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Estimation of model errors on convective scales: a coarse-graining study

(preliminary stage results)Mi
hael Tsyrulnikov and Dmitry Gayfulinmik.tsyrulnikov�gmail.
om
Abstra
tAn attempt to obje
tively estimate model tenden
y errors using a �true model� is des
ribed. The model inquestion (the �model�) is COSMO with the horizontal resolution 2.2 km. The �true model� is COSMO withthe horizontal resolution 0.55 km. The model error is evaluated as the di�eren
e between 1-minute �model�and ups
aled (
oarse-grained) �true-model� tenden
ies started from the same initial 
onditions. Preliminaryresults show, that, �rst, 
onve
tion is not to be treated with this approa
h. Se
ond, non-
onve
tive modelerrors 
ontain both additive and multipli
ative 
omponents. The additive 
omponent and the multiplier(applied to the physi
al tenden
y) appear to be approximately Gaussian. Third, the model-error �eld is too
omplex (espe
ially in the planetary boundary layer) to be modeled with a reasonably simple sto
hasti
model, so a pro
ess-level model error treatment is to be employed.1 Introdu
tionTo perform numeri
al weather predi
tion, three 
omponents are needed: initial 
onditions, boundary 
ondi-tions, and a fore
ast model. The 
lassi
al paradigm is deterministi
: we (naively) assume that all these three
omponents are perfe
t (however they are prepared), and 
ome up with a deterministi
 fore
ast. But in reality,the three 
omponents needed to 
ompute a fore
ast are, of 
ourse, imperfe
t and subje
t to un
ertainty, sothat the fore
ast inevitably 
ontains an error. The (expe
ted) magnitude of the error is of great interest toany user of the fore
ast and thus should be quanti�ed.1.1 Ensemble predi
tionThe most widely used paradigm to a

ount for the un
ertainties is sto
hasti
: the fore
ast-error is assumedto be a random �eld with the probability distribution to be 
omputed/estimated/spe
i�ed. Correspondingly,all data used to prepare the fore
ast and the fore
ast-model itself are assumed to be random. Initial andboundary 
onditions are treated as multidimensional random �elds. Fore
ast model equations are assumed tobe subje
t of error traditionally represented by the model error, the di�eren
e of the model's right-hand sidesfrom the hypotheti
al true right-hand sides.The model-error �eld is, then, also modeled as a spatiotemporalrandom �eld.The randomness of the three �input� random �elds, that is, initial, boundary, and model-error�elds, results in a randomness of the fore
ast. Therefore, to quantify the fore
ast probability distribution,we need, �rst, to adequately model the three input probability distributions and se
ond, to map these inputdistributions to the output (i.e. fore
ast) distribution.These two tasks are performed nowadays using Monte-Carlo, that is, the input probability distributions arerepresented by pseudo-random samples from an initial ensemble, a boundary ensemble, and a model-errorensemble. These samples are fed to the fore
ast model (in other words, the initial and boundary data asdoi:10.5676/dwd_pub/nwv/
osmo-nl_19_04COSMO Newsletter No. 19: O
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1. Working Group on Data Assimilation 15well as the model equations are �perturbed�)1. The perturbed input �elds give rise to a perturbed fore
ast.Multiple realizations of the input �elds give rise to a fore
ast ensemble. The fore
ast ensemble is then, by
onstru
tion, a sample from the fore
ast probability distribution. Otherwise stated, the fore
ast ensembleis obtained, ideally, by repla
ing deterministi
 initial and boundary 
onditions and deterministi
 right-handsides of the model equations by random samples from the respe
tive distributions. This approa
h is knownin geos
ien
es as ensemble modeling and predi
tion. From the fore
ast ensemble, a probabilisti
 fore
ast 
anbe 
omputed, repla
ing the deterministi
 fore
ast and quantifying the fore
ast un
ertainty.For the ensemble predi
tion to adequately des
ribe the fore
ast un
ertainty, the �input� un
ertainties need tobe adequately represented. The initial ensemble is, normally, generated by a data assimilation s
heme. Thelateral-boundary ensemble for a limited-area model is generated from a parent-model fore
ast ensemble. Thelower-boundary ensemble requires a fore
ast ensemble in the soil/sea/lakes/rivers et
. In global models, theupper boundary 
ondition is normally not perturbed. In limited-area models, the upper-boundary ensembleis generated in the same way as the lateral-boundary ensemble. It remains to generate samples from thedistribution of model errors. Our fo
us in this study is on model errors.1.2 Model errorsExisting approa
hes to model-error modeling 
an be 
hara
terized as follows. Non-sto
hasti
 approa
hesin
lude multi-model and multi-physi
s te
hniques e.g., Berner et al. [1℄. The most popular sto
hasti
 approa
his the s
heme 
alled Sto
hasti
 Perturbations of Physi
al Tenden
ies (SPPT) e.g., Buizza et al. [2℄, see alsoits more �exible version Christensen et al. [4℄. Another sto
hasti
 te
hnique involves additive perturbations(
alled additive in�ation in data assimilation) e.g., Houtekamer et al. [6℄, Tsyrulnikov and Gayfulin [17℄. Thefollowing te
hniques are also widely used: parameter perturbation s
hemes Ollinaho et al. [9℄, Christensenet al. [3℄, the Sto
hasti
 Kineti
 Energy Ba
ks
atter s
heme (SKEB) Shutts [13℄, the sto
hasti
 
