Implementation of the new cloud-radiation scheme in COSMO

PAVEL KHAIN¹, HAREL MUSKATEL¹ and ULRICH BLAHAK²

¹Israel Meteorological Service ²Deutscher Wetterdienst

1 Introduction

Incoming solar radiation is a primary driving source of atmospheric weather and climate processes. For realistic weather simulation, an NWP model has to include an appropriate parametrization of the radiative transfer through the atmosphere. The divergence of solar and thermal radiative fluxes in the atmosphere, which interact strongly with gases, aerosols and the simulated cloud field and its inherent properties, contributes considerably to the diabatic forcing in the prognostic model equations. At the earth's surface radiative fluxes constitute the major forcing for the thermodynamic state of the soil and the interaction with the atmosphere via turbulent fluxes of heat and moisture. In COSMO, the radiative transfer scheme is based on the solution of the δ -two-stream version of the radiative transfer equation incorporating the effects of scattering, absorption, and emission by cloud droplets and ice crystals, gases (water vapor, ozone, carbon dioxide, air molecules) and aerosols in each one of the eight spectral intervals [15, 3]. Optical properties are computed from relevant prognostic and/or diagnostic model variables like specific humidity, cloud water- and ice content and cloud fraction. Some layer properties, like ozone, carbon dioxide and aerosols are specified as climatological values. In particular, the spatially variable aerosol distribution is derived from a climatology provided by Tanre [17] (namelist parameter itype aerosol=1). The actual layer mean values of optically relevant substances are converted to radiative properties like optical depth τ , single scattering albedo ω and asymetry parameter q and forward-scattered fraction through the use of empirical relations described in [15]. As part of the COSMO priority project "Testing and Tuning of the Revised Cloud Radiation Coupling" $T^2(RC)^2$, the calculation of the optical properties at the model layers was significantly revised, and an additional version of a radiative solver was implemented. From a technical point of view, the new parametrizations can be activated via compilation with the "DCLOUDRAD" preprocessor flag. The changes can be divided into three topics: radiative solver, clear sky optical properties, and cloudy part optical properties.

2 Implementation of the new scheme

Radiative solver

Radiation transfer schemes are one of the most computational expensive components in numerical weather prediction (NWP) models. In COSMO model, with only eight spectral intervals, a full radiation calculation costs as much as eight times the cost of the entire COSMO model run. Most of NWP models compromise on the spatial and/or temporal resolution of the radiation scheme. In the operational setup of COSMO-2.8 km, with a full spatial resolution and with a temporal resolution of 15 minutes, the computational cost of radiation is only 3% of the entire model. This compromise can lead to local biases in net downward radiation and surface temperatures. In an attempt to both reduce errors and to decrease the run-time we implemented a different approach which is to decrease the spectral resolution by a wise sampling technique, a method known as Monte Carlo Spectral Integration (MCSI) [13] was implemented (namelist parameter itype mcsi). Many radiative transfer schemes including COSMO scheme [15], use the k-distribution method for the gasesradiation interaction calculations [4]. In this method the spectrum is transferred from wavelength space to cumulative probability space. This space is divided to intervals which are called g-points. In COSMO for each gas and for each spectral interval there are between two to eight g-points. In the operational mode of COSMO the Fast Exponential Sum Fitting Technique (FESFT) is used to fully calculate all of the mentioned g-points. In MCSI only one g-point is calculated in each time step according to its probability. In COSMO we used a softer version of MCSI where a g-point is selected in each of the spectral intervals which increases the computational cos but does neglect either of the spectral intervals in every time step. Of course that if the user chooses to use MCSI the radiation scheme should be called more frequently. We found out the using the MCSI with full temporal resolution (calling the radiation scheme every time step) in COSMO-2.8km setup can increase runtime by 33% with only slight reduction of global radiation and 2-meter temperature biases compared to FESFT. But using MCSI with a 100 seconds temporal resolution (every 5 time steps) can give the same benefits but with only 4% increase in runtime.

Clear sky optical properties

Two new options of an aerosol climatology were introduced (namelist parameter itype_aerosol). The first, Tegen [18] (itype_aerosol=2), is a 2-dimensional monthly map of optical thicknesses for 5 aerosol classes. In COSMO it is interpolated in time, and 3-dimensional optical properties are calculated assuming a predefined exponentially decaying vertical profile. The second, Kinne [10] (itype_aerosol=3), is a 2-dimensional climatology which is considered to better describe real aerosol loading [12].

