td>
<td>83</td>
</tr>
<tr>
<td>mwasss</td>
<td>83</td>
</tr>
<tr>
<td>mwasws</td>
<td>83</td>
</tr>
<tr>
<td>mwissis</td>
<td>83</td>
</tr>
<tr>
<td>mwissws</td>
<td>83</td>
</tr>
<tr>
<td>onasss</td>
<td>83</td>
</tr>
</tbody>
</table>

9.5 Mie: soaked twosphere wet graupel, LM-scheme

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>basbis</td>
<td>84</td>
</tr>
<tr>
<td>basmis</td>
<td>84</td>
</tr>
<tr>
<td>basmws</td>
<td>84</td>
</tr>
<tr>
<td>masbis</td>
<td>84</td>
</tr>
<tr>
<td>masmisp</td>
<td>84</td>
</tr>
<tr>
<td>mash</td>
<td>85</td>
</tr>
<tr>
<td>mast</td>
<td>85</td>
</tr>
<tr>
<td>masw</td>
<td>85</td>
</tr>
<tr>
<td>misw</td>
<td>85</td>
</tr>
<tr>
<td>oasmis</td>
<td>85</td>
</tr>
<tr>
<td>oasms</td>
<td>85</td>
</tr>
<tr>
<td>oasw</td>
<td>85</td>
</tr>
<tr>
<td>oaw</td>
<td>85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>basbis</td>
<td>84</td>
</tr>
<tr>
<td>basmis</td>
<td>84</td>
</tr>
<tr>
<td>basmws</td>
<td>84</td>
</tr>
<tr>
<td>masbis</td>
<td>84</td>
</tr>
<tr>
<td>masmisp</td>
<td>84</td>
</tr>
<tr>
<td>mash</td>
<td>85</td>
</tr>
<tr>
<td>mast</td>
<td>85</td>
</tr>
<tr>
<td>masw</td>
<td>85</td>
</tr>
<tr>
<td>misw</td>
<td>85</td>
</tr>
<tr>
<td>oasmis</td>
<td>85</td>
</tr>
<tr>
<td>oasms</td>
<td>85</td>
</tr>
<tr>
<td>oasw</td>
<td>85</td>
</tr>
<tr>
<td>oaw</td>
<td>85</td>
</tr>
</tbody>
</table>
9.6 Mie: soaked twosphere wet graupel, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>basbis</th>
<th>86</th>
<th>masmws</th>
<th>86</th>
<th>miswis</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>basmis</td>
<td>86</td>
<td>maswis</td>
<td>87</td>
<td>oasmis</td>
<td>87</td>
</tr>
<tr>
<td>basmws</td>
<td>86</td>
<td>misbis</td>
<td>87</td>
<td>oasmws</td>
<td>87</td>
</tr>
<tr>
<td>masbis</td>
<td>86</td>
<td>mismis</td>
<td>87</td>
<td>oaswis</td>
<td>87</td>
</tr>
<tr>
<td>masmis</td>
<td>86</td>
<td>mismws</td>
<td>87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.7 Mie: soaked twosphere wet snow, LM-scheme

<table>
<thead>
<tr>
<th>basbis</th>
<th>88</th>
<th>masmws</th>
<th>88</th>
<th>miswis</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>basmis</td>
<td>88</td>
<td>maswis</td>
<td>89</td>
<td>oasmis</td>
<td>89</td>
</tr>
<tr>
<td>basmws</td>
<td>88</td>
<td>misbis</td>
<td>89</td>
<td>oasmws</td>
<td>89</td>
</tr>
<tr>
<td>masbis</td>
<td>88</td>
<td>mismis</td>
<td>89</td>
<td>oaswis</td>
<td>89</td>
</tr>
<tr>
<td>masmis</td>
<td>88</td>
<td>mismws</td>
<td>89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.8 Mie: soaked twosphere wet snow, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>basbis</th>
<th>90</th>
<th>masmws</th>
<th>90</th>
<th>miswis</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>basmis</td>
<td>90</td>
<td>maswis</td>
<td>91</td>
<td>oasmis</td>
<td>91</td>
</tr>
<tr>
<td>basmws</td>
<td>90</td>
<td>misbis</td>
<td>91</td>
<td>oasmws</td>
<td>91</td>
</tr>
<tr>
<td>masbis</td>
<td>90</td>
<td>mismis</td>
<td>91</td>
<td>oaswis</td>
<td>91</td>
</tr>
<tr>
<td>masmis</td>
<td>90</td>
<td>mismws</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.9 Mie: soaked wet graupel, LM-scheme