onve
tions
heme Kober and Craig [7℄, and the Sto
hasti
 Conve
tion Ba
ks
atter Shutts [14℄. See also the reviewby Leutbe
her et al. [8℄ and other referen
es therein. The 
ommon short
oming of all the numerous above-mentioned s
hemes is their la
k of obje
tive justi�
ation and obje
tive parameter estimation.The goal of this resear
h is to obje
tively estimate and sto
hasti
ally model the multivariate spatiotemporalmodel-error �eld using the 
oarse-graining approa
h Shutts and Palmer [16℄, Shutts and Pallarès [15℄. A

ord-ing to this approa
h, a higher-resolution �true model� is introdu
ed and used (after ups
aling or 
oarse-grainingto the model resolution � hen
e the name of the approa
h) to expli
itly evaluate model errors with respe
tto the true model. The limitation of this approa
h is its relian
e on a �true model�, whi
h of 
ourse is alsoapproximate (as any model). The advantage of the 
oarse-graining approa
h is that it o�ers an opportunityto 
arefully and rigorously identify and estimate a model for proxy model errors.Our approa
h is as follows.1. As a �model�, take the COSMO model with a relatively high, 
onve
tion-permitting resolution (2.2km).2. As a �true model�, take the same model but with a signi�
antly higher resolution and more sophisti
atedphysi
al parameterizations.3. Start the �model� and the �true model� from the same initial 
onditions and 
ompute the two short-timetenden
ies.4. Ups
ale (
oarse-grain) the �true-model� tenden
ies to the �model� resolution and expli
itly 
omputethe model-error �eld.5. A

umulate a sample of model-error �elds.6. Use this sample to build a multivariate spatiotemporal sto
hasti
 model for model errors.1When fore
ast models be
ome inherently sto
hasti
, there will be no need for the additive model error�eld, and then the sto
hasti
 (�perturbed�) fore
ast model will be dire
tly applied to the initial and boundaryensembles.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 16Note that Tsyrulnikov [19℄ used a similar approa
h that involved a �true model� but for a mu
h simpler pairof �model� and �true-model� (vorti
ity equation vs. the shallow-water model).2 Model error de�nition2.1 Standard de�nitionTo de�ne the model error we follow Orrell et al. [10℄ but 
onvert their de�nition from the time 
ontinuous tothe time dis
rete form. Let the time 
ontinuous fore
ast model equation be
dxmod

dt
= F(xmod), (1)

x
mod ∈ Xmod is the model state ve
tor, Xmod is the model state spa
e, and F(xmod) is the model operator.Numeri
ally integrating this equation yields its time dis
rete solution

x
mod
k = M(xmod

k−1), (2)where k denotes the time step and M(xmod) is the time dis
rete model operator.Next, let the truth be denoted by x
tru
k ∈ X tru, where X tru is the true state spa
e.Finally, postulate that there is a proje
tion (see, e.g., Tsyrulnikov [19℄) Π : X tru → Xmod su
h that any truestate is mapped to the model spa
e, getting a model state (denoted by the tilde):

ex
tru = Πx

tru. (3)Normally, elements of X tru are 
ontinuous �elds in physi
al spa
e (as opposed to spa
e-dis
rete �elds in
Xmod), in this 
ase the a
tion of Π amounts to ups
aling the true �eld to the model-spa
e �elds resolution2.Now we are in a position to de�ne the model error. To this end, we start the �model� from the true initial
onditions x

tru
k−1 at time k − 1 (that is, from the ups
aled truth ex

tru
k−1), 
ompute the one-step model fore
ast,and 
ompare it with the (ups
aled) truth at time k.The di�eren
e is solely due to the inability of the model to predi
t the true evolution of the system (atmo-sphere) and therefore it is 
alled the model error:

εk = M(ex
tru
k−1) − ex

tru
k . (4)Adding and subtra
ting ex

tru
k−1 from the right-hand side of Eq.(4) shows that the model error is the modeltenden
y error as well:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

−
ˆ

ex
tru
k − ex

tru
k−1

˜

≡ T
mod
k − eT

tru
k , (5)where T stands for the one-step (total) tenden
y.2.2 De�nition of model error that assumes that there is a true modelIt is essential that the model operator is applied in Eq.(4) to the (ups
aled) truth. To understand why thisis required, let us hypothesize that there is a true model:

x
tru
k = Mtru(xtru

k−1), (6)where Mtru is the operator of the true model. Note that from now on the supers
ript �tru� denotes the truemodel (not the truth as in se
tion 2.1).2It is also plausible that the truth or the �true model� involves more �elds (e.g. additional air 
onstituents)than the model. In that 
ase, the proje
tor Π just ignores the �elds present in the truth or the �true model�but absent in the �model�. This situation is not 
onsidered in this study.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 17Substituting x
tru
k from Eq.(6) into Eq.(4) yields

εk = M(ex
tru
k−1) − fMtru(xtru

k−1), (7)where fMtru(xtru
k−1) ≡ ΠMtru(xtru

k−1). From Eq.(7), we see that the model error is the di�eren
e of the one-time-step model solution and the one-time-step true-model solution provided that the two models areinitialized from the same state (up to the subgrid-s
ale �eld 
omponents). We 
all this requirement thesame start 
ondition. Informally, the same start 
ondition is very meaningful: in order to 
ompare the twomodels we spe
ify the same inputs and look at the outputs so that di�eren
e is only due to the di�eren
e inthe model's operators.Remark. The above model error de�nition 
an also be viewed as follows. If we take the ups
aled truth atthe two 
onse
utive time steps k − 1 and k and substitute them into the fore
ast-model Eq.(2), then Eq.(2)will not be exa
tly satis�ed be
ause the truth is not governed by the (inevitably approximate) fore
ast modelequation. The dis
repan
y is, by Eq.(4), the model error. Formulated this way, the model error de�nitionappears to exa
tly 
orrespond to the de�nition of the trun
ation error of a numeri
al s
heme in solving adi�erential equation. Indeed, following eg Ri
htmyer and Morton [12℄, se
tion 1.6, we substitute the exa
tsolution to the di�erential problem (i.e. the truth we seek to approximate) into the �nite-di�eren
e s
heme(the �approximating model�) and 
all the residual the trun
ation (model) error.Equation (7) 
an be rewritten in terms of tenden
ies by subtra
ting and adding ex
tru
k−1 in its right-hand sideand rearranging the terms:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

− Π
ˆ

Mtru(xtru
k−1) − x

tru
k−1

˜

≡ T
mod
k − eT

tru
k . (8)We reiterate that here and for the remainder of the arti
le eT

tru
k denotes the tenden
y of the true model, notthe true tenden
y as in Eq.(5). Te
hni
ally, sin
e the true model may have a shorter time step, we allow thetenden
ies to be 
omputed for several time steps so that the tenden
y fore
asts used to 
ompute T

mod
k and

T
tru
k have the same lead time.This generalization 
an also be used to 
he
k if there is an initial transient pro
ess due to possible imbalan
esin the starting points (�elds) from whi
h the tenden
y fore
asts are initialized (by 
omparing the tenden
y�elds for di�erent tenden
y-fore
ast lengths, see se
tion ).To summarize, the standard de�nition of model error, Eq.(4), assumes that the truth at the time instants inquestion, k − 1 and k, that is, x

