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Estimation of model errors on convective scales: a coarse-graining study

(preliminary stage results)Mihael Tsyrulnikov and Dmitry Gayfulinmik.tsyrulnikov�gmail.om
AbstratAn attempt to objetively estimate model tendeny errors using a �true model� is desribed. The model inquestion (the �model�) is COSMO with the horizontal resolution 2.2 km. The �true model� is COSMO withthe horizontal resolution 0.55 km. The model error is evaluated as the di�erene between 1-minute �model�and upsaled (oarse-grained) �true-model� tendenies started from the same initial onditions. Preliminaryresults show, that, �rst, onvetion is not to be treated with this approah. Seond, non-onvetive modelerrors ontain both additive and multipliative omponents. The additive omponent and the multiplier(applied to the physial tendeny) appear to be approximately Gaussian. Third, the model-error �eld is tooomplex (espeially in the planetary boundary layer) to be modeled with a reasonably simple stohastimodel, so a proess-level model error treatment is to be employed.1 IntrodutionTo perform numerial weather predition, three omponents are needed: initial onditions, boundary ondi-tions, and a foreast model. The lassial paradigm is deterministi: we (naively) assume that all these threeomponents are perfet (however they are prepared), and ome up with a deterministi foreast. But in reality,the three omponents needed to ompute a foreast are, of ourse, imperfet and subjet to unertainty, sothat the foreast inevitably ontains an error. The (expeted) magnitude of the error is of great interest toany user of the foreast and thus should be quanti�ed.1.1 Ensemble preditionThe most widely used paradigm to aount for the unertainties is stohasti: the foreast-error is assumedto be a random �eld with the probability distribution to be omputed/estimated/spei�ed. Correspondingly,all data used to prepare the foreast and the foreast-model itself are assumed to be random. Initial andboundary onditions are treated as multidimensional random �elds. Foreast model equations are assumed tobe subjet of error traditionally represented by the model error, the di�erene of the model's right-hand sidesfrom the hypothetial true right-hand sides.The model-error �eld is, then, also modeled as a spatiotemporalrandom �eld.The randomness of the three �input� random �elds, that is, initial, boundary, and model-error�elds, results in a randomness of the foreast. Therefore, to quantify the foreast probability distribution,we need, �rst, to adequately model the three input probability distributions and seond, to map these inputdistributions to the output (i.e. foreast) distribution.These two tasks are performed nowadays using Monte-Carlo, that is, the input probability distributions arerepresented by pseudo-random samples from an initial ensemble, a boundary ensemble, and a model-errorensemble. These samples are fed to the foreast model (in other words, the initial and boundary data asdoi:10.5676/dwd_pub/nwv/osmo-nl_19_04COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 15well as the model equations are �perturbed�)1. The perturbed input �elds give rise to a perturbed foreast.Multiple realizations of the input �elds give rise to a foreast ensemble. The foreast ensemble is then, byonstrution, a sample from the foreast probability distribution. Otherwise stated, the foreast ensembleis obtained, ideally, by replaing deterministi initial and boundary onditions and deterministi right-handsides of the model equations by random samples from the respetive distributions. This approah is knownin geosienes as ensemble modeling and predition. From the foreast ensemble, a probabilisti foreast anbe omputed, replaing the deterministi foreast and quantifying the foreast unertainty.For the ensemble predition to adequately desribe the foreast unertainty, the �input� unertainties need tobe adequately represented. The initial ensemble is, normally, generated by a data assimilation sheme. Thelateral-boundary ensemble for a limited-area model is generated from a parent-model foreast ensemble. Thelower-boundary ensemble requires a foreast ensemble in the soil/sea/lakes/rivers et. In global models, theupper boundary ondition is normally not perturbed. In limited-area models, the upper-boundary ensembleis generated in the same way as the lateral-boundary ensemble. It remains to generate samples from thedistribution of model errors. Our fous in this study is on model errors.1.2 Model errorsExisting approahes to model-error modeling an be haraterized as follows. Non-stohasti approahesinlude multi-model and multi-physis tehniques e.g., Berner et al. [1℄. The most popular stohasti approahis the sheme alled Stohasti Perturbations of Physial Tendenies (SPPT) e.g., Buizza et al. [2℄, see alsoits more �exible version Christensen et al. [4℄. Another stohasti tehnique involves additive perturbations(alled additive in�ation in data assimilation) e.g., Houtekamer et al. [6℄, Tsyrulnikov and Gayfulin [17℄. Thefollowing tehniques are also widely used: parameter perturbation shemes Ollinaho et al. [9℄, Christensenet al. [3℄, the Stohasti Kineti Energy Baksatter sheme (SKEB) Shutts [13℄, the stohasti onvetionsheme Kober and Craig [7℄, and the Stohasti Convetion Baksatter Shutts [14℄. See also the reviewby Leutbeher et al. [8℄ and other referenes therein. The ommon shortoming of all the numerous above-mentioned shemes is their lak of objetive justi�ation and objetive parameter estimation.The goal of this researh is to objetively estimate and stohastially model the multivariate spatiotemporalmodel-error �eld using the oarse-graining approah Shutts and Palmer [16℄, Shutts and Pallarès [15℄. Aord-ing to this approah, a higher-resolution �true model� is introdued and used (after upsaling or oarse-grainingto the model resolution � hene the name of the approah) to expliitly evaluate model errors with respetto the true model. The limitation of this approah is its reliane on a �true model�, whih of ourse is alsoapproximate (as any model). The advantage of the oarse-graining approah is that it o�ers an opportunityto arefully and rigorously identify and estimate a model for proxy model errors.Our approah is as follows.1. As a �model�, take the COSMO model with a relatively high, onvetion-permitting resolution (2.2km).2. As a �true model�, take the same model but with a signi�antly higher resolution and more sophistiatedphysial parameterizations.3. Start the �model� and the �true model� from the same initial onditions and ompute the two short-timetendenies.4. Upsale (oarse-grain) the �true-model� tendenies to the �model� resolution and expliitly omputethe model-error �eld.5. Aumulate a sample of model-error �elds.6. Use this sample to build a multivariate spatiotemporal stohasti model for model errors.1When foreast models beome inherently stohasti, there will be no need for the additive model error�eld, and then the stohasti (�perturbed�) foreast model will be diretly applied to the initial and boundaryensembles.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 16Note that Tsyrulnikov [19℄ used a similar approah that involved a �true model� but for a muh simpler pairof �model� and �true-model� (vortiity equation vs. the shallow-water model).2 Model error de�nition2.1 Standard de�nitionTo de�ne the model error we follow Orrell et al. [10℄ but onvert their de�nition from the time ontinuous tothe time disrete form. Let the time ontinuous foreast model equation be
dxmod