In addition, two new options to use time- and space-interpolated (via the int2lm software) 3-dimensional aerosol fields of external prognostic forecast models have been implemented. The first (itype_aerosol=4) can process CAMS-ECMWF [1, 11] 3-dimensional aerosol mixing ratio fields, which include sea salt, mineral dust, black carbon, organic matter and sulphate and which are sub-divided to eleven tracers, because sea salt and dust have three size bins while black carbon and organic matter have both hydrophobic and hydrophilic types. The second new option (itype_aerosol=5) can process ICON-ART [14] 3-dimensional aerosol mixing ratio fields; currently the operational ICON-ART only includes mineral dust, but it might be expanded to other species in the future.

Cloudy part optical properties

First, in addition to cloud water and ice, the optical effect of prognostic snow, graupel and rain water contents was (optionally) included (namelist parameter lrad_incl_qrqsqg). The optical properties of solid particles in clouds (specific extinction coefficient β , single scattering albedo ω , asymmetry factor g and delta-transmission function δ) have been formulated as function of effective radius R_e and aspect ratio A_r (assuming hexagonal needles as described in [5]) for the 8 COSMO spectral bands, using the spectroscopic scattering function data for single needles used previously in [5], [6] and [7]. Based on these data, for each realization of a Monte-Carlo-Ensemble over 7000 different Gamma-type ice particle size distributions the parameters R_e following [5], A_r following [7], β , ω , g and δ have been computed. New and rather accurate fits of type rational functions were developed for β and ω as function of R_e , and g and δ as function of A_r ([7]). In contrast to previous literature, our new fits span a very large parameter range for R_e from 2.5 to 300 microns and behave asymptotically "reasonably well" for larger sizes. This range is sufficient for the fits to be applied to the snow-and graupel hydrometeors in any model. Optical thickness τ is obtained by multiplying the respective β for each hydrometeor type by the respective specific mass content and summation. Usage of the new fits can be activated by namelist parameter iradpar_cloud=4, and small modifications can be chosen by the namelist switches lrad ice smooth surfaces and lrad ice fd is gsquared.

The optical properties of water particles in clouds have been formulated as function of particles' water content and effective radius for the 8 COSMO spectral bands, using [8] up to 60 micron with an own asymptotically correct extrapolation towards larger sizes up to mm diameters (namelist parameter iradpar cloud=4).

For the large particles (snow, graupel and rain) a geometrical-optics large-size approximation based on semitransparent spheres for the optical properties was (optionally) implemented (namelist parameter lrad_use largesizeapprox).

Several new options for calculation of water contents, effective radii and aspect ratios (both are functions of number concentration and mass concentration) for various hydrometeors were implemented. That includes:

- Estimating N_{Ca} the number concentration of 3-dimensional hydrophilic aerosol fields using Tegen [18] or CAMS-ECMWF [1, 11] input data.
- Estimating w_{eff} the subgrid local updraft velocity, using turbulent kinetic energy, radiative cooling and optionally convective velocity scale after Deardorff [2] (namelist parameter lincl wstar in weff).
- Utilization of N_{Ca} and w_{eff} to calculate N_{CCN} , the number concentration of nucleated cloud droplets for computing R_e of cloud water, using the Segal-Khain method [16] (namelist parameters icloud_num_ type_rad and icloud_num_type_gscp). icloud_num_type_rad affects the radiation indirect aerosols effect on clouds and icloud_num_type_gscp affects the auto-conversion rate in the 1-momment microphysical scheme.
- Number concentrations of other species (rain, cloud ice, snow and graupel) are either estimated consistently to assumptions on particle size distributions in the 1-moment cloud microphysics scheme, or are prognostic for grid scale clouds in case of the 2-moment scheme.

- "Stratiform" subgrid-scale cloud droplets and ice water contents (LWC_{sgs} and IWC_{sgs} , respectively) are estimated as functions of temperature and humidity. The shallow convection LWC_{sgs} is estimated by one of the 3 following methods: as function of temperature and humidity, similarly to stratiform clouds; as equal to the LWC of COSMO shallow convection scheme (namelist parameter luse_qc_con_sgs); and as fraction of the theoretical adiabatic water content [9] (namelist parameter luse_qc_adiab_for_reffc_sgs). The overall LWC_{sgs} is estimated by the default COSMO method as weighted average of the "stratiform" and "convective" parts, using the corresponding cloud fractions. The grid scale water contents of cloud water and ice, snow, graupel and rain are prognostic variables.
- Effective radii and aspect ratios for cloud droplets and cloud ice, as well as snow, graupel and rain are estimated as function of the corresponding water contents and number concentrations. For situations dominated by subgrid-scale shallow convection, the effective radius of subgrid-scale cloud droplets can be, alternatively, estimated using the "adiabatic" parametrization [9] (namelist parameter luse_qc_adiab_for_reffc_sgs).