tru
k−1 and x

tru
k , is the a
tual truth, that is, the truth a
tually observed in thenature by real-world observations. By 
ontrast, the de�nition that makes use of a true model, Eqs.(7)�(8),allows us to lift this restri
tion and assume that the x

tru
k−1 is 
an be any point on the true-model �attra
tor�(in pra
ti
e, not far from the true-model �attra
tor�, that is, with reasonably balan
ed initial 
onditions forthe true model).3 Evaluation of model error3.1 MotivationTsyrulnikov and Gorin [18℄ tried to use the standard de�nition of model error, Eq.(4), to evaluate modelerrors through 
omparing �nite time model tenden
ies with �nite-time observed tenden
ies. They found ina simulation study with the COSMO model (with 20 km horizontal resolution) that the main obsta
le wasthe requirement to start the model from the truth. Starting from analyses led to too high estimation errors.In order to make the analyses a

urate enough to reliably estimate even the simplest 
onstant-in-spa
e andpie
ewise-
onstant-in-time model error of realisti
 magnitude, the assimilated observations of temperatureand wind needed to have 
urrently unrea
hable a

ura
y (0.1 K for temperature and 0.02 m/s for winds)and be available at ea
h model grid point. Hen
e, reliable estimation of realisti
 model errors by 
omparing�nite-time model tenden
ies with �nite-time observed tenden
ies is not possible with existing observationalCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 18

Figure 1: Model error evaluation s
hemati
. Dots denote points in state spa
e. Di�eren
es between the truestate spa
e and model state spa
e are not highlighted for simpli
ity here.networks. This has motivated the present resear
h, in whi
h we expli
itly spe
ify a �true model� and usethe extended de�nition of the model error introdu
ed in se
tion to evaluate the model error.3.2 NotationThe �model� in question is referred to as the 
oarse-grid model (
gm, also abbreviated as mod). The 
oarsegrid is abbreviated as 
g. Fields on 
g are denoted by the tilde.The �true model� is referred to as the �ne-grid model (fgm, also abbreviated as tru). The �ne grid is abbrevi-ated as fg. By �grid-s
ales� (abbreviated as gs) we mean s
ales resolved on 
g. By �subgrid-s
ales� (abbreviatedas sgs) we mean s
ales not resolved on 
g (but resolved by fgm).3.3 The proposed approa
hIn order to generate the 
ommon starting point for the two tenden
y fore
asts and apply the model-errorevaluation methodology des
ribed in se
tion , we run a 
gm pre-fore
ast (to �spin� the model up). The pre-fore
ast starts from the initial point x
ini generated from a global model. The alternative approa
h in whi
hthe pre-fore
ast is performed using fgm will be investigated on a later stage of the proje
t.At the end of the pre-fore
ast, we obtain the 
gm fore
ast �elds denoted by xk−1 in Fig.1 and by exstart inwhat follows. The 
gm tenden
y fore
ast starts immediately from exstart. The fgm tenden
y fore
ast startsfrom a downs
aled version of exstart denoted by xstart.Then, we run two very-short-term tenden
y fore
asts of the same lead time x

mod
k and x

tru
k , 
ompute the twotenden
ies, downs
ale the fgm tenden
y, and �nally 
ompute the model error �eld εk following Eq.(8). Amore pre
ise and detailed des
ription of our approa
h is given in se
tion 4.2 .3.4 Ups
alingAs noted in se
tion , an ups
aling (
oarse-graining, aggregation) is needed to properly proje
t a high-resolutionfgm �eld onto the 
gm phase spa
e. The ups
aling removes the s
ales not represented on the 
oarse modelgrid and thus makes the true �eld 
omparable with its model 
ounterpart. Note that not performing ups
aling(i.e. simply restri
ting the high-resolution �elds on a 
oarse grid) would give rise to the phenomenon knownas aliasing so that the sgs �eld 
omponents would be superimposed on the gs �eld 
omponents, irreversiblydistorting them.Normally, the resolution of fgm is higher than 
gm not only in spa
e but also in time (shorter time steps),COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 19whi
h implies that the ups
aling must involve the dime dimension as well as the (three) spatial dimensions.There are two 
ommon approa
hes to ups
aling: spe
tral and physi
al-spa
e based. A spe
tral ups
aling ismore 
ommon in mathemati
s. It is performed by Fourier transforming the spatial �eld x
tru, trun
ating theresulting expansion at the model-grid resolution, and 
omputing ex

