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Editorial 1Consortium for Small-S
ale Modelling 
ontinues to mount e�orts towards repla
ing the limited-area model COSMO with the Limited Area Mode of the 
omprehensive modelling framework ICON(ICON-LAM). Considerable progress along this line has been made, parti
ularly within the frameworkof the priority proje
t C2I (http://www.
osmo-model.org/
ontent/tasks/priorityProje
ts/
2i)laun
hed in 2018 to fa
ilitate a smooth transition from the COSMO model to ICON-LAM. TheCOSMO members be
ome a
quainted with ICON-LAM in
reasingly 
losely, and various problemsof s
ienti�
 and te
hni
al 
hara
ter are being gradually solved. The transition to ICON-LAM alsoposes problems of organizational and legal 
hara
ter, su
h as the 
o-ordination of e�orts betweenCOSMO and the ICON Partners (DWD and MPI for Meteorology), the future role of the SteeringCommittee and of the S
ienti�
 Management Committee of the Consortium, the li
ense poli
ies, andthe intelle
tual property rights. These issues are thoroughly s
rutinized by the COSMO STC andSMC and the ICON governing bodies. Several key do
uments should be ready by the 21st COSMOGeneral Meeting to be held 9-13 September 2019 in Rome, Italy, where the various 
riti
al issues willbe further dis
ussed.In spite of the advent of ICON-LAM, the development of the COSMO model is not yet stopped. Therelease of the version 6.0 of the COSMO model is expe
ted in the end of 2019. Version 6.0 is intendedto be the last o�
ial release of the COSMO model. Importantly, version 6.0 will integrate the resultsobtained within the COSMO NWP and COSMO CLM 
ommunities and will be a uni�ed COSMO-model version for both the NWP and regional 
limate modelling appli
ations. No development isplanned beyond the COSMO-model version 6.0, although the maintenan
e of the COSMO 
ode(in
luding bug �xes) will be provided for some years to 
ome.I would like to gratefully thank all 
olleagues who 
ontributed to the 
urrent issue of the COSMONewsletter. Worthy of mention is a new se
tion entitled "Mission Reports". That se
tion 
ontainsmission reports, namely, brief reports on various meetings (
onferen
es, symposia, et
.) that COSMO
olleagues have attended using the COSMO li
ense money. Last but not the least, I am pleased tomention that, starting with the 
urrent issue (No. 19), the COSMO Newsletters will be published withthe Digital Obje
t Identi�ers. The DOI format reads 10.5676/dwd_pub/nwv/
osmo-nl_XX_YY, whereXX is the number of the Newsletter, and YY is the number of 
ontribution within the NewsletterNo. XX. The landing page for the COSMO Newsletters is https://www.dwd.de/EN/ourservi
es/
osmo_newsletter/
osmo_newsletters.htm. DOIs are also provided for COSMO Te
hni
al Re-ports. The DOI format reads 10.5676/dwd_pub/nwv/
osmo-tr_XX, where XX is the te
hni
al reportnumber. The latest �ve Te
hni
al Reports (Nos. 34-39) with DOIs are already available at the landingpage at DWD, https://dwd.de/EN/ourservi
es/
osmo_te
hni
al_reports/
osmo_te
hni
al_reports.htm. The work is underway to provide DOI for all COSMO Te
hni
al Reports published sofar. Great thanks are due to the DWD 
olleagues Ms. Magdalena Bertelmann and Dr. Jörg Rapp fortheir kind e�orts in providing DOIs for COSMO publi
ations.Dmitrii MironovCOSMO S
ienti�
 Proje
t Manager
doi:10.5676/dwd_pub/nwv/
osmo-nl_19_01COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



Figure 1: Parti
ipants of the 20th COSMO General Meeting in St. Petersburg, Russia

Figure 2: Parti
ipants of the 20th COSMO General Meeting in St. Petersburg, Russia



1. Working Group on Data Assimilation 3
Statistical analysis of radar reflectivities observed and simulated by

EMVORADOVirginia Poli[1℄, Thomas Gastaldo[1,2℄, Pier Paolo Alberoni[1℄ and Tiziana Pa

agnella[1℄[1℄Arpae-SIMC Emilia-Romagna, Bologna, Italy[2℄ Universitá degli Studi di Bologna, Bologna, Italy
1 Introdu
tionIn the COSMO Consortium (Consortium for Small-s
ale Modeling), the assimilation of radar data is nowon-going into the Kilometer-s
ale ENsemble Data Assimilation (KENDA) LETKF system [1℄ by means of theE�
ient Modular VOlume RADar forward Operator (EMVORADO, [2℄, [3℄, [4℄, [5℄, [6℄). At Arpae-SIMC,the HydroMeteorologi
al and Climate Servi
e of the Emilia-Romagna (Italy), the attention is fo
used on theassimilation of radar re�e
tivity volumes.The o�-line version of EMVORADO, i.e. not in
luded in the assimilation 
y
le, has been implemented to
al
ulate the re�e
tivity volumes from KENDA analyses in order to estimate the observation error by meansof a method based on statisti
al averages of observation-minus-ba
kground and observation-minus-analysisresidual.As a side result, the 
omparison between the observed and simulated re�e
tivities allows us to under-stand how mu
h the values derived by the operator deviate from reality. Hen
e, the use of the o�-line operatormakes it possible to verify how the re�e
tivity distributions vary both using di�erent analyses, 
oming fromvarious KENDA 
on�gurations, and by dire
tly modifying the parameters of the operator himself.2 Statisti
al distributions of re�e
tivitiesTo quantify the di�eren
es between re�e
tivities simulated with di�erent EMVORADO 
on�gurations andalso between observed and simulated ones, the o�-line radar operator was applied, i.e. separately from theassimilation 
y
le, to all the analyses obtained from di�erent assimilation 
y
les of KENDA. In parti
ular, forthis topi
, hourly analyses 
ome from KENDA with the assimilation of 
onventional observations (SYNOP,TEMP and AIREP) and KENDA with the assimilation of 
onventional observations and radar re�e
tivityvolumes. The radar operator 
on�gurations that have been tested are summarized in table 1. Among all thepossible 
ombinations, the di�erent type of s
attering (Mie/Rayleigh) for re�e
tivity 
omputation has beenused. Subsequently, the attenuation along the beam was also taken into a