dt
= F(xmod), (1)

x
mod ∈ Xmod is the model state vetor, Xmod is the model state spae, and F(xmod) is the model operator.Numerially integrating this equation yields its time disrete solution

x
mod
k = M(xmod

k−1), (2)where k denotes the time step and M(xmod) is the time disrete model operator.Next, let the truth be denoted by x
tru
k ∈ X tru, where X tru is the true state spae.Finally, postulate that there is a projetion (see, e.g., Tsyrulnikov [19℄) Π : X tru → Xmod suh that any truestate is mapped to the model spae, getting a model state (denoted by the tilde):

ex
tru = Πx

tru. (3)Normally, elements of X tru are ontinuous �elds in physial spae (as opposed to spae-disrete �elds in
Xmod), in this ase the ation of Π amounts to upsaling the true �eld to the model-spae �elds resolution2.Now we are in a position to de�ne the model error. To this end, we start the �model� from the true initialonditions x

tru
k−1 at time k − 1 (that is, from the upsaled truth ex

tru
k−1), ompute the one-step model foreast,and ompare it with the (upsaled) truth at time k.The di�erene is solely due to the inability of the model to predit the true evolution of the system (atmo-sphere) and therefore it is alled the model error:

εk = M(ex
tru
k−1) − ex

tru
k . (4)Adding and subtrating ex

tru
k−1 from the right-hand side of Eq.(4) shows that the model error is the modeltendeny error as well:

εk =
ˆ
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tru
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tru
k−1

˜

−
ˆ

ex
tru
k − ex

tru
k−1

˜

≡ T
mod
k − eT

tru
k , (5)where T stands for the one-step (total) tendeny.2.2 De�nition of model error that assumes that there is a true modelIt is essential that the model operator is applied in Eq.(4) to the (upsaled) truth. To understand why thisis required, let us hypothesize that there is a true model:

x
tru
k = Mtru(xtru

k−1), (6)where Mtru is the operator of the true model. Note that from now on the supersript �tru� denotes the truemodel (not the truth as in setion 2.1).2It is also plausible that the truth or the �true model� involves more �elds (e.g. additional air onstituents)than the model. In that ase, the projetor Π just ignores the �elds present in the truth or the �true model�but absent in the �model�. This situation is not onsidered in this study.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 17Substituting x
tru
k from Eq.(6) into Eq.(4) yields