tru as the inverse Fourier transform of thetrun
ated expansion. This approa
h exa
tly removes all sgs spe
tral 
omponents.In meteorology, a physi
al-spa
e ups
aling is more 
ommon, it 
onsists in averaging the high-resolution fg�eld x
tru over 
ells of lower-resolution 
g, see e.g. Shutts and Palmer [16℄. This te
hnique is simpler (as it islo
al, in 
ontrast to the spe
tral approa
h) and more physi
ally appealing, albeit not pre
ise mathemati
ally.We will adopt this physi
al-spa
e de�nition to simplify our analysis.Note that in the 
ontext of 
oarse-graining studies, Shutts and Pallarès [15℄ used a spe
tral low-pass �lter inthe horizontal with a squared exponential (i.e. not re
tangular as in the ideal low-pass �lter) transfer fun
tion.In time, they performed low-pass �ltering by ad-ho
 averaging. Both �lters were applied both to the model(they 
alled it �target�) and to the true model (�truth�).

COSMO Newsletter No. 19: O
tober 2019 www.
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1. Working Group on Data Assimilation 204 Numeri
al experiments4 
ases were studied (all 12 UTC): 1 July and 29 July 2017 (�
onve
tive� days) and 17 July and 1 De
ember2017(�non-
onve
tive� days).4.1 Models'setupThe 
gm was COSMO with 50 verti
al levels and horizontal resolution 2.2 km. The fgm was the same COSMOwith the following di�eren
es from 
gm:1. The horizontal resolution was 0.55 km.2. The time step was 5 s in fgm vs. 20 s in 
gm.3. The shallow 
onve
tion parameterization (Tiedtke) was swit
hed o� in fgm whilst swit
hed on in 
gm.4. A 3D turbulen
e s
heme was used in fgm vs. a 1D s
heme in 
gm.5. Some more sophisti
ated options were used in the fgm's 
loud and pre
ipitation s
heme as well as inthe radiation s
heme as 
ompared to 
gm.The models domains were 
entered at 52N 35E, see Fig.2. The outermost grid is 
g (250*250 points, 550*550km, marked in greenish). The se
ond-largest grid in Fig.2 is fg (600*600 points, 330*330 km, marked inpinkish). The innermost grid is the model-error evaluation grid (mesh size 2.2 km, 110*110 points, 220*220km, marked in bluish). The three domains/grids were nested one in another with the intention to redu
e anyimpa
t of lateral boundaries in a 3h fore
ast. This will be useful at a later stage of the proje
t when thedeveloped model-error model is veri�ed in an ensemble predi
tion system.

Figure 2: The horizontal grids: fg (the outermost grid), 
g (the intermediate grid), and theinnermost model-error evaluation grid.4.2 Computation of the model errorThe model-error evaluation te
hnique is summarized as follows.1. Pre-fore
ast: run 
gm for 1 h lead time. The pre-fore
ast is used as the 
gm starting point exstart.2. Downs
ale exstart to fg (using the COSMO tool INT2LM). This is xstart. This pro
edure is meant toapproximately satisfy the �same start� 
ondition.3. Run 
gm for 3 time steps (60 s in total) starting from exstart. Cal
ulate the total tenden
y T
mod
3 .4. Run fgm for 12 time steps (60 s in total) starting from xstart. Cal
ulate the total tenden
y T
tru
12 .COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 215. Ups
ale T
tru
12 to the 
oarse grid, getting eT

tru
12 .6. Compute the model error as ε = T

mod
3 − eT

tru
12 .The length of the tenden
y fore
asts (60 s) was sele
ted by trial and error. We also tried the tenden
y-fore
ast lengths 20 s and 5 min and found that the results presented below were quite stable and not 
riti
allydependent on the tenden
y-fore
ast length within the above range. With 20 s, there were some indi
ations ofan initial imbalan
e (not shown). The model-error �elds for 1 min and 5 min were similar in terms of theirspatial s
ales and variability.4.3 ResultsTo give an impression of how model errors are related to model tenden
ies, we show two (i.e. 
gm and fgm)total tenden
ies for the zonal wind 
omponent at an arbitrarily sele
ted model level 41 (about 700 m aboveground). One 
an see that the two tenden
ies are very similar, implying that the model error (whi
h istheir di�eren
e) is quite small, as expe
ted (re
all that COSMO is an operational-
lass model used in many
ountries).