<table>
<thead>
<tr>
<th>bnasss</th>
<th>92</th>
<th>miasrs</th>
<th>93</th>
<th>mwasss</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>maisas</td>
<td>92</td>
<td>miwsis</td>
<td>93</td>
<td>mwasws</td>
<td>93</td>
</tr>
<tr>
<td>maisms</td>
<td>92</td>
<td>miwssr</td>
<td>93</td>
<td>mwiss</td>
<td>93</td>
</tr>
<tr>
<td>mawsas</td>
<td>92</td>
<td>mnasms</td>
<td>93</td>
<td>mwisws</td>
<td>93</td>
</tr>
<tr>
<td>mawsms</td>
<td>92</td>
<td>mnisms</td>
<td>93</td>
<td>onasss</td>
<td>94</td>
</tr>
<tr>
<td>miasis</td>
<td>92</td>
<td>mnwsms</td>
<td>93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.10 Mie: soaked wet graupel, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>bnasss</th>
<th>95</th>
<th>miasrs</th>
<th>96</th>
<th>mwasss</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>maisas</td>
<td>95</td>
<td>miwsis</td>
<td>96</td>
<td>mwasws</td>
<td>96</td>
</tr>
<tr>
<td>maisms</td>
<td>95</td>
<td>miwssr</td>
<td>96</td>
<td>mwiss</td>
<td>96</td>
</tr>
<tr>
<td>mawsas</td>
<td>95</td>
<td>mnasms</td>
<td>96</td>
<td>mwisws</td>
<td>96</td>
</tr>
<tr>
<td>mawsms</td>
<td>95</td>
<td>mnisms</td>
<td>96</td>
<td>onasss</td>
<td>97</td>
</tr>
<tr>
<td>miasis</td>
<td>95</td>
<td>mnwsms</td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.11 Mie: soaked wet snow, LM-scheme
9.12 Mie: soaked wet snow, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>bnasss</th>
<th>98</th>
<th>miasrs</th>
<th>98</th>
<th>mwasss</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>maisas</td>
<td>98</td>
<td>miwsis</td>
<td>98</td>
<td>mwasws</td>
<td>99</td>
</tr>
<tr>
<td>maisms</td>
<td>98</td>
<td>miwrs</td>
<td>99</td>
<td>mwiss</td>
<td>99</td>
</tr>
<tr>
<td>mawsas</td>
<td>98</td>
<td>mnasms</td>
<td>99</td>
<td>mwisws</td>
<td>99</td>
</tr>
<tr>
<td>mawsms</td>
<td>98</td>
<td>mnims</td>
<td>99</td>
<td>onasss</td>
<td>99</td>
</tr>
<tr>
<td>miasi</td>
<td>98</td>
<td>mnwsms</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.13 Mie: watersphere wet graupel, LM-scheme

<table>
<thead>
<tr>
<th>bas</th>
<th>102</th>
<th>mis</th>
<th>102</th>
<th>ois</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis</td>
<td>102</td>
<td>oas</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mas</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.14 Mie: watersphere wet graupel, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>bas</th>
<th>103</th>
<th>mis</th>
<th>103</th>
<th>ois</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis</td>
<td>103</td>
<td>oas</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mas</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.15 Mie: watersphere wet snow, LM-scheme

<table>
<thead>
<tr>
<th>bas</th>
<th>104</th>
<th>mis</th>
<th>104</th>
<th>ois</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis</td>
<td>104</td>
<td>oas</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mas</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.16 Mie: watersphere wet snow, Seifert/Beheng-scheme

<table>
<thead>
<tr>
<th>bas</th>
<th>105</th>
<th>mis</th>
<th>105</th>
<th>ois</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis</td>
<td>105</td>
<td>oas</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mas</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.17 Mie: spongy wet hail, Seifert/Beheng-scheme
9.18 Mie: watersphere wet hail, Seifert/Beheng-scheme

9.19 Mie: twosphere soaked wet snow, LM-scheme
9.20 Mie: two sphere soaked wet snow, Seifert/Beheng-scheme
mwiswsmwisws	165	onasssmiasis	166	onasssmwasss	166
mwiswsonasss	165	onasssmiasrs	166	onasssmwasws	166
onasssbnasss	165	onasssmiwsis	166	onasssmwissis	167
onasssmiaisas	165	onasssmiwrs	166	onasssmwisws	167
onasssmaisms	165	onasssnasms	166	onasssonasss	167
onasssmawsas	165	onasssmnisms	166		
onasssmawsms	166	onasssmnwms	166		
References

List of COSMO Newsletters and Technical Reports
(available for download from the COSMO Website: www.cosmo-model.org)

COSMO Newsletters

No. 2: February 2002.
No. 3: February 2003.
No. 4: February 2004.
No. 5: April 2005.
No. 6: July 2006.
No. 7: April 2008; Proceedings from the 8th COSMO General Meeting in Bucharest, 2006.
No. 8: September 2008; Proceedings from the 9th COSMO General Meeting in Athens, 2007.
No. 9: December 2008.
No. 10: March 2010.
No. 11: April 2011.
No. 12: April 2012.
No. 14: April 2014.
No. 15: July 2015.