εk = M(ex
tru
k−1) − fMtru(xtru

k−1), (7)where fMtru(xtru
k−1) ≡ ΠMtru(xtru

k−1). From Eq.(7), we see that the model error is the di�erene of the one-time-step model solution and the one-time-step true-model solution provided that the two models areinitialized from the same state (up to the subgrid-sale �eld omponents). We all this requirement thesame start ondition. Informally, the same start ondition is very meaningful: in order to ompare the twomodels we speify the same inputs and look at the outputs so that di�erene is only due to the di�erene inthe model's operators.Remark. The above model error de�nition an also be viewed as follows. If we take the upsaled truth atthe two onseutive time steps k − 1 and k and substitute them into the foreast-model Eq.(2), then Eq.(2)will not be exatly satis�ed beause the truth is not governed by the (inevitably approximate) foreast modelequation. The disrepany is, by Eq.(4), the model error. Formulated this way, the model error de�nitionappears to exatly orrespond to the de�nition of the trunation error of a numerial sheme in solving adi�erential equation. Indeed, following eg Rihtmyer and Morton [12℄, setion 1.6, we substitute the exatsolution to the di�erential problem (i.e. the truth we seek to approximate) into the �nite-di�erene sheme(the �approximating model�) and all the residual the trunation (model) error.Equation (7) an be rewritten in terms of tendenies by subtrating and adding ex
tru
k−1 in its right-hand sideand rearranging the terms:
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k . (8)We reiterate that here and for the remainder of the artile eT

tru
k denotes the tendeny of the true model, notthe true tendeny as in Eq.(5). Tehnially, sine the true model may have a shorter time step, we allow thetendenies to be omputed for several time steps so that the tendeny foreasts used to ompute T

mod
k and

T
tru
k have the same lead time.This generalization an also be used to hek if there is an initial transient proess due to possible imbalanesin the starting points (�elds) from whih the tendeny foreasts are initialized (by omparing the tendeny�elds for di�erent tendeny-foreast lengths, see setion ).To summarize, the standard de�nition of model error, Eq.(4), assumes that the truth at the time instants inquestion, k − 1 and k, that is, x

tru
k−1 and x

tru
k , is the atual truth, that is, the truth atually observed in thenature by real-world observations. By ontrast, the de�nition that makes use of a true model, Eqs.(7)�(8),allows us to lift this restrition and assume that the x

tru
k−1 is an be any point on the true-model �attrator�(in pratie, not far from the true-model �attrator�, that is, with reasonably balaned initial onditions forthe true model).3 Evaluation of model error3.1 MotivationTsyrulnikov and Gorin [18℄ tried to use the standard de�nition of model error, Eq.(4), to evaluate modelerrors through omparing �nite time model tendenies with �nite-time observed tendenies. They found ina simulation study with the COSMO model (with 20 km horizontal resolution) that the main obstale wasthe requirement to start the model from the truth. Starting from analyses led to too high estimation errors.In order to make the analyses aurate enough to reliably estimate even the simplest onstant-in-spae andpieewise-onstant-in-time model error of realisti magnitude, the assimilated observations of temperatureand wind needed to have urrently unreahable auray (0.1 K for temperature and 0.02 m/s for winds)and be available at eah model grid point. Hene, reliable estimation of realisti model errors by omparing�nite-time model tendenies with �nite-time observed tendenies is not possible with existing observationalCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 18