Figure 3: Total tenden
ies: 
gm (left) and fgm (right)4.3.1 Role of 
onve
tionFigure 4 shows the model-error �eld ε (left) along with the 
onve
tive physi
al-tenden
y �eld Pconv (right)at the model level 32 (about 2.5 km above ground). It is striking that the model-error �eld ε is dominatedby a relatively small number of outliers, with the rest of the �eld being relative 
lose to zero. Comparing theleft and the right panels of Fig.4 suggests that it is the 
onve
tive parameterization that produ
es those largemodel errors. At some grid points where the large 
gm's Pconv is mat
hed with a large tenden
y produ
ed bythe fgm-expli
itly-resolved 
onve
tion � at those points, ε is small. At other points where the 
gm's Pconvis large, it is not mat
hed with a similarly large fgm's tenden
y � at those points, ε is big (and seen inFig.4(left) as outliers).
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1. Working Group on Data Assimilation 22

Figure 4: Model errors (left) and 
onve
tive tenden
y (right) at the model level 32. The units are K/min.This outstanding impa
t of the shallow 
onve
tion parameterization (a similar e�e
t of the deep 
onve
tionparameterization in a 7-km-resolution COSMO was even mu
h bigger, not shown) suggests that errors inthe 
onve
tive parameterization need a spe
ial treatment (like any outliers in general). We attempted to usepredi
tors like CAPE and the verti
al lapse rate to spot those large 
onve
tive model errors,but those attemptsfailed dramati
ally (not shown). We also realized that, given the 
omplexity of the 
onve
tion phenomenon,a purely sto
hasti
 approa
h looks unsuitable to model 
onve
tive model errors.A physi
al model is needed.Besides, 
onve
tion is a fast and strong phenomenon so that the 
onve
tive model errors we 
an measure arethe out
ome of 
onve
tion, not its sour
e. And it is a �
onve
tive sour
e� that we would like to isolate, study,and model in this study (and then perturb in an ensemble fore
ast).To verify the 
onje
ture that it the invisible �
onve
tive sour
e� that needs to be perturbed, we introdu
edtiny and 
onstant-in-spa
e-and-time model-error perturbations at all model levels and looked at the resultingfore
ast perturbation in a 15-min 
gm fore
ast. We imposed model-error perturbations with the magnitude
5 · 10−5 K per time step in T and 10−4 m/s in U, V . The resulting fore
ast-error perturbation of temperatureat the model level 30 is shown in Fig.5(right). The respe
tive model-error �eld is shown in Fig.5(left). It isseen that both �elds look quite similar, whi
h means that realisti
 
onve
tion-related fore
ast errors 
an beobtained by just �any� perturbation of temperature and other �elds. This 
an be 
ompared with �ndings byFla
k et al. [5℄, who introdu
ed temperature model-error perturbations of magnitude 0.1 K with the spatiallength s
ale of 6∆x (where ∆x is the horizontal mesh size) every 15 minutes during the model integration ata single model level at the model hybrid height 
oordinate 261.6 m.

Figure 5: Model errors, K/min, (left) and fore
ast perturbation, K (right).
COSMO Newsletter No. 19: O
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1. Working Group on Data Assimilation 234.3.2 Con
lusions on 
onve
tionThe above results indi
ate that errors in parameterized 
onve
tion 
annot be treated using the �true-model� approa
h (whi
h we pursue in this study) for the following reasons.1. Evaluating model errors as di�eren
es between 
gm and fgm short-time tenden
ies implies, in 
ase of
onve
tion, that di�eren
es in the out
omes of 
onve
tion are a
tually measured.However, initiation of 
onve
tion plumes is a sporadi
 pro
ess �modulated� by a hypotheti
al �
onve
-tive sour
e� (like CAPE). And it is this sour
e whose un
ertainty needs to be modeled, not the out
ome.Obje
tively sensing the un
ertainty in this �
onve
tive sour
e� is not possible with our approa
h and,maybe, impossible in prin
iple.2. A deterministi
 