The list of parameters of the new cloud-radiation coupling scheme is presented in Table 1 in the Appendix. The Table includes the meaning of each parameter, its type, default value, available range and recommended value.

3 Case Study

Preliminary tests of the new cloud-radiation coupling scheme (implemented in COSMO 5.5) were performed over the eastern Mediterranean (COSMO-IL domain 26-36N, 25-39E) with grid spacing of 2.8 km. The weather event was chosen to be on 16/02/2018. During that day the eastern Mediterranean was in the warm sector of a deep upper air trough approaching from the west (see sattelite image in Figure 1). The SW winds caused desert dust advection into the region. The COSMO runs (driven by IFS data) were initialized on 16/2/201800 UTC and produced forecasts up to 16/2/2018 12 UTC.

Figure 1: IR 10.8 MeteoSat satellite image for 16/2/2018 at 12 UTC.

Eight COSMO runs have been performed, with namelist parameter variations as summarized in Figure 2. The reference experiment (Ref) includes the default cloud-radiation scheme (iradpar_cloud=1) and Tanre aerosol climatology (itype_aerosol=1). Exp.1 is similar to Ref, with Tegen aerosol climatology (itype_aerosol=2). Exp.2 is similar to Exp. 1 with Segal-Khain estimation of cloud-droplet number concentration (icloud_num_type_gscp=2). Exp. 3 is similar to Exp.2 with consideration of Deardorff convective velocity scale in calculation of the local subgrid-scale updraft (lincl_wstar_in_weff=TRUE), and with tuned hydrometeor number concentrations (lreduce_qnx_vs_qx=TRUE). Exp.4 is similar to Exp.3 with subgrid scale droplets and ice effective radius calculation using water contents and number concentrations (luse_reff_ini_x_as_reffx_sgs=FALSE), and with tuned water content reduction (luse_tqcqiqs=TRUE). Exp.5 is similar to Exp.4 with an estimation of shallow Cu droplets effective radius using the "adiabatic" parametrization (luse_qc_on_sgs=TRUE). Exp.6 is similar to Exp.5 with revised asymmetry function of ice particles (lrad_ice_smooth_surfaces= FALSE and lrad_ice_fd_is_gsquared= TRUE). Exp.7 is similar to Exp. 6 with MCSI parameterization of spectral bands sampling in the radiation solver (itype_mcsi=1) compensated by more frequent calls to the radiation scheme (every 3 minutes instead of 15).

Parameter	Meaning	Ref	1	2	3	4	5	6	7
iradpar_cloud	type of optical prop.	1	1	4	4	4	4	4	4
lrad_incl_qrqsqg	include rain, snow	F	F	Т	Т	Т	Т	Т	Т
Irad_use_largesizeapprox	and graupel	F	F	Т	Т	Т	Т	Т	Т
itype_aerosol	aerosols data source	1	2	2	4	4	4	4	4
icloud_num_type_rad	Segal-Khain	1	1	2	2	2	2	2	2
icloud_num_type_gscp	parameterization	1	1	2	2	2	2	2	2
lincl_wstar_in_weff	local updraft calc.	F	F	F	Т	Т	Т	Т	Т
lreduce_qnx_vs_qx	tune number conc.	F	F	F	Т	Т	Т	Т	Т
luse_reff_ini_x_as_reffx_sgs	effective radius calc.	Т	Т	Т	Т	F	F	F	F
luse_tqctqitqs	tune water content	F	F	F	F	Т	Т	Т	Т
luse_qc_adiab_for_reffc_sgs	new paramet. for Cu	F	F	F	F	F	Т	Т	Т
luse_qc_con_sgs	shall. C. LWC for Cu	F	F	F	F	F	Т	Т	Т
lrad_ice_smooth_surfaces	ice particles	Т	Т	Т	Т	Т	Т	F	F
<pre>lrad_ice_fd_is_gsquared</pre>	roughness	F	F	F	F	F	F	Т	Т
itype_mcsi	MCSI paramet.	0	0	0	0	0	0	0	1

Figure 2: Summary of the eight COSMO experiments.