Figure 1: Model error evaluation shemati. Dots denote points in state spae. Di�erenes between the truestate spae and model state spae are not highlighted for simpliity here.networks. This has motivated the present researh, in whih we expliitly speify a �true model� and usethe extended de�nition of the model error introdued in setion to evaluate the model error.3.2 NotationThe �model� in question is referred to as the oarse-grid model (gm, also abbreviated as mod). The oarsegrid is abbreviated as g. Fields on g are denoted by the tilde.The �true model� is referred to as the �ne-grid model (fgm, also abbreviated as tru). The �ne grid is abbrevi-ated as fg. By �grid-sales� (abbreviated as gs) we mean sales resolved on g. By �subgrid-sales� (abbreviatedas sgs) we mean sales not resolved on g (but resolved by fgm).3.3 The proposed approahIn order to generate the ommon starting point for the two tendeny foreasts and apply the model-errorevaluation methodology desribed in setion , we run a gm pre-foreast (to �spin� the model up). The pre-foreast starts from the initial point x
ini generated from a global model. The alternative approah in whihthe pre-foreast is performed using fgm will be investigated on a later stage of the projet.At the end of the pre-foreast, we obtain the gm foreast �elds denoted by xk−1 in Fig.1 and by exstart inwhat follows. The gm tendeny foreast starts immediately from exstart. The fgm tendeny foreast startsfrom a downsaled version of exstart denoted by xstart.Then, we run two very-short-term tendeny foreasts of the same lead time x

mod
k and x

tru
k , ompute the twotendenies, downsale the fgm tendeny, and �nally ompute the model error �eld εk following Eq.(8). Amore preise and detailed desription of our approah is given in setion 4.2 .3.4 UpsalingAs noted in setion , an upsaling (oarse-graining, aggregation) is needed to properly projet a high-resolutionfgm �eld onto the gm phase spae. The upsaling removes the sales not represented on the oarse modelgrid and thus makes the true �eld omparable with its model ounterpart. Note that not performing upsaling(i.e. simply restriting the high-resolution �elds on a oarse grid) would give rise to the phenomenon knownas aliasing so that the sgs �eld omponents would be superimposed on the gs �eld omponents, irreversiblydistorting them.Normally, the resolution of fgm is higher than gm not only in spae but also in time (shorter time steps),COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 19whih implies that the upsaling must involve the dime dimension as well as the (three) spatial dimensions.There are two ommon approahes to upsaling: spetral and physial-spae based. A spetral upsaling ismore ommon in mathematis. It is performed by Fourier transforming the spatial �eld x
tru, trunating theresulting expansion at the model-grid resolution, and omputing ex

tru as the inverse Fourier transform of thetrunated expansion. This approah exatly removes all sgs spetral omponents.In meteorology, a physial-spae upsaling is more ommon, it onsists in averaging the high-resolution fg�eld x
tru over ells of lower-resolution g, see e.g. Shutts and Palmer [16℄. This tehnique is simpler (as it isloal, in ontrast to the spetral approah) and more physially appealing, albeit not preise mathematially.We will adopt this physial-spae de�nition to simplify our analysis.Note that in the ontext of oarse-graining studies, Shutts and Pallarès [15℄ used a spetral low-pass �lter inthe horizontal with a squared exponential (i.e. not retangular as in the ideal low-pass �lter) transfer funtion.In time, they performed low-pass �ltering by ad-ho averaging. Both �lters were applied both to the model(they alled it �target�) and to the true model (�truth�).
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1. Working Group on Data Assimilation 204 Numerial experiments4 ases were studied (all 12 UTC): 1 July and 29 July 2017 (�onvetive� days) and 17 July and 1 Deember2017(�non-onvetive� days).4.1 Models'setupThe gm was COSMO with 50 vertial levels and horizontal resolution 2.2 km. The fgm was the same COSMOwith the following di�erenes from gm:1. The horizontal resolution was 0.55 km.2. The time step was 5 s in fgm vs. 20 s in gm.3. The shallow onvetion parameterization (Tiedtke) was swithed o� in fgm whilst swithed on in gm.4. A 3D turbulene sheme was used in fgm vs. a 1D sheme in gm.5. Some more sophistiated options were used in the fgm's loud and preipitation sheme as well as inthe radiation sheme as ompared to gm.The models domains were entered at 52N 35E, see Fig.2. The outermost grid is g (250*250 points, 550*550km, marked in greenish). The seond-largest grid in Fig.2 is fg (600*600 points, 330*330 km, marked inpinkish). The innermost grid is the model-error evaluation grid (mesh size 2.2 km, 110*110 points, 220*220km, marked in bluish). The three domains/grids were nested one in another with the intention to redue anyimpat of lateral boundaries in a 3h foreast. This will be useful at a later stage of the projet when thedeveloped model-error model is veri�ed in an ensemble predition system.