COSMO Technical Reports

No. 1: Dmitrii Mironov and Matthias Raschendorfer (2001):

No. 2: Reinhold Schrodin and Erdmann Heise (2001):
The Multi-Layer Version of the DWD Soil Model TERRA_LM.

No. 3: Günther Doms (2001):
A Scheme for Monotonic Numerical Diffusion in the LM.

No. 4: Hans-Joachim Herzog, Ursula Schubert, Gerd Vogel, Adelheid Fiedler and Roswitha Kirchner (2002):
LLM - the High-Resolving Nonhydrostatic Simulation Model in the DWD-Project LIT-FASS.
Part I: Modelling Technique and Simulation Method.
No. 5: Jean-Marie Bettems (2002):
EUCOS Impact Study Using the Limited-Area Non-Hydrostatic NWP Model in Operational Use at MeteoSwiss.

No. 6: Heinz-Werner Bitzer and Jürgen Steppeler (2004):
Documentation of the Z-Coordinate Dynamical Core of LM.

No. 7: Hans-Joachim Herzog, Almut Gassmann (2005):
Lorenz- and Charney-Phillips vertical grid experimentation using a compressible non-hydrostatic toy-model relevant to the fast-mode part of the 'Lokal-Modell'.

No. 8: Chiara Marsigli, Andrea Montani, Tiziana Paccagnella, Davide Sacchetti, André Walser, Marco Arpagaus, Thomas Schumann (2005):
Evaluation of the Performance of the COSMO-LEPS System.

Operational Implementation of the Multilayer Soil Model.

No. 10: M.D. Tsyrulnikov (2007):
Is the particle filtering approach appropriate for meso-scale data assimilation?

No. 11: Dmitrii V. Mironov (2008):
Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model.

No. 12: Adriano Raspanti (2009):
COSMO Priority Project "VERification System Unified Survey" (VERSUS): Final Report.

No. 13: Chiara Marsigli (2009):

No. 14: Michael Baldauf (2009):
COSMO Priority Project "Further Developments of the Runge-Kutta Time Integration Scheme" (RK): Final Report.

No. 15: Silke Dierer (2009):
COSMO Priority Project "Tackle deficiencies in quantitative precipitation forecast" (QPF): Final Report.

No. 16: Pierre Eckert (2009):
COSMO Priority Project "INTERP": Final Report.

Description of some convective indices implemented in the COSMO model.

No. 18: Daniel Leuenberger (2010):
Statistical analysis of high-resolution COSMO Ensemble forecasts in view of Data Assimilation.

Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: main achievements and open challenges.

No. 20: A. Roches, O. Fuhrer (2012):
Tracer module in the COSMO model.
No. 21: Michael Baldauf (2013):
A new fast-waves solver for the Runge-Kutta dynamical core.

The CONSENS Priority Project.

The COSMO Priority Project ‘Conservative Dynamical Core’ Final Report.

Online Trajectory Module in COSMO: a short user guide.

The COSMO Priority Project ‘UTCS’ Final Report.

No. 27: J-M. Bettems (2015):
The COSMO Priority Project ‘COLOBOC’: Final Report.
COSMO Technical Reports

Issues of the COSMO Technical Reports series are published by the COnsortium for Small-scale MOdelling at non-regular intervals. COSMO is a European group for numerical weather prediction with participating meteorological services from Germany (DWD, AWGeophys), Greece (HNMS), Italy (USAM, ARPA-SIMC, ARPA Piemonte), Switzerland (MeteoSwiss), Poland (IMGW), Romania (NMA) and Russia (RHM). The general goal is to develop, improve and maintain a non-hydrostatic limited area modelling system to be used for both operational and research applications by the members of COSMO. This system is initially based on the COSMO-Model (previously known as LM) of DWD with its corresponding data assimilation system.

The Technical Reports are intended

- for scientific contributions and a documentation of research activities,
- to present and discuss results obtained from the model system,
- to present and discuss verification results and interpretation methods,
- for a documentation of technical changes to the model system,
- to give an overview of new components of the model system.

The purpose of these reports is to communicate results, changes and progress related to the LM model system relatively fast within the COSMO consortium, and also to inform other NWP groups on our current research activities. In this way the discussion on a specific topic can be stimulated at an early stage. In order to publish a report very soon after the completion of the manuscript, we have decided to omit a thorough reviewing procedure and only a rough check is done by the editors and a third reviewer. We apologize for typographical and other errors or inconsistencies which may still be present.

At present, the Technical Reports are available for download from the COSMO web site (www.cosmo-model.org). If required, the member meteorological centres can produce hard-copies by their own for distribution within their service. All members of the consortium will be informed about new issues by email.

For any comments and questions, please contact the editor:

Massimo Milelli
Massimo.Milelli@arpa.piemonte.it