ount for the Mie s
attering. Thisoption 
annot be used for Rayleigh s
attering. With regard to Rayleigh s
attering, the e�e
t of the use ofdi�erent beam propagation methods has been veri�ed. By default, the "4/3-earth" 
limatologi
al model isused, the other two options enable the ray tra
ing and the beam bending 
omputations based on the simulatedair refra
tive index �eld [5℄. Spe
i�
ally the TORE method is based on Snell's law for spheri
ally strati�edmedia in
luding e�e
ts of total re�e
tion, while the SODE method is based on the se
ond-order ordinarydi�erential equation for the beam height as a fun
tion of range.On
e all the simulated volumes were produ
ed, re�e
tivities above 0 dBZ were 
onsidered and boxplots weregenerated independently for the 
ase studies indi
ated in table 2 (Figures 1 and 2). The 
hoi
e to 
al
ulatethe statisti
al distributions a

ording to the events was due to the fa
t that the 
hosen periods have verydi�erent weather 
hara
teristi
s.doi:10.5676/dwd_pub/nwv/
osmo-nl_19_02COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 4Table 1: EMVORADO 
on�gurationsName S
attering options Propagation optionsMie Mie s
attering Climatologi
al �4/3-earth� modelMie_atten Mie s
attering taking into a

ount Climatologi
al �4/3-earth� modelattenuation along the ray pathRayleigh Rayleigh s
attering Climatologi
al �4/3-earth� modelRayleigh_sode Rayleigh s
attering Method SODE based on the se
ond-order ordinary di�erentialequation for the beam height as fun
tion of rangeRayleigh_tore Rayleigh s
attering Method TORE based on Snell's law for spheri
ally strati�edmedia in
luding e�e
ts of total re�e
tionTable 2: Case studiesEvent Start of the event End of the event Type of eventSeptember 2018 31/08/2018 01 UTC 09/09/2018 00 UTC thunderstormsO
tober 2018 30/09/2018 16 UTC 14/10/2018 00 UTC thunderstorms and organized 
onve
tivestru
turesNovember 2018 26/10/2018 13 UTC 11/11/2018 00 UTC stratiform stru
tures with some 
onve
tiveepisodes at the beginning of the period

Figure 1: Boxplots 
al
ulated for September 2018 (a), O
tober 2018 (b) and November 2018 (
) with inputanalyses from KENDA 
y
les with the assimilation of 
onventional observations.Using as input analyses those derived from KENDA 
y
les with the assimilation of only 
onventional obser-vations (Figure 1), the distributions do not vary signi�
antly depending on the 
ase study 
onsidered. Smalldi�eren
es 
an be observed on the estimated maximum values: for the O
tober 
ase the simulated maximumre�e
tivities are higher. On the other hand, 
onsidering the di�erent 
on�gurations of EMVORADO, theuse of Mie s
attering generally produ
es a distribution with higher re�e
tivity values. By a
tivating attenua-tion, values between 25th and 75th per
entiles are realigned with other 
on�gurations, but values above 95thper
entiles are all limited to below 50 dBZ. For the 
on�gurations with the Rayleigh s
attering, the use ofdi�erent beam propagation s
hemes does not bring to any signi�
ant 
hanges.The simulations behavior using as input analyses those derived from KENDA 
y
les with the assimilationof only 
onventional observations and radar re�e
tivity volumes at the analysis time (Figure 2), 
al
ulatedonly for O
tober 2018, di�er slightly from the previous ones. Median values are higher, but maximum valuesabove the 95th per
entiles are smaller.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 5

Figure 2: Boxplot 
al
ulated for O
tober 2018 with the input analyses from KENDA 
y
les with the assim-ilation of 
onventional observations and radar re�e
tivity volumes at the analysis time.3 Case Study: �ooding in Sardinia in O
tober 2018To understand in more detail how the simulated re�e
tivity 
hanges a

ording to the 
hosen namelist pa-rameters, the �ood that hit southern Sardinia on O
tober 10, 2018 was analyzed. As shown in �gure 3, inthis part of the region, several rain gauges have measured values greater than 100 mm over the two days,with a maximum value at Santa Lu
ia di Capoterra of 493.4 mm. For this rain gauge the trend of the hourlya

umulated pre
ipitation (Figure 4) displays a �rst passage of the pre
ipitating stru
tures in the morning ofO
tober 9 and a persisten
e of the phenomena from the evening of O
tober 10 until the end of the event.
Figure 3: A

umulated pre
ipitation measured by rain gauges from 09/10/2018 - 00 UTC to 11/10/2019 -00 UTC in Southern Sardinia.

Figure 4: A

umulated hourly pre
ipitation measured by the rain gauge lo
ated at Santa Lu
ia di Capoterrafrom 08/10/2018 - 23 UTC to 11/10/2019 - 00 UTC.Two hours were sele
ted and the polar volume at its lowest elevation was displayed for Armidda radar (inred, in �gure 5) for the di�erent EMVORADO 
on�gurations and depending on the input analyses.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 6

Figure 5: Armidda's radar, highlighted in red, inside the radar Italian radar network used for this study.In �gure 6 and �gure 7, 
olumns 2, 3 and 4 show the re�e
tivity �elds simulated using Rayleigh, Mie andMie with attenuation 
on�gurations. Simulations 
an be dire
tly 
ompared with the observation in 
olumn1. The di�erent rows refer to the di�erent analyses used as input. In the �rst row the analyses used 
omefrom KENDA 
y
les with assimilation of only 
onventional observations (SYNOP, TEMP and AIREP). Inthe se
ond row analyses 
ome from KENDA 
y
les with assimilation of 
onventional observations and LHN,while in the third one they 
omes from KENDA 
y
les with assimilation of 
onventional observations andradar re�e
tivity volumes at the analysis time. Figure 6 refers to 9 O
tober at 9 UTC, while �gure 7 is for10 O
tober at 10 UTC.