onve
tive parameterization (
urrently in use in the standard 
on�guration of COSMOadopted in this resear
h) attempts to represent the 
ontribution of subgrid 
onve
tive elements to thegrid-s
ale �elds. However, with the 
g mesh as small as 1�2 km, the number of those 
onve
tiveelements (modeled by fgm) in a 
g 
ell is not large enough for their 
ombined e�e
t to be 
onsideredas deterministi
 Shutts and Pallarès [15℄. It is inherently random with high varian
e. And this highvariability is the major 
ontributor to the 
gm-minus-fgm di�eren
e we 
an measure � be
ause thedeterministi
 
gm tenden
y produ
ed by the 
onve
tive s
heme is inevitably almost always far fromthe highly random ups
aled fgm tenden
y. But this random di�eren
e is, a
tually, not the error, it isthe un
ertainty related to the manifestation of the sto
hasti
 nature of 
onve
tion and should not beregarded as model error. This kind of error requires a sto
hasti
 
onve
tive parameterization s
hemelike Plant and Craig [11℄), whose development, estimation, and 
alibration is beyond the s
ope of thisresear
h.So, in this work, we do not treat model errors due to parameterized 
onve
tion. The 
onve
tive parameteri-zation is swit
hed o� both in 
gm and fgm, and predominantly non-
onve
tive 
ases are studied.4.3.3 Non-
onve
tive model errorsFirst, we show the temperature model-error �eld (ε) at a high enough model level 21 (about 7 km aboveground)su
h that there is, likely, no 
onve
tion there, see Fig.6. The ε �eld looks here like a Gaussian random�eld (in 
ontrast to the above 
onve
tion-
ontaminated model-error �elds).

Figure 6: Non-
onve
tive model error at level 21, temperature, K/minNext, Fig.(7) displays the temperature model-error within the planetary boundary layer (level 43 about 500m above ground). The �eld looks like a random �eld with very 
ompli
ated stru
ture, with multiple s
ales,and, likely, with multiple 
omponents. Building a sto
hasti
 model for su
h �eld is a very 
hallenging task.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 244.3.4 Physi
al tenden
y as a predi
tor for model errorWe start with looking at the physi
al tenden
y as a potential predi
tor for model errors. Figure 8 shows themeridional-wind (V ) model-error �eld (left) along with the physi
al-tenden
y �eld P (right) at the modellevel 31 (about 3 km above ground). It is 
learly visible that if P is large, then ε is also, usually, large, sothat the physi
al tenden
y is indeed a useful indi
ator of the magnitude of model error. However, there areseveral areas where the model-error �eld ε is large while the physi
al-tenden
y �eld P is small. This impliesthat physi
al tenden
y is, a
tually, of limited use as a model-error predi
tor.To get a deeper understanding of the relationship between the model error and the physi
al tenden
y, weestimated the 
onditional probability density of ε given the absolute value of P, i.e. p(ε | abs(P)). In theestimator, 2 per
ent of largest |ε| and |P| ≡ abs(P) were taken down with the intention to �lter out gridpoints with 
onve
tion. Values of |P| were then grouped in 10 equipopulated bins for whi
h histograms of εwere plotted. As an example, the histogram of ε for the 4-th bin of |P| (temperature, level 30) is displayed inFig.9.Remarkably, this 
onditional distribution is seen to be not too far from Gaussian. More qualitatively, itskurtosis is 4.0 (the Gaussian kurtosis is 3).For other variables and levels, kurtosis remained, mainly, between3 and 4,thus indi
ating that Gaussianity is, perhaps, a reasonable hypothesis for the probability distributionof non-
onve
tive model errors given the physi
al tenden
y, ε | abs(P).Next, having estimated p(ε | abs(P)), we used it to examine the 
onditional varian
e of non-
onve
tive modelerrors: Var (ε | abs(P)). We 
omputed s
atterplots of ε2 vs. P2 and then smoothed them using a kernel smootherwith the Epane
hnikov kernel and an empiri
ally sele
ted bandwidth. The resulting dependen
ies are exem-

Figure 7: Non-
onve
tive model error at level 43, temperature, K/min

Figure 8: Model error (left) and physi
al tenden
y (right), meridional wind, ms−1min−1COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 25pli�ed in Fig.10 for temperature at the model level 28 (about 4 km above ground), where the x-axis is P
2 andthe y-axis is ε2.The resulting 
onditional varian
e 
urves were somewhat noisy even after smoothing but two their salientfeatures were standing out. First, there always was a signi�
antly non-zero o�set (the value of Eε2 for P =