Figure 2: The horizontal grids: fg (the outermost grid), g (the intermediate grid), and theinnermost model-error evaluation grid.4.2 Computation of the model errorThe model-error evaluation tehnique is summarized as follows.1. Pre-foreast: run gm for 1 h lead time. The pre-foreast is used as the gm starting point exstart.2. Downsale exstart to fg (using the COSMO tool INT2LM). This is xstart. This proedure is meant toapproximately satisfy the �same start� ondition.3. Run gm for 3 time steps (60 s in total) starting from exstart. Calulate the total tendeny T
mod
3 .4. Run fgm for 12 time steps (60 s in total) starting from xstart. Calulate the total tendeny T
tru
12 .COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 215. Upsale T
tru
12 to the oarse grid, getting eT

tru
12 .6. Compute the model error as ε = T

mod
3 − eT

tru
12 .The length of the tendeny foreasts (60 s) was seleted by trial and error. We also tried the tendeny-foreast lengths 20 s and 5 min and found that the results presented below were quite stable and not ritiallydependent on the tendeny-foreast length within the above range. With 20 s, there were some indiations ofan initial imbalane (not shown). The model-error �elds for 1 min and 5 min were similar in terms of theirspatial sales and variability.4.3 ResultsTo give an impression of how model errors are related to model tendenies, we show two (i.e. gm and fgm)total tendenies for the zonal wind omponent at an arbitrarily seleted model level 41 (about 700 m aboveground). One an see that the two tendenies are very similar, implying that the model error (whih istheir di�erene) is quite small, as expeted (reall that COSMO is an operational-lass model used in manyountries).

Figure 3: Total tendenies: gm (left) and fgm (right)4.3.1 Role of onvetionFigure 4 shows the model-error �eld ε (left) along with the onvetive physial-tendeny �eld Pconv (right)at the model level 32 (about 2.5 km above ground). It is striking that the model-error �eld ε is dominatedby a relatively small number of outliers, with the rest of the �eld being relative lose to zero. Comparing theleft and the right panels of Fig.4 suggests that it is the onvetive parameterization that produes those largemodel errors. At some grid points where the large gm's Pconv is mathed with a large tendeny produed bythe fgm-expliitly-resolved onvetion � at those points, ε is small. At other points where the gm's Pconvis large, it is not mathed with a similarly large fgm's tendeny � at those points, ε is big (and seen inFig.4(left) as outliers).
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1. Working Group on Data Assimilation 22

Figure 4: Model errors (left) and onvetive tendeny (right) at the model level 32. The units are K/min.This outstanding impat of the shallow onvetion parameterization (a similar e�et of the deep onvetionparameterization in a 7-km-resolution COSMO was even muh bigger, not shown) suggests that errors inthe onvetive parameterization need a speial treatment (like any outliers in general). We attempted to usepreditors like CAPE and the vertial lapse rate to spot those large onvetive model errors,but those attemptsfailed dramatially (not shown). We also realized that, given the omplexity of the onvetion phenomenon,a purely stohasti approah looks unsuitable to model onvetive model errors.A physial model is needed.Besides, onvetion is a fast and strong phenomenon so that the onvetive model errors we an measure arethe outome of onvetion, not its soure. And it is a �onvetive soure� that we would like to isolate, study,and model in this study (and then perturb in an ensemble foreast).To verify the onjeture that it the invisible �onvetive soure� that needs to be perturbed, we introduedtiny and onstant-in-spae-and-time model-error perturbations at all model levels and looked at the resultingforeast perturbation in a 15-min gm foreast. We imposed model-error perturbations with the magnitude
5 · 10−5 K per time step in T and 10−4 m/s in U, V . The resulting foreast-error perturbation of temperatureat the model level 30 is shown in Fig.5(right). The respetive model-error �eld is shown in Fig.5(left). It isseen that both �elds look quite similar, whih means that realisti onvetion-related foreast errors an beobtained by just �any� perturbation of temperature and other �elds. This an be ompared with �ndings byFlak et al. [5℄, who introdued temperature model-error perturbations of magnitude 0.1 K with the spatiallength sale of 6∆x (where ∆x is the horizontal mesh size) every 15 minutes during the model integration ata single model level at the model hybrid height oordinate 261.6 m.