Figure 6: Observed (�rst 
olumn) and simulated (
olumns 2, 3 and 4) re�e
tivity of Armidda's �rst radarelevation by 
hanging EMVORADO 
on�gurations (
olumn 2: Rayleigh, 
olumn 3: Mie, 
olumn 4: Mie withattenuation) and input analyses (top row: analysis from KENDA with the assimilation of 
onventional ob-servations, middle row: analysis from KENDA with the assimilation of 
onventional observations and LHN,bottom row: analysis from KENDA with the assimilation of 
onventional observations and radar re�e
tivityvalues at the analysis time) for O
tober 9 at 9 UTC.In both instants examined the stru
tures are simulated in a more a

urate way, both in terms of lo
ationand shape, if the analyses 
ome from KENDA 
y
les with assimilation of radar volumes. The use of analyseswith only the assimilation of 
onventional observations leads to the modeling of stru
tures that have littlerelevan
e to the observation, in parti
ular this 
an be observed at the �rst instant.Simulations starting from the analyses in whi
h the LHN is used overestimate the re�e
tivity. This is mostCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 7

Figure 7: As �g. 6, but for O
tober 10 at 10 UTC.visible at the �rst instant where not only the stru
ture in the south-west part of the domain is overestimated,but unobserved pre
ipitation is simulated in the eastern part of the domain.The use of Rayleigh's s
attering with the analyses 
oming from the assimilation of radar volumes brings to ageneral underestimation of the �eld of re�e
tivity.The 
ombination of the LHN analyses and the use of the Mie 
on�guration leads to a strong overestimationof all simulated values. As a general result, regardless of input �elds, the use of attenuation improves overes-timation by bringing the simulations more similar to those obtained using the Rayleigh s
attering.For this 
ase study, 
omparing the obtained simulations with the observations, the use of Mie s
atteringprovides the best results.4 Con
lusions and future workThe results obtained from this 
ase study deviate partially from what is highlighted by the distributions ofre�e
tivity on all events. In this 
ase, the use of Mie s
attering seems to provide the best results, while thedistributions show a 
lear overestimation of the values with respe
t to the observations.At the moment the fore
asts initialized with KENDA analyses, obtained with the 
on�guration of EMVO-RADO with Rayleigh s
attering, provide a good improvement over the operational runs. However, the Mies
attering will be used for the 
ase studies presented, providing a quantitative 
omparison between fore
asts.Referen
es[1℄ S
hra�, C., Rei
h, H., Rhodin, A., S
homburg, A., Stephan, K., Periáñez, A., and Potthast, R. 2016:Kilometre-s
ale ensemble data assimilation for the COSMO model (KENDA), Q. J. Roy. Meteor. So
.,142, 1453�1472, URL https://doi.org/10.1002/qj.2748.[2℄ Blahak, U., 2016: RADAR_MIE_LM and RADAR_MIELIB - 
al
ulation of radar re�e
tivity frommodel output. Te
hni
al Report 28, Consortium for Small S
ale Modeling (COSMO), URL http://www.
osmo-model.org/
ontent/model/do
umentation/te
hReports/do
s/te
hReport28.pdf.[3℄ Zeng, Y., 2013: E�
ient radar forward operator for operational data assimilation within the COSMO-COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 8model. Dissertation, IMK-TRO, Department of Physi
s, Karlsruhe Institute of Te
hnology, URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000036921.[4℄ Jerger, D., 2014: Radar forward operator for veri�
ation of 
loud resolving simulations within theCOSMO-model. Dissertation, IMK-TRO, Department of Physi
s, Karlsruhe Institute of Te
hnology,URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000038411.[5℄ Zeng, Y., Blahak, U., Neuper, M. and Epperlein, D., 2014. Radar beam tra
ing methods based onatmospheri
 refra
tive index. J. Atmos. O
ean. Te
h., 31, 2650-2670.[6℄ Zeng, Y., Blahak, U. and Jerger, D., 2016. An e�
ient modular volume-s
anning radar forward operatorfor NWP models: des
ription and 
oupling to the COSMO model. Quart. J. Roy. Met. So
., 142, 3234-3256, URL http://onlinelibrary.wiley.
om/doi/10.1002/qj.2904/abstra
t.

COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 9
Assimilation of radar reflectivity volumes employing different observation

error covariance matricesThomas Gastaldo1,2, Virginia Poli1, Chiara Marsigli3, Pier Paolo Alberoni1 and TizianaPa

agnella1 [1℄ Arpae-SIMC Emilia-Romagna, Bologna, Italy[2℄ University of Bologna, Italy[3℄ Deuts
her Wetterdienst, O�enba
h, Germany
1 Introdu
tionAt Arpae-SIMC, the HydroMeteorologi
al Servi
e of Emilia-Romagna Region (Italy), the KENDA assimila-tion system [1℄ provides the analyses to the 
onve
tion-permitting 
omponents of the operational modelling
hain, 
onsisting of one deterministi
 run and one ensemble system, both at 2.2 km horizontal resolution andwith the same domain (greys
ale in Figure 1). Currently, only 
onventional observations are assimilated, buttests are ongoing to in
lude also re�e
tivity volumes [2℄ from the Italian radar network (solid lines in Figure1).
Figure 1: Integration domain (greys
ale) of the COSMO model employed at Arpae-SIMC for high resolutionmodel runs. The approximate 
overage area for ea
h radar at their lowest resolution of the Italian network isshown with solid lines.The high spatial and temporal density of radar data demands a great 
are in setting the observation error
ovarian
e matrix R. In fa
t, due to the great amount of data, small departures of the observation error fromits a
tual value may lead to large errors in the analysis. Furthermore, re�e
tivity observations are spatiallyand temporally 
orrelated and, therefore, the assumption made in most operational data assimilation systemsof a diagonal R matrix is not realisti
 (see for example [2℄).The impa
t of using di�erent estimations of the R matrix in the assimilation system is presented over two testperiods. Results obtained when employing an unique observation error for all re�e
tivity volumes are 
omparedto those obtained when a di�erent value is spe
i�ed for ea
h observation, depending on the radar station andthe distan
e from the station. The analyses, derived by ea
h observation error matrix 
on�guration, are usedto initialize di�erent fore
asts. The 
omparison of the quantitative pre
ipitation fore
ast (QPF) using theFra
tions Skill S
ore (FSS [3℄) allows to estimate the a