The sensitivity results of the COSMO runs are presented in 3 as function of the forecast range. The upper left panel presents the averaged global radiation over the cloudy grid points (cloud cover > 0.1). For each experiment the global radiation of the Ref run is subtracted, showing the sensitivity effect of the current experiment. The upper right panel presents similar results for the averaged 2 meter tempearture. Similarly, the lower panels present the sensitivity results for the clear sky regions (cloud cover < 0.1), highlighting the direct effects of aerosols and the MCSI parameterization.

Figure 3: Sensitivity results of the COSMO runs as function of the forecast range. The upper left panel presents the averaged over the cloudy grid points (cloud cover > 0.1) global radiation. For each experiment the global radiation of the Ref run is subtracted, showing the sensitivity effect of the current experiment. The upper right panel presents similar results for the averaged 2 meter tempearture. Similarly, the lower panels present the sensitivity results for the clear sky regions (cloud cover < 0.1).

One can see (Exp. 1) that the use of Tegen aerosol instead of Tanre strongly increases the global radiation (up to 120 W/m^2) and the 2 meter temperature up to 0.5 K. Exp. 2 shows that in the cloudy areas the new optical properties and Segal-Khain nucleation, and – most importantly – consideration of rain, snow and graupel particles in radiation, decreases the enhancement to about 50 W/m^2 . Exp. 3 shows that in the cloudy areas revision of the local updraft for Segal-Khain nucleation and tuning the number concentration decreases the enhancement further to about 35 W/m^2 . Exp. 4 shows that in the cloudy areas revision of SGS effective radius calculations and imposing upper limits to the total water contents brings the enhancement back to about 50 W/m^2 . Experiments 5.6 and 7 show smaller sensitivity on average. Generally, one can see that the new cloud-radiation coupling scheme affects the global radiation by 30-120 W/m^2 which corresponds to a 2 meter temperature variation range of about 1 K. Important to note is, that these results are preliminary and reflect the model sensitivity at a single day over a specified region only. Also, the results include averaging over large areas, which suggests much higher sensitivities locally. We should also note that this is the first attempt to test the code within the 5.5 framework. Each of the new scheme components was massively tested within the 5.1 framework. In the appendix we provide the "recommended" namelist based on the studies during the last 4-years, which were discussed and published in various presentations and papers, as can be viewed on $T^2(RC)^2$ web page (http://www.cosmo-model.org/content/tasks/priorityProjects/t2rc2/default.htm).

4 Summary

In this short article we inform the COSMO community about the recent implementation of a revised cloudradiation coupling scheme into COSMO 5.5. Officially this code will be distributed with the final version of COSMO - COSMO-6. The new scheme includes an optional modification to the radiation solver (MCSI parametrization). It further includes implementation of new aerosol climatologies and prognostic aerosol fields which modify the clear sky optical properties. Moreover, the indirect effect of aerosols on number concentrations, effective radiuses and water contents in grid and subgrid scale clouds is significantly revised. The optical properties of solid and water hydrometeors for the different spectral intervals were revised as well. Preliminary tests show a significant effect of the new cloud-radiation coupling scheme on radiation and 2 meter temperature.

Acknowledgments

Besides the authors, the new cloud-radiation coupling code includes important contributions from Simon Gruber (KIT), Alexey Poliukov (MSU), Natalia Chubarova (MSU), Marina Shatunova (Roshydromet), Ulrich Schaettler (DWD), Daniel Rieger (DWD), Martin Kohler (DWD), Alon Shtivelman (IMS), Yoav Levi (IMS), Xavier Lapillonne (MeteoSwiss), Oliver Fuhrer (MeteoSwiss), Gdaly Rivin (Roshydromet), Alexander Kirsanov (Roshydromet),

Matthias Raschendorfer (DWD), Ralph Becker (DWD), Stefan Kinne (MPI-Met Hamburg), Daniel Luthi (DWD), Alessio Bozzo (ECMWF), Alexander Khain (HUJI), Bodo Ritter (DWD), Dmitrii Mironov (DWD) and Bernard Vogel (KIT). The COSMO priority project $T^2(RC)^2$ was led by Harel Muskatel (IMS).