Figure 5: Model errors, K/min, (left) and foreast perturbation, K (right).
COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 234.3.2 Conlusions on onvetionThe above results indiate that errors in parameterized onvetion annot be treated using the �true-model� approah (whih we pursue in this study) for the following reasons.1. Evaluating model errors as di�erenes between gm and fgm short-time tendenies implies, in ase ofonvetion, that di�erenes in the outomes of onvetion are atually measured.However, initiation of onvetion plumes is a sporadi proess �modulated� by a hypothetial �onve-tive soure� (like CAPE). And it is this soure whose unertainty needs to be modeled, not the outome.Objetively sensing the unertainty in this �onvetive soure� is not possible with our approah and,maybe, impossible in priniple.2. A deterministi onvetive parameterization (urrently in use in the standard on�guration of COSMOadopted in this researh) attempts to represent the ontribution of subgrid onvetive elements to thegrid-sale �elds. However, with the g mesh as small as 1�2 km, the number of those onvetiveelements (modeled by fgm) in a g ell is not large enough for their ombined e�et to be onsideredas deterministi Shutts and Pallarès [15℄. It is inherently random with high variane. And this highvariability is the major ontributor to the gm-minus-fgm di�erene we an measure � beause thedeterministi gm tendeny produed by the onvetive sheme is inevitably almost always far fromthe highly random upsaled fgm tendeny. But this random di�erene is, atually, not the error, it isthe unertainty related to the manifestation of the stohasti nature of onvetion and should not beregarded as model error. This kind of error requires a stohasti onvetive parameterization shemelike Plant and Craig [11℄), whose development, estimation, and alibration is beyond the sope of thisresearh.So, in this work, we do not treat model errors due to parameterized onvetion. The onvetive parameteri-zation is swithed o� both in gm and fgm, and predominantly non-onvetive ases are studied.4.3.3 Non-onvetive model errorsFirst, we show the temperature model-error �eld (ε) at a high enough model level 21 (about 7 km aboveground)suh that there is, likely, no onvetion there, see Fig.6. The ε �eld looks here like a Gaussian random�eld (in ontrast to the above onvetion-ontaminated model-error �elds).

Figure 6: Non-onvetive model error at level 21, temperature, K/minNext, Fig.(7) displays the temperature model-error within the planetary boundary layer (level 43 about 500m above ground). The �eld looks like a random �eld with very ompliated struture, with multiple sales,and, likely, with multiple omponents. Building a stohasti model for suh �eld is a very hallenging task.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 244.3.4 Physial tendeny as a preditor for model errorWe start with looking at the physial tendeny as a potential preditor for model errors. Figure 8 shows themeridional-wind (V ) model-error �eld (left) along with the physial-tendeny �eld P (right) at the modellevel 31 (about 3 km above ground). It is learly visible that if P is large, then ε is also, usually, large, sothat the physial tendeny is indeed a useful indiator of the magnitude of model error. However, there areseveral areas where the model-error �eld ε is large while the physial-tendeny �eld P is small. This impliesthat physial tendeny is, atually, of limited use as a model-error preditor.To get a deeper understanding of the relationship between the model error and the physial tendeny, weestimated the onditional probability density of ε given the absolute value of P, i.e. p(ε | abs(P)). In theestimator, 2 perent of largest |ε| and |P| ≡ abs(P) were taken down with the intention to �lter out gridpoints with onvetion. Values of |P| were then grouped in 10 equipopulated bins for whih histograms of εwere plotted. As an example, the histogram of ε for the 4-th bin of |P| (temperature, level 30) is displayed inFig.9.Remarkably, this onditional distribution is seen to be not too far from Gaussian. More qualitatively, itskurtosis is 4.0 (the Gaussian kurtosis is 3).For other variables and levels, kurtosis remained, mainly, between3 and 4,thus indiating that Gaussianity is, perhaps, a reasonable hypothesis for the probability distributionof non-onvetive model errors given the physial tendeny, ε | abs(P).Next, having estimated p(ε | abs(P)), we used it to examine the onditional variane of non-onvetive modelerrors: Var (ε | abs(P)). We omputed satterplots of ε2 vs. P2 and then smoothed them using a kernel smootherwith the Epanehnikov kernel and an empirially seleted bandwidth. The resulting dependenies are exem-

Figure 7: Non-onvetive model error at level 43, temperature, K/min

Figure 8: Model error (left) and physial tendeny (right), meridional wind, ms−1min−1COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 25pli�ed in Fig.10 for temperature at the model level 28 (about 4 km above ground), where the x-axis is P
2 andthe y-axis is ε2.The resulting onditional variane urves were somewhat noisy even after smoothing but two their salientfeatures were standing out. First, there always was a signi�antly non-zero o�set (the value of Eε2 for P =