ura
y of the analysis itself. Finally, an estimation ofspatial 
orrelations between re�e
tivity observations is provided.doi:10.5676/dwd_pub/nwv/
osmo-nl_19_03COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 102 Observation errorThe observation error ǫo has two 
omponents [4℄: the measurement and the representation error. The former,also 
alled instrument error, is the error asso
iated with the measuring devi
e alone, independently of howthe measurements are used. The latter arises from 3 sour
es:� errors due to a mismat
h between the s
ales represented in the observations and the model �elds;� errors introdu
ed by the observation operator;� errors due to pre-pro
essing or quality 
ontrol.In data assimilation, an a

urate estimation of the observation error is 
ru
ial sin
e the observation error
ovarian
e R = E[ǫoǫ
T
o ] weights observations as B = E[ǫbǫ

T
b ] weights model ba
kground information (ǫb isthe ba
kground error). While during the past de
ades a great e�ort has been done to improve the estimationof B (for example in the KENDA system it is fully �ow dependent), small improvement have been doneregarding the R matrix. In fa
t, R is �xed in time and generally assumed to be diagonal, that is observationsare 
onsidered un
orrelated. Regarding the way to estimate it, one of the most used is the method proposedby Desroziers[5℄ whi
h is based on the expe
t value of the produ
t between observation-minus-analysis andobservation-minus-ba
kground residuals.3 Estimation of re�e
tivity errorsIn order to estimate re�e
tivity error with a spatial dependen
e, we estimate the diagonal of R using Desroziersstatisti
s and then we bin observations and the asso
iated errors a

ording to their horizontal and verti
aldistan
e from radar station. We use an horizontal step of 50 km and a verti
al step 2 km. The estimation isperformed for ea
h radar of the Italian network over 3 periods,in order to have also a temporal dependen
e:from 31/08/18 at 00 UTC to 09/09/18 at 00 UTC (sept2018), from 30/09/18 at 15 UTC to 10/10/18 at 00UTC (o
t2018) and from 26/10/18 at 12 UTC to 11/11/18 at 00 UTC (nov2018).Estimated values averaged over the three periods (sept2018, o
t2018 and nov2018) and over all radars of theItalian network are shown in Figure 2. Values (y axis) are shown as a fun
tion of horizontal distan
e (x axis)and verti
al distan
e (
olours). As a general behaviour, we 
an noti
e that observation error in
reases withhorizontal distan
e. This seems to be reasonable sin
e the size of observed atmospheri
 volumes in
reases withthe distan
e from the radar station. At the same time, we 
an noti
e that the observation error de
reaseswith verti
al distan
e up to the 4-6 km bin and then stabilizes. Also this behaviour seems to be reasonablesin
e re�e
tivity observations 
lose to the ground are more likely a�e
ted by non meteorologi
al signals (i.e.
lutter).

Figure 2: Estimated observation error for re�e
tivity volumes averaged over all periods and over all radarsof the Italian network.Due to the heterogeneity of our radar network and to the presen
e of di�erent weather regimes in Italy,when the statisti
s is applied separately to ea
h radar we 
an noti
e a 
ertain variability. As an example, inCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 11Figure 3 estimated values of re�e
tivity errors are shown for Serano radar (left panel) in Central Italy andfor Zoufplan radar (right) in North-Eastern Italy. Values are averaged over the 3 periods sept2018, o
t2018and nov2018. It 
an be noti
ed that the general behaviour des
ribed above is 
onserved but values and slopesof the 
urves vary quite signi�
antly. A 
ertain variability 
an be observed also when 
onsidering one radarbut restri
ting the statisti
s to a single period. This is shown, for example, in Figure 4 for Zoufplan radarapplying the Desroziers statisti
s only at the sept2018 period (left panel) and at nov2018 (right).
Figure 3: Same as Figure 2 but for 
omputing the statisti
s only for Serano radar (left) in Central Italy andZoufplan radar (right) in North-Eastern Italy.

Figure 4: Same as Figure 2 but 
omputing the statisti
s only for Zoufplan radar at two di�erent periods:sept2018 (left) and nov2018 (right).4 Use of estimated values of the observation error in KENDAIn order to evaluate the impa
t of using the estimated values of re�e
tivity error in the KENDA assimilationsystem, we perform 3 experiments. In err_�x experiment all re�e
tivity volumes have an error of 10 dBZ,as in our standard set-up for the assimilation of radar data. In err_mean experiment the observation errorvaries with radar station and with horizontal and verti
al distan
e from station and it is averaged over allperiods. Finally, in err_period experiment the observation error varies with radar station, with horizontaland verti
al distan
e from station and with period.The three experiments are performed for sept2018 and o
t2018 periods. The KENDA system employs a 20member ensemble plus a deterministi
 run and an assimilation window of 1 hour; Both 
onventional dataand radar volumes (only the 
losest to analysis time for ea
h radar) are assimilated. Finally, a deterministi
fore
ast is initialized ea
h 3 hours and fore
ast pre
ipitation is veri�ed by using the Fra
tions Skill S
ore(FSS). Regarding FSS, �xed spatial windows of 0.2 degrees are used and thresholds of 1 mm and 5 mm are
onsidered. Observations are hourly rainfall �elds from the Italian radar 
omposite adjusted by rain-gauges.Results are shown in Figure 5. Di�eren
es between the three experiments are small for both sept2018 (leftpanel) and o
t2018 (right panel) periods. Regarding sept2018, FSS values for err_mean (red lines) are very
lose to those of err_�x (blue) for both the 1 mm (solid lines) and the 5 mm (dashed lines) threshold.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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ontrast, the performan
e of err_period (green) is generally slightly better than that of the other twoexperiments. However, when 
onsidering the o
t2018 
ase, err_mean experiment is very slightly worse thanerr_�x and the worst results are obtained for err_period. In 
on
lusion, due to the mixed results observed, we
an state that the impa
t of employing a more a