References

- Benedetti, A., J.-J. Morcrette, O. Boucher, A. Dethof, R. J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J. W. Kaiser, et al., 2009: Aerosol analysis and forecast in the European Centre for MediumRange Weather Forecasts Integrated Forecast System. Part 2: Data assimilation, J. Geophys. Res.-Atmospheres, 114(D13), D13205, doi:10.1020/2008JD011115.
- [2] Deardorff, J. W.: 1970, 'Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection', J. Atmos. Sci. 27, 1211–1213.
- [3] Doms, G., J. Forstner, E. Heise, H.-J. Herzog, D. Mironov, M. Raschendorfer, T. Reinhardt, B. Ritter, R. Schrodin, J.-P. Schulz and G. Vogel, 2011: A description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization. Deutscher Wetterdienst, 161 pp.
- [4] Fu, Q., and Liou, K. N. (1992), A threeparameter approximation for radiative transfer in nonhomogeneous atmospheres: Application to the O3 9.6m band, J. Geophys. Res., 97(D12), 13051-13058, doi:10.1029/92JD00999.
- [5] Fu Q., 1996, An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Models, J. Clim., 9, 2058-2082
- [6] Fu Q., P. Yang and W. B. Sun, 1998, An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models, J. Clim., 11, 2223-2237
- [7] Fu Q., 2007, A New Parameterization of an Asymmetry Factor of Cirrus Clouds for Climate Models, J. Atm. Sci., 64, 4140-4150
- Hu, Y.X. and K. Stamnes, 1993: An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models. J. Climate, 6, 728-742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2
- [9] Khain, P., R. Heiblum, U. Blahak, Y. Levi, H. Muskatel, E. Vadislavsky, O. Altaratz, I. Koren, G. Dagan, J. Shpund, and A. Khain, 2019: Parameterization of Vertical Profiles of Governing Microphysical Parameters of Shallow Cumulus Cloud Ensembles Using LES with Bin Microphysics. J. Atmos. Sci., 76, 533-560, https://doi.org/10.1175/JAS-D-18-0046.1
- [10] Kinne, S., D. O'Donnel, P. Stier, S. Kloster, K. Zhang, H. Schmidt, S. Rast, M. Giorgetta, T. F. Eck, and B. Stevens (2013), MAC-v1: A new global aerosol climatology for climate studies, J. Adv. Model. Earth Syst., 5, 704740, doi:10.1002/jame.20035.
- [11] Morcrette, J.-J., O. Boucher, L. Jones, D. Salmond, P. Bechtold, A. Beljaars, A. Benedetti, A. Boner, J. W. Kaiser, M. Razinger, et al., 2009: Aerosol analysis and forecast in the European Centre for MediumRange Weather Forecasts Integrated Forecast System. Part 1: Forward modelling, J. Geophys. Res.-Atmospheres, 114(D6), D06206, doi:10.1029/2008JD011235.

- [12] Mueller R., C. Träger-Chatterjee, Brief Accuracy Assessment of Aerosol Climatologies for the Retrieval of Solar Surface Radiation, Atmosphere 2014, 5, 959-972; doi:10.3390/atmos5040959
- [13] Pincus, R., and Stevens, B. (2009), Monte Carlo Spectral Integration: a Consistent Approximation for Radiative Transfer in Large Eddy Simulations, J. Adv. Model. Earth Syst., 1, 1, doi:10.3894/JAMES.2009.1.1.
- [14] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 – a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659-1676, https://doi.org/10.5194/gmd-8-1659-2015, 2015.
- [15] Ritter, B. and J. Geleyn, 1992: A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations. Mon. Wea. Rev., 120, 303-325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
- [16] Segal, Y., and Khain, A. (2006), Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions, J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.
- [17] Tanre, D., J.-F. Geleyn, and J. Slingo, 1984. First results of the introduction of an advanced aerosolradiation interaction in the ECMWF low resolution global model. In Proc. of the Meetings of Experts on Aerosols and their Climatic Effects, Williamsburg, VA, pp. 133177. WMO and IAMAP.
- [18] Tegen, I., P. Hoorig, M. Chin, I. Fung, D. Jacob, and J. Penner (1997), Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 102, 23,895 23,915.

Appendix

The list of parameters of the new cloud-radiation coupling scheme is presented in Table 1. The Table includes the meaning of each parameter, its type, default value, available range and recommended value.