0), whi
h 
an be interpreted as the varian
e of the additive (physi
al-tenden
y independent) model-error
omponent.Se
ond, the model-error varian
e, by and large, grew with the in
reasing physi
al tenden
y. Thegrowth was, in a �rst approximation, linear, thus suggesting that it 
an be interpreted as the multipli
ative(physi
al-tenden
y dependent) model-error varian
e. As a result, the following additive-multipli
ativemodel-error model is our �rst (and preliminary) �nding:
ε(s) = α(s) + µ(s) · P(s), (9)where α(s) is the additive model-error 
omponent and µ(s) is the random multiplier �eld.To a �rst approximation, α(s) and µ(s) 
an be assumed to be Gaussian random �elds with their horizontal,verti
al, temporal, and multivariate stru
ture to be identi�ed.Finally, in Table 1 we show the relationship between the magnitudes of the additive and multipli
ative model-error 
omponents. One 
an see that the magnitudes of the additive error 
omponents were somewhat largerthan the magnitudes of the multipli
ative error 
omponents. Only in the boundary layer (where turbulen
edominates the physi
al tenden
y), the multipli
ative errors were 
omparable to additive errors or even larger(not shown).The di�eren
e between the values for U and for V is, perhaps, due to insu�
ient statisti
s.

Figure 9: Histogram of ε for the 4th bin of P. Temperature, level 30.

Figure 10: Conditional varian
e Var (ε | abs(P)) for non-
onve
tive model errors. Temperature, level 28.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 26Table 1: Verti
ally averaged ratio of multipli
ative to additive error st.dev.
T U V

s.d. (mult)
s.d. (add) 0.5 0.5 0.85 Con
lusionsApproa
h and preliminary stage results of a model-error obje
tive estimation and modeling study are pre-sented. The approa
h is based on the 
omparison of model's instantaneous tenden
ies with those of a higher-resolution �true model�. The �true-model� tenden
ies are ups
aled (
oarse-grained) to the resolution of themodel-in-question and subtra
ted from the (total) tenden
ies of the latter, yielding a proxy to the model-error�elds. The goal of the study is a multivariate spatiotemporal sto
hasti
 model-error model. The model-errormodel is to be identi�ed and estimated from a sample of the proxy model-error �elds.The model in question (the 
oarse-grid model) is COSMO with the horizontal resolution 2.2 km and 50levels in the verti
al.The high-resolution (�true�) model is COSMO with the horizontal resolution 0.55 km,the same verti
al grid, and a number of di�eren
es in the setup of the physi
al parameterizations. Prelim-inary results show that, �rst, errors in 
onve
tive parameterization 
annot and should not be ta
kled withthe 
oarse-graining approa
h. Se
ond, we found that non-
onve
tive model errors have both additive andmultipli
ative 
omponents. The additive model-error 
omponent is independent of the physi
al tenden
y andapproximately Gaussian. The multipli
ative model-error 
omponent is proportional to the physi
al tenden
y,with the multiplier being, again, approximately Gaussian. Third, the spatial stru
ture of the non-
onve
tivemodel-error �eld is too 
omplex to be modeled with a reasonably simple model-error model, espe
ially in thelower troposphere and in the planetary boundary layer. This suggests that pro
ess-level model-error treatmentis to be attempted.Next steps (whi
h are underway) are the following. Te
hni
ally, (i) an even higher-resolution true model(fgm) is to be used, (ii) a more 
areful treatment of stati
 �elds (in
luding orography), soil �elds, and allinitial �elds in the two models is to be employed (so that their 
oarse-grid-resolved 
omponents be thesame for the two models).Con
eptually, (i) the starting point of the tenden
y-fore
asts is to be 
omputedusing the true model (fgm) instead of the model (
gm) � to better represent the role of subgrid s
alesin the formation of model errors,(ii) errors due to di�erent physi
al parameterizations are to be treatedseparately whenever possible, (iii) a spatial (horizontal and verti
al), spatiotemporal, and multivariate (mutualdependen
ies between temperature, winds, et
.) aspe
ts are to be addressed in the model-error sto
hasti
modeling.Referen
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