urate 
hara
terization of the observation error for re�e
tivityvolumes in the assimilation system does not a�e
t signi�
antly the quality of fore
ast pre
ipitation.
Figure 5: Fra
tions Skill S
ore for err_�x (blue lines), err_mean (red) and err_period (green) experimentsemploying a threshold of 1 mm (solid lines) and 5 mm (dashed lines). The veri�
ation is applied to sept2018(left panel) and to o
t2018 (right panel) periods.5 Estimated values of 
orrelation between radar observationsEmploying the Desroziers statisti
s, we also 
ompute an estimation of spatial 
orrelations for re�e
tivityerrors. Similarly to the method des
ribed in Se
tion 3, we bin pairs of radar observations a

ording to theirhorizontal and verti
al distan
e. We employ an horizontal step of 10 km and a verti
al step of 1 km. Resultsobtained for the sept2018 
ase averaged over all radars of the Italian network are shown in Figure 6. Asexpe
ted, errors are strongly 
orrelated verti
ally and signi�
ant 
orrelations 
an be seen up to 40 km inhorizontal.

Figure 6: Spatial 
orrelation between pair of re�e
tivity observations during sept2018 
ase.6 Con
lusions and future workEven if re�e
tivity observation error varies quite signi�
antly with time, radar station and distan
e from theradar, the use of more a

urate values of errors in KENDA does not improve fore
ast a

ura
y. However,further tests are needed to 
on�rm this result. The estimation of 
orrelations between re�e
tivity errorsshows that there is a strong 
orrelation in spa
e. Therefore, the exploitation of the 
orrelation between pairof observations in the R matrix may be bene�
ial.
COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Estimation of model errors on convective scales: a coarse-graining study

(preliminary stage results)Mi
hael Tsyrulnikov and Dmitry Gayfulinmik.tsyrulnikov�gmail.
om
Abstra
tAn attempt to obje
tively estimate model tenden
y errors using a �true model� is des
ribed. The model inquestion (the �model�) is COSMO with the horizontal resolution 2.2 km. The �true model� is COSMO withthe horizontal resolution 0.55 km. The model error is evaluated as the di�eren
e between 1-minute �model�and ups
aled (
oarse-grained) �true-model� tenden
ies started from the same initial 
onditions. Preliminaryresults show, that, �rst, 
onve
tion is not to be treated with this approa
h. Se
ond, non-
onve
tive modelerrors 
ontain both additive and multipli
ative 
omponents. The additive 
omponent and the multiplier(applied to the physi
al tenden
y) appear to be approximately Gaussian. Third, the model-error �eld is too
omplex (espe
ially in the planetary boundary layer) to be modeled with a reasonably simple sto
hasti
model, so a pro
ess-level model error treatment is to be employed.1 Introdu
tionTo perform numeri
al weather predi
tion, three 
omponents are needed: initial 
onditions, boundary 
ondi-tions, and a fore
ast model. The 
lassi
al paradigm is deterministi
: we (naively) assume that all these three
omponents are perfe
t (however they are prepared), and 
ome up with a deterministi
 fore
ast. But in reality,the three 
omponents needed to 
ompute a fore
ast are, of 
ourse, imperfe
t and subje
t to un
ertainty, sothat the fore
ast inevitably 
ontains an error. The (expe
ted) magnitude of the error is of great interest toany user of the fore
ast and thus should be quanti�ed.1.1 Ensemble predi
tionThe most widely used paradigm to a

ount for the un
ertainties is sto
hasti
: the fore
ast-error is assumedto be a random �eld with the probability distribution to be 
omputed/estimated/spe
i�ed. Correspondingly,all data used to prepare the fore
ast and the fore
ast-model itself are assumed to be random. Initial andboundary 
onditions are treated as multidimensional random �elds. Fore
ast model equations are assumed tobe subje
t of error traditionally represented by the model error, the di�eren
e of the model's right-hand sidesfrom the hypotheti
al true right-hand sides.The model-error �eld is, then, also modeled as a spatiotemporalrandom �eld.The randomness of the three �input� random �elds, that is, initial, boundary, and model-error�elds, results in a randomness of the fore
ast. Therefore, to quantify the fore
ast probability distribution,we need, �rst, to adequately model the three input probability distributions and se
ond, to map these inputdistributions to the output (i.e. fore
ast) distribution.These two tasks are performed nowadays using Monte-Carlo, that is, the input probability distributions arerepresented by pseudo-random samples from an initial ensemble, a boundary ensemble, and a model-errorensemble. These samples are fed to the fore
ast model (in other words, the initial and boundary data asdoi:10.5676/dwd_pub/nwv/
osmo-nl_19_04COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 15well as the model equations are �perturbed�)1. The perturbed input �elds give rise to a perturbed fore
ast.Multiple realizations of the input �elds give rise to a fore
ast ensemble. The fore
ast ensemble is then, by
onstru
tion, a sample from the fore
ast probability distribution. Otherwise stated, the fore
ast ensembleis obtained, ideally, by repla
ing deterministi
 initial and boundary 
onditions and deterministi
 right-handsides of the model equations by random samples from the respe
tive distributions. This approa
h is knownin geos
ien
es as ensemble modeling and predi
tion. From the fore
ast ensemble, a probabilisti
 fore
ast 
anbe 
omputed, repla
ing the deterministi
 fore
ast and quantifying the fore
ast un
ertainty.For the ensemble predi
tion to adequately des
ribe the fore
ast un
ertainty, the �input� un
ertainties need tobe adequately represented. The initial ensemble is, normally, generated by a data assimilation s
heme. Thelateral-boundary ensemble for a limited-area model is generated from a parent-model fore
ast ensemble. Thelower-boundary ensemble requires a fore
ast ensemble in the soil/sea/lakes/rivers et
. In global models, theupper boundary 
ondition is normally not perturbed. In limited-area models, the upper-boundary ensembleis generated in the same way as the lateral-boundary ensemble. It remains to generate samples from thedistribution of model errors. Our fo
us in this study is on model errors.1.2 Model errorsExisting approa
hes to model-error modeling 
an be 
hara
terized as follows. Non-sto
hasti
 approa
hesin
lude multi-model and multi-physi
s te
hniques e.g., Berner et al. [1℄. The most popular sto
hasti
 approa
his the s
heme 
alled Sto
hasti
 Perturbations of Physi
al Tenden
ies (SPPT) e.g., Buizza et al. [2℄, see alsoits more �exible version Christensen et al. [4℄. Another sto
hasti
 te
hnique involves additive perturbations(
alled additive in�ation in data assimilation) e.g., Houtekamer et al. [6℄, Tsyrulnikov and Gayfulin [17℄. Thefollowing te
hniques are also widely used: parameter perturbation s
hemes Ollinaho et al. [9℄, Christensenet al. [3℄, the Sto
hasti
 Kineti
 Energy Ba
ks
atter s
heme (SKEB) Shutts [13℄, the sto
hasti
 