Parameter	Meaning	Type	Def	Range	Recom
iradpar_cloud	Calculation of optical properties for solid and water particles. 1-old, 4-new. 2,3 are possible but not recommended	INT	1	1,4	4
lrad_ice_smooth_surfaces	Effective if iradpar_cloud=4. If T assume smooth surfaces for solid species $(fd>0)$, otherwise assume rough surfaces $(fd close$ to $0)$	LOG	Т	T/F	F
rad_ice_fd_is_gsquared	Effective if iradpar_cloud=4 and lrad_ice_smooth_surfaces=T. If T compute forward scattered fraction as $f = g^2$ (RG92 method), otherwise com- pute $f = 1/(2\omega) + f_d$ with $f_d = fct(AR)$ according to the new fits. Concerns only the solar frequency bands	LOG	F	T/F	F
lrad_incl_qrqsqg	include/exclude QR, QS and QG in radia- tive transfer calculations	LOG	F	T/F	Т
lrad_use_largesizeapprox	Effective for iradpar_cloud = 4: if F new fits for all optical properties of solid species are used without clipping. If T only for the extinction the large-size approximation is applied starting from Reff=150 microns	LOG	Т	T/F	Т
itype_aerosol	Type of aerosol map. Climatology: 1- Tanre, 2-Tegen, 3-Kinne. Prognostic data from int2lm: 4-CAMS, 5-ART	INT	1	1-5	4