0), whih an be interpreted as the variane of the additive (physial-tendeny independent) model-erroromponent.Seond, the model-error variane, by and large, grew with the inreasing physial tendeny. Thegrowth was, in a �rst approximation, linear, thus suggesting that it an be interpreted as the multipliative(physial-tendeny dependent) model-error variane. As a result, the following additive-multipliativemodel-error model is our �rst (and preliminary) �nding:
ε(s) = α(s) + µ(s) · P(s), (9)where α(s) is the additive model-error omponent and µ(s) is the random multiplier �eld.To a �rst approximation, α(s) and µ(s) an be assumed to be Gaussian random �elds with their horizontal,vertial, temporal, and multivariate struture to be identi�ed.Finally, in Table 1 we show the relationship between the magnitudes of the additive and multipliative model-error omponents. One an see that the magnitudes of the additive error omponents were somewhat largerthan the magnitudes of the multipliative error omponents. Only in the boundary layer (where turbulenedominates the physial tendeny), the multipliative errors were omparable to additive errors or even larger(not shown).The di�erene between the values for U and for V is, perhaps, due to insu�ient statistis.

Figure 9: Histogram of ε for the 4th bin of P. Temperature, level 30.

Figure 10: Conditional variane Var (ε | abs(P)) for non-onvetive model errors. Temperature, level 28.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 26Table 1: Vertially averaged ratio of multipliative to additive error st.dev.
T U V

s.d. (mult)
s.d. (add) 0.5 0.5 0.85 ConlusionsApproah and preliminary stage results of a model-error objetive estimation and modeling study are pre-sented. The approah is based on the omparison of model's instantaneous tendenies with those of a higher-resolution �true model�. The �true-model� tendenies are upsaled (oarse-grained) to the resolution of themodel-in-question and subtrated from the (total) tendenies of the latter, yielding a proxy to the model-error�elds. The goal of the study is a multivariate spatiotemporal stohasti model-error model. The model-errormodel is to be identi�ed and estimated from a sample of the proxy model-error �elds.The model in question (the oarse-grid model) is COSMO with the horizontal resolution 2.2 km and 50levels in the vertial.The high-resolution (�true�) model is COSMO with the horizontal resolution 0.55 km,the same vertial grid, and a number of di�erenes in the setup of the physial parameterizations. Prelim-inary results show that, �rst, errors in onvetive parameterization annot and should not be takled withthe oarse-graining approah. Seond, we found that non-onvetive model errors have both additive andmultipliative omponents. The additive model-error omponent is independent of the physial tendeny andapproximately Gaussian. The multipliative model-error omponent is proportional to the physial tendeny,with the multiplier being, again, approximately Gaussian. Third, the spatial struture of the non-onvetivemodel-error �eld is too omplex to be modeled with a reasonably simple model-error model, espeially in thelower troposphere and in the planetary boundary layer. This suggests that proess-level model-error treatmentis to be attempted.Next steps (whih are underway) are the following. Tehnially, (i) an even higher-resolution true model(fgm) is to be used, (ii) a more areful treatment of stati �elds (inluding orography), soil �elds, and allinitial �elds in the two models is to be employed (so that their oarse-grid-resolved omponents be thesame for the two models).Coneptually, (i) the starting point of the tendeny-foreasts is to be omputedusing the true model (fgm) instead of the model (gm) � to better represent the role of subgrid salesin the formation of model errors,(ii) errors due to di�erent physial parameterizations are to be treatedseparately whenever possible, (iii) a spatial (horizontal and vertial), spatiotemporal, and multivariate (mutualdependenies between temperature, winds, et.) aspets are to be addressed in the model-error stohastimodeling.Referenes[1℄ J. Berner, S.-Y. Ha, J. Haker, A. Fournier, and C. Snyder. Model unertainty in a mesosale ensemblepredition system: Stohasti versus multiphysis representations. Mon. Wea. Rev., 139(6):1972�1995,2011.[2℄ R. Buizza, M. Miller, and T. Palmer. Stohasti representation of model unertainties in the ECMWFensemble predition system. Quart. J. Roy. Meteor. So., 125(560):2887�2908, 1999.[3℄ H. Christensen, I. Moroz, and T. Palmer. Stohasti and perturbed parameter representations of modelunertainty in onvetion parameterization. J. Atmos. Si., 72(6):2525�2544, 2015.[4℄ H. Christensen, S.-J. Lok, I. Moroz, and T. Palmer. Introduing independent patterns into the stohas-COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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