onve
tions
heme Kober and Craig [7℄, and the Sto
hasti
 Conve
tion Ba
ks
atter Shutts [14℄. See also the reviewby Leutbe
her et al. [8℄ and other referen
es therein. The 
ommon short
oming of all the numerous above-mentioned s
hemes is their la
k of obje
tive justi�
ation and obje
tive parameter estimation.The goal of this resear
h is to obje
tively estimate and sto
hasti
ally model the multivariate spatiotemporalmodel-error �eld using the 
oarse-graining approa
h Shutts and Palmer [16℄, Shutts and Pallarès [15℄. A

ord-ing to this approa
h, a higher-resolution �true model� is introdu
ed and used (after ups
aling or 
oarse-grainingto the model resolution � hen
e the name of the approa
h) to expli
itly evaluate model errors with respe
tto the true model. The limitation of this approa
h is its relian
e on a �true model�, whi
h of 
ourse is alsoapproximate (as any model). The advantage of the 
oarse-graining approa
h is that it o�ers an opportunityto 
arefully and rigorously identify and estimate a model for proxy model errors.Our approa
h is as follows.1. As a �model�, take the COSMO model with a relatively high, 
onve
tion-permitting resolution (2.2km).2. As a �true model�, take the same model but with a signi�
antly higher resolution and more sophisti
atedphysi
al parameterizations.3. Start the �model� and the �true model� from the same initial 
onditions and 
ompute the two short-timetenden
ies.4. Ups
ale (
oarse-grain) the �true-model� tenden
ies to the �model� resolution and expli
itly 
omputethe model-error �eld.5. A

umulate a sample of model-error �elds.6. Use this sample to build a multivariate spatiotemporal sto
hasti
 model for model errors.1When fore
ast models be
ome inherently sto
hasti
, there will be no need for the additive model error�eld, and then the sto
hasti
 (�perturbed�) fore
ast model will be dire
tly applied to the initial and boundaryensembles.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 16Note that Tsyrulnikov [19℄ used a similar approa
h that involved a �true model� but for a mu
h simpler pairof �model� and �true-model� (vorti
ity equation vs. the shallow-water model).2 Model error de�nition2.1 Standard de�nitionTo de�ne the model error we follow Orrell et al. [10℄ but 
onvert their de�nition from the time 
ontinuous tothe time dis
rete form. Let the time 
ontinuous fore
ast model equation be
dxmod

dt
= F(xmod), (1)

x
mod ∈ Xmod is the model state ve
tor, Xmod is the model state spa
e, and F(xmod) is the model operator.Numeri
ally integrating this equation yields its time dis
rete solution

x
mod
k = M(xmod

k−1), (2)where k denotes the time step and M(xmod) is the time dis
rete model operator.Next, let the truth be denoted by x
tru
k ∈ X tru, where X tru is the true state spa
e.Finally, postulate that there is a proje
tion (see, e.g., Tsyrulnikov [19℄) Π : X tru → Xmod su
h that any truestate is mapped to the model spa
e, getting a model state (denoted by the tilde):

ex
tru = Πx

tru. (3)Normally, elements of X tru are 
ontinuous �elds in physi
al spa
e (as opposed to spa
e-dis
rete �elds in
Xmod), in this 
ase the a
tion of Π amounts to ups
aling the true �eld to the model-spa
e �elds resolution2.Now we are in a position to de�ne the model error. To this end, we start the �model� from the true initial
onditions x

tru
k−1 at time k − 1 (that is, from the ups
aled truth ex

tru
k−1), 
ompute the one-step model fore
ast,and 
ompare it with the (ups
aled) truth at time k.The di�eren
e is solely due to the inability of the model to predi
t the true evolution of the system (atmo-sphere) and therefore it is 
alled the model error:

εk = M(ex
tru
k−1) − ex

tru
k . (4)Adding and subtra
ting ex

tru
k−1 from the right-hand side of Eq.(4) shows that the model error is the modeltenden
y error as well:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

−
ˆ

ex
tru
k − ex

tru
k−1

˜

≡ T
mod
k − eT

tru
k , (5)where T stands for the one-step (total) tenden
y.2.2 De�nition of model error that assumes that there is a true modelIt is essential that the model operator is applied in Eq.(4) to the (ups
aled) truth. To understand why thisis required, let us hypothesize that there is a true model:

x
tru
k = Mtru(xtru

k−1), (6)where Mtru is the operator of the true model. Note that from now on the supers
ript �tru� denotes the truemodel (not the truth as in se
tion 2.1).2It is also plausible that the truth or the �true model� involves more �elds (e.g. additional air 
onstituents)than the model. In that 
ase, the proje
tor Π just ignores the �elds present in the truth or the �true model�but absent in the �model�. This situation is not 
onsidered in this study.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 17Substituting x
tru
k from Eq.(6) into Eq.(4) yields