		T3 7 00		1.0	
icloud_num_type_rad	Derivation of cloud number concentration	INT	1	1,2	2
	for radiation. 1: use cloud num rad				
	tuning papamatan 2. daniwa fram				
	tuning parameter. 2: derive from				
	Tegen/CAMS aerosol data using Segal-				
	Khain parametrization (effective for				
	itype_aerosol=2,4 only)				
icloud num type gscp	Derivation of cloud number concentra-	INT	1	1,2	2
	tion for 1-moment microphysics 1: use			· ·	
	tion for 1-moment interophysics. 1. use				
	cloud_num tuning parameter. 2: derive				
	from Tegen/CAMS aerosol data using				
	Socal Khain parametrization (effective for				
	Segar-Isnam parametrization (enective for				
	itype_aerosol=2,4 only)				
lincl wstar in weff	Effective in case of	LOG	F	T/F	Т
	icloud num tuno rad/geen-2 (Socal			· ·	
	licioud_num_type_rad/gscp=2 (Segar-				
	Khain). If T, the eff. w for cloud nucleation				
	is enforced to be $>= w^*$ (conv. vel. scale				
	in PRI) but only below the PRI beight				
	III I DE), but only below the I DE height				
	or below the upper bound of the lowest				
	"convective cloud layer", whichever is				
	higher F - otherwise				
				F	
cloud_num_rad	Tuning parameter for cloud number con-	REAL	2E8	[0.1-	2E8
	centration for radiation $(1/m^3)$			10]E8	
cloud num	Tuning parameter for cloud number con	DEAT	559	1	559
	Tuning parameter for cloud number con-	REAL	950	[0.1-	959
	centration for 1-moment microphysics			10 E8	
	$(1/m^3)$				
mof aland num and	Height of lower lower (chowe MCL in m)	DEAL	2000	500	2000
zrei_cioud_num_rad	neight of lower layer (above MSL III III)	REAL	2000	500-	2000
	above which the cloud number concentra-			3000	
	tion is exponentially reduced with height				
da oo oloud num nod	1/a deepeege height in m of empenantial	DEAL	2000	500	2000
	1/e decrease neight in m of exponential	REAL	2000	500-	2000
	decrease of cloud number concentration			3000	
	above zref cloud num rad				
			1		1
lreduce_qnx_vs_qx	T: reduce qnx vs qx for radiation. In this	LOG	F	T/F	Т
lreduce_qnx_vs_qx	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac-	LOG	F	T/F	Т
lreduce_qnx_vs_qx	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac-	LOG	F	T/F	Т
lreduce_qnx_vs_qx	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise	LOG	F	T/F	Т
lreduce_qnx_vs_qx rhoc_nchigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re-	LOG REAL	F 0.5 E-4	T/F [0.1-	T 0.5 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$	LOG REAL	F 0.5 E-4	T/F [0.1- 20]	Т 0.5 Е-4
lreduce_qnx_vs_qx rhoc_nchigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$	LOG REAL	F 0.5 E-4	T/F [0.1- 20] F 4	T 0.5 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$	LOG REAL	F 0.5 E-4	T/F [0.1- 20] E-4	T 0.5 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc <	LOG REAL REAL	F 0.5 E-4 2.0 E-4	T/F [0.1- 20] E-4 [0.1-	T 0.5 E-4 2.0 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc nclow rad qnc is linearly reduced	LOG REAL REAL	F 0.5 E-4 2.0 E-4	T/F [0.1- 20] E-4 [0.1- 20]	T 0.5 E-4 2.0 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$	LOG REAL REAL	F 0.5 E-4 2.0 E-4	T/F [0.1- 20] E-4 [0.1- 20] F 4	T 0.5 E-4 2.0 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$	LOG REAL REAL	F 0.5 E-4 2.0 E-4	T/F [0.1- 20] E-4 [0.1- 20] E-4	T 0.5 E-4 2.0 E-4
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin-	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01]	T 0.5 E-4 2.0 E-4 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc-	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01]	T 0.5 E-4 2.0 E-4 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact low_rad'th fraction of qnc	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01]	T 0.5 E-4 2.0 E-4 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01]	T 0.5 E-4 2.0 E-4 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1-	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are activated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not reduced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the linear reduction bottoms out at the nc-fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$	LOG REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwiseFor qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qncFor qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi	LOG REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1-	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi nilow rad, ni(T) is linearly re-	LOG REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$	LOG REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$	LOG REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nihigh_rad, the lin-	LOG REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5 [0.1-	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni-	LOG REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T)	LOG REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad nefact_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T)	LOG REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1- 20] [0.1- [0.1- 20] [0.1- [0.1	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not	LOG REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1-	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1- 20]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nihigh_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-5	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$	LOG REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1- 20] E-5 [01]	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_n0slow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1- 20] E-5 [0.1- 20] E-5 [0.1- 20] E-4	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_n0slow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0sigh_rad, n0s is not reduced as function of qs $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [01] [0.1- 20] E-5 [0.1- 20] E-5 [01] [0.1- 20] E-5	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_n0slow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s low_rad $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5	$\begin{array}{c} {\rm T/F} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [01] \\ \\ \hline \\ [0.1-\\ 20] \\ {\rm E-5} \\ \hline \end{array}$	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad nos_n0slow_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s_low_rad $[kg/m^3]$	LOG REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5	$\begin{array}{c} {\rm T/F} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [01] \\ \\ \hline \\ [0.1-\\ 20] \\ {\rm E-5} \\ [1.50] \\ \end{array}$	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_low_rad n0s_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s_low_rad $[kg/m^3]$ For qs>=rhos_n0shigh_rad, n0s attains	LOG REAL REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5	$\begin{array}{c} {\rm T/F} \\ \hline \\ [0.1-\\ 20] \\ {\rm E-4} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [01] \\ \hline \\ \\ [0.1-\\ 20] \\ {\rm E-5} \\ [1-50] \\ \hline \\ \end{array}$	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_n0slow_rad n0s_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s_low_rad $[kg/m^3]$ For qs == rhos_n0slow_rad, n0s attains this const. value $[m^-3]$	LOG REAL REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5	$\begin{array}{c} {\rm T/F} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [01] \\ \\ [0.1-\\ 20] \\ {\rm E-5} \\ [0.1-\\ 20] \\ {\rm E-5} \\ [01] \\ \\ \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\$	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_low_rad n0s_low_rad	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s_low_rad $[kg/m^3]$ For qs == rhos_n0shigh_rad, n0s attains this const. value $[m^-3]$	LOG REAL REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5	T/F [0.1- 20] E-4 [0.1- 20] E-4 [0.1- 20] E-5 [1.50] E-5 [1.50] E5 [1	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5
lreduce_qnx_vs_qx rhoc_nchigh_rad rhoc_nclow_rad ncfact_low_rad rhoi_nihigh_rad rhoi_nilow_rad nifact_low_rad rhos_n0shigh_rad rhos_n0slow_rad n0s_low_rad luse_reff_ini_x_as_reffx_sgs	T: reduce qnx vs qx for radiation. In this case the 9 tuning parameters below are ac- tivated. F: otherwise For qc<=rhoc_nchigh_rad, qnc is not re- duced as function of qc $[kg/m^3]$ For rhoc_nchigh_rad < qc < rhoc_nclow_rad qnc is linearly reduced as function of qc $[kg/m^3]$ For qc>=rhoc_nclow_rad, the lin- ear reduction bottoms out at the nc- fact_low_rad'th fraction of qnc For qi <= rhoi_nihigh_rad, ni(T) is not reduced as function of qi $[kg/m^3]$ For rhoi_nihigh_rad < qi < rhoi_nilow_rad, ni(T) is linearly re- duced as function of qi $[kg/m^3]$ For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qi >= rhoi_nilow_rad, the lin- ear reduction bottoms out at the ni- fact_low_rad'th fraction of ni(T) For qs <= rhos_n0shigh_rad, n0s is not reduced as function of qs $[kg/m^3]$ For rhos_n0high_rad < qs < rhos_n0low_rad, n0s is linearly reduced towards n0s_low_rad $[kg/m^3]$ For qs == rhos_n0shigh_rad, n0s attains this const. value $[m^{-3}]$	LOG REAL REAL REAL REAL REAL REAL REAL REAL	F 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5 T	$\begin{array}{c} {\rm T/F} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [0.1-\\ 20] \\ {\rm E-4} \\ [01] \\ \\ \hline \\ [0.1-\\ 20] \\ {\rm E-5} \\ [0.1-\\ 20] \\ {\rm E-5} \\ [01-\\ 20] \\ {\rm E-5} \\ [0.1-\\ 20] \\$	T 0.5 E-4 2.0 E-4 0.1 0.5 E-5 2.0 E-5 0.1 1.0 E-5 5.0 E-5 8 E5 F

	-				
reff_ini_c	Effective radius for SGS	REAL	5 E-6	[3-15]	5 E-6
	cloud droplets (m). Only if			E-6	
<u> </u>	$\frac{\text{luse} \text{ reff} \text{ lin} \text{ x} \text{ as } \text{ reffx} \text{ sgs}=1}{12}$	DEAT	10 10 0		10 5 6
reff_ini_i	Effective radius for SGS cloud ice (m).	REAL	10 E-6	[5-30]	10 E-6
	Only if luse_reff_ini_x_as_reffx_sgs=1			E-6	
radqc_fact, radqi_fact,	Portion of GS and SGS qc, qi, qs, qg (re-	REAL	0.5	[0.5-1]	0.5
$radqs_fact, radqg_fact$	spectively) "seen" by the radiation. Should				
	be <1 because of subgrid-scale variability.				
	Increase leads to higher optical thickness				
qvsatfact_sgscl_rad	Scaling factor for qc and qi of SGS clouds:	REAL	0.01	[0.005-	0.01
	local supersaturation which is assumed to			0.02]	
	have been depleted by SGS cloud forma-				
	tion [-]. Increase leads to higher optical				
	thickness	TOC	D		-
luse_tqctqltqs	minit 1QC, 1QI, 1QS to some integral	LOG	г	1/r	1
	(for rediction) T loads to lower optical				
	thickness				
		1.00			
luse_qc_adiab_for_reffc_sgs	Use "adiabatic" parametrization for SGS	LOG	F	T/F	T
	shallow convection effective radius	TTOO			-
luse_qc_con_sgs	Effective if luse_qc_adiab_for_reffc_sgs=	LOG	F'	T/F	T
	F: use "adiabatic" parametrization for				
	from shallow convection LWC. I: use LWC				
	(if leave—T)				
alphal adjab rad	Linear deviation with height (above	DEAL	0.05	[0 7 1]	0.05
	cloud base) of SGS shallow con-	NEAL	0.90	[[0.7-1]	0.90
	vection effective radius from the				
	adiabatic value alpha1 adiab rad-				
	alpha2 adiab rad*(z-zcb). [-]				
alpha2 adiab rad	Linear deviation with height (above	REAL	1.2 E-4	[1-2]	1.2 E-4
	cloud base) of SGS shallow con-			E-4	
	vection effective radius from the				
	adiabatic value alpha1 adiab rad-				
	alpha2_adiab_rad*(z-zcb). [1/m]				
beta_adiab_rad	Ratio of cloud-average number concentra-	REAL	0.38	[0.2-1]	0.38
	tion (of SGS shallow convection) with re-				
	spect to the cloud core value (obtained				
	from Segal-Khain)				
gamma_adiab_rad	Linear deviation with height (above	REAL	0.45	[0.2-	0.45
	reff=12micron level) of SGS shallow conv.			0.7]	
	qc from the "pseudo-adiabatic" value.				
	[1/km]				<u> </u>
itype_mcsi	1: Monte Carlo Spectral Integration in the	INT	0	0,1	0
	radiation solver. Recommended together				
	with nincrad=5, 0-Default from BG92				

Table 1: List of parameters of the new cloud-radiation coupling scheme. The parameters are separated to groups according the corresponding parametrization: Optical properties derivation; Effect of large hydrometeors on radiation; Aerosols effect in clear sky and on droplets number concentration in clouds; Reduction of hydrometeors number concentrations for large water contents; Method of effective radius calculation; Tuning water contents "seen" by radiation; "Adiabatic" parametrization for liquid water content and effective radius in shallow cumulus; New method for radiation solver. The Table includes the meaning of each parameter, its type, default value, available range and recommended value.