εk = M(ex
tru
k−1) − fMtru(xtru

k−1), (7)where fMtru(xtru
k−1) ≡ ΠMtru(xtru

k−1). From Eq.(7), we see that the model error is the di�eren
e of the one-time-step model solution and the one-time-step true-model solution provided that the two models areinitialized from the same state (up to the subgrid-s
ale �eld 
omponents). We 
all this requirement thesame start 
ondition. Informally, the same start 
ondition is very meaningful: in order to 
ompare the twomodels we spe
ify the same inputs and look at the outputs so that di�eren
e is only due to the di�eren
e inthe model's operators.Remark. The above model error de�nition 
an also be viewed as follows. If we take the ups
aled truth atthe two 
onse
utive time steps k − 1 and k and substitute them into the fore
ast-model Eq.(2), then Eq.(2)will not be exa
tly satis�ed be
ause the truth is not governed by the (inevitably approximate) fore
ast modelequation. The dis
repan
y is, by Eq.(4), the model error. Formulated this way, the model error de�nitionappears to exa
tly 
orrespond to the de�nition of the trun
ation error of a numeri
al s
heme in solving adi�erential equation. Indeed, following eg Ri
htmyer and Morton [12℄, se
tion 1.6, we substitute the exa
tsolution to the di�erential problem (i.e. the truth we seek to approximate) into the �nite-di�eren
e s
heme(the �approximating model�) and 
all the residual the trun
ation (model) error.Equation (7) 
an be rewritten in terms of tenden
ies by subtra
ting and adding ex
tru
k−1 in its right-hand sideand rearranging the terms:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

− Π
ˆ

Mtru(xtru
k−1) − x

tru
k−1

˜

≡ T
mod
k − eT

tru
k . (8)We reiterate that here and for the remainder of the arti
le eT

tru
k denotes the tenden
y of the true model, notthe true tenden
y as in Eq.(5). Te
hni
ally, sin
e the true model may have a shorter time step, we allow thetenden
ies to be 
omputed for several time steps so that the tenden
y fore
asts used to 
ompute T

mod
k and

T
tru
k have the same lead time.This generalization 
an also be used to 
he
k if there is an initial transient pro
ess due to possible imbalan
esin the starting points (�elds) from whi
h the tenden
y fore
asts are initialized (by 
omparing the tenden
y�elds for di�erent tenden
y-fore
ast lengths, see se
tion ).To summarize, the standard de�nition of model error, Eq.(4), assumes that the truth at the time instants inquestion, k − 1 and k, that is, x

tru
k−1 and x

tru
k , is the a
tual truth, that is, the truth a
tually observed in thenature by real-world observations. By 
ontrast, the de�nition that makes use of a true model, Eqs.(7)�(8),allows us to lift this restri
tion and assume that the x

tru
k−1 is 
an be any point on the true-model �attra
tor�(in pra
ti
e, not far from the true-model �attra
tor�, that is, with reasonably balan
ed initial 
onditions forthe true model).3 Evaluation of model error3.1 MotivationTsyrulnikov and Gorin [18℄ tried to use the standard de�nition of model error, Eq.(4), to evaluate modelerrors through 
omparing �nite time model tenden
ies with �nite-time observed tenden
ies. They found ina simulation study with the COSMO model (with 20 km horizontal resolution) that the main obsta
le wasthe requirement to start the model from the truth. Starting from analyses led to too high estimation errors.In order to make the analyses a

urate enough to reliably estimate even the simplest 
onstant-in-spa
e andpie
ewise-
onstant-in-time model error of realisti
 magnitude, the assimilated observations of temperatureand wind needed to have 
urrently unrea
hable a

ura
y (0.1 K for temperature and 0.02 m/s for winds)and be available at ea
h model grid point. Hen
e, reliable estimation of realisti
 model errors by 
omparing�nite-time model tenden
ies with �nite-time observed tenden
ies is not possible with existing observationalCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 18

Figure 1: Model error evaluation s
hemati
. Dots denote points in state spa
e. Di�eren
es between the truestate spa
e and model state spa
e are not highlighted for simpli
ity here.networks. This has motivated the present resear
h, in whi
h we expli
itly spe
ify a �true model� and usethe extended de�nition of the model error introdu
ed in se
tion to evaluate the model error.3.2 NotationThe �model� in question is referred to as the 
oarse-grid model (
gm, also abbreviated as mod). The 
oarsegrid is abbreviated as 
g. Fields on 
g are denoted by the tilde.The �true model� is referred to as the �ne-grid model (fgm, also abbreviated as tru). The �ne grid is abbrevi-ated as fg. By �grid-s
ales� (abbreviated as gs) we mean s
ales resolved on 
g. By �subgrid-s
ales� (abbreviatedas sgs) we mean s
ales not resolved on 
g (but resolved by fgm).3.3 The proposed approa
hIn order to generate the 
ommon starting point for the two tenden
y fore
asts and apply the model-errorevaluation methodology des
ribed in se
tion , we run a 
gm pre-fore
ast (to �spin� the model up). The pre-fore
ast starts from the initial point x
ini generated from a global model. The alternative approa
h in whi
hthe pre-fore
ast is performed using fgm will be investigated on a later stage of the proje
t.At the end of the pre-fore
ast, we obtain the 
gm fore
ast �elds denoted by xk−1 in Fig.1 and by exstart inwhat follows. The 
gm tenden
y fore
ast starts immediately from exstart. The fgm tenden
y fore
ast startsfrom a downs
aled version of exstart denoted by xstart.Then, we run two very-short-term tenden
y fore
asts of the same lead time x

mod
k and x

tru
k , 
ompute the twotenden
ies, downs
ale the fgm tenden
y, and �nally 
ompute the model error �eld εk following Eq.(8). Amore pre
ise and detailed des
ription of our approa
h is given in se
tion 4.2 .3.4 Ups
alingAs noted in se
tion , an ups
aling (
oarse-graining, aggregation) is needed to properly proje
t a high-resolutionfgm �eld onto the 
gm phase spa
e. The ups
aling removes the s
ales not represented on the 
oarse modelgrid and thus makes the true �eld 
omparable with its model 
ounterpart. Note that not performing ups
aling(i.e. simply restri
ting the high-resolution �elds on a 
oarse grid) would give rise to the phenomenon knownas aliasing so that the sgs �eld 
omponents would be superimposed on the gs �eld 
omponents, irreversiblydistorting them.Normally, the resolution of fgm is higher than 
gm not only in spa
e but also in time (shorter time steps),COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 19whi
h implies that the ups
aling must involve the dime dimension as well as the (three) spatial dimensions.There are two 
ommon approa
hes to ups
aling: spe
tral and physi
al-spa
e based. A spe
tral ups
aling ismore 
ommon in mathemati
s. It is performed by Fourier transforming the spatial �eld x
tru, trun
ating theresulting expansion at the model-grid resolution, and 
omputing ex

tru as the inverse Fourier transform of thetrun
ated expansion. This approa
h exa
tly removes all sgs spe
tral 
omponents.In meteorology, a physi
al-spa
e ups
aling is more 
ommon, it 
onsists in averaging the high-resolution fg�eld x
tru over 
ells of lower-resolution 
g, see e.g. Shutts and Palmer [16℄. This te
hnique is simpler (as it islo
al, in 
ontrast to the spe
tral approa
h) and more physi
ally appealing, albeit not pre
ise mathemati
ally.We will adopt this physi
al-spa
e de�nition to simplify our analysis.Note that in the 
ontext of 
oarse-graining studies, Shutts and Pallarès [15℄ used a spe
tral low-pass �lter inthe horizontal with a squared exponential (i.e. not re
tangular as in the ideal low-pass �lter) transfer fun
tion.In time, they performed low-pass �ltering by ad-ho
 averaging. Both �lters were applied both to the model(they 
alled it �target�) and to the true model (�truth�).
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1. Working Group on Data Assimilation 204 Numeri
al experiments4 
ases were studied (all 12 UTC): 1 July and 29 July 2017 (�
onve
tive� days) and 17 July and 1 De
ember2017(�non-
onve
tive� days).4.1 Models'setupThe 
gm was COSMO with 50 verti
al levels and horizontal resolution 2.2 km. The fgm was the same COSMOwith the following di�eren
es from 
gm:1. The horizontal resolution was 0.55 km.2. The time step was 5 s in fgm vs. 20 s in 
gm.3. The shallow 
onve
tion parameterization (Tiedtke) was swit
hed o� in fgm whilst swit
hed on in 
gm.4. A 3D turbulen
e s
heme was used in fgm vs. a 1D s
heme in 
gm.5. Some more sophisti
ated options were used in the fgm's 
loud and pre
ipitation s
heme as well as inthe radiation s
heme as 
ompared to 
gm.The models domains were 
entered at 52N 35E, see Fig.2. The outermost grid is 
g (250*250 points, 550*550km, marked in greenish). The se
ond-largest grid in Fig.2 is fg (600*600 points, 330*330 km, marked inpinkish). The innermost grid is the model-error evaluation grid (mesh size 2.2 km, 110*110 points, 220*220km, marked in bluish). The three domains/grids were nested one in another with the intention to redu
e anyimpa
t of lateral boundaries in a 3h fore
ast. This will be useful at a later stage of the proje
t when thedeveloped model-error model is veri�ed in an ensemble predi
tion system.

Figure 2: The horizontal grids: fg (the outermost grid), 
g (the intermediate grid), and theinnermost model-error evaluation grid.4.2 Computation of the model errorThe model-error evaluation te
hnique is summarized as follows.1. Pre-fore
ast: run 
gm for 1 h lead time. The pre-fore
ast is used as the 
gm starting point exstart.2. Downs
ale exstart to fg (using the COSMO tool INT2LM). This is xstart. This pro
edure is meant toapproximately satisfy the �same start� 
ondition.3. Run 
gm for 3 time steps (60 s in total) starting from exstart. Cal
ulate the total tenden
y T
mod
3 .4. Run fgm for 12 time steps (60 s in total) starting from xstart. Cal
ulate the total tenden
y T
tru
12 .COSMO Newsletter No. 19: O
tober 2019 www.
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ale T
tru
12 to the 
oarse grid, getting eT

tru
12 .6. Compute the model error as ε = T

mod
3 − eT

tru
12 .The length of the tenden
y fore
asts (60 s) was sele
ted by trial and error. We also tried the tenden
y-fore
ast lengths 20 s and 5 min and found that the results presented below were quite stable and not 
riti
allydependent on the tenden
y-fore
ast length within the above range. With 20 s, there were some indi
ations ofan initial imbalan
e (not shown). The model-error �elds for 1 min and 5 min were similar in terms of theirspatial s
ales and variability.4.3 ResultsTo give an impression of how model errors are related to model tenden
ies, we show two (i.e. 
gm and fgm)total tenden
ies for the zonal wind 
omponent at an arbitrarily sele
ted model level 41 (about 700 m aboveground). One 
an see that the two tenden
ies are very similar, implying that the model error (whi
h istheir di�eren
e) is quite small, as expe
ted (re
all that COSMO is an operational-
lass model used in many
ountries).

Figure 3: Total tenden
ies: 
gm (left) and fgm (right)4.3.1 Role of 
onve
tionFigure 4 shows the model-error �eld ε (left) along with the 
onve
tive physi
al-tenden
y �eld Pconv (right)at the model level 32 (about 2.5 km above ground). It is striking that the model-error �eld ε is dominatedby a relatively small number of outliers, with the rest of the �eld being relative 
lose to zero. Comparing theleft and the right panels of Fig.4 suggests that it is the 
onve
tive parameterization that produ
es those largemodel errors. At some grid points where the large 
gm's Pconv is mat
hed with a large tenden
y produ
ed bythe fgm-expli
itly-resolved 
onve
tion � at those points, ε is small. At other points where the 
gm's Pconvis large, it is not mat
hed with a similarly large fgm's tenden
y � at those points, ε is big (and seen inFig.4(left) as outliers).
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Figure 4: Model errors (left) and 
onve
tive tenden
y (right) at the model level 32. The units are K/min.This outstanding impa
t of the shallow 
onve
tion parameterization (a similar e�e
t of the deep 
onve
tionparameterization in a 7-km-resolution COSMO was even mu
h bigger, not shown) suggests that errors inthe 
onve
tive parameterization need a spe
ial treatment (like any outliers in general). We attempted to usepredi
tors like CAPE and the verti
al lapse rate to spot those large 
onve
tive model errors,but those attemptsfailed dramati
ally (not shown). We also realized that, given the 
omplexity of the 
onve
tion phenomenon,a purely sto
hasti
 approa
h looks unsuitable to model 
onve
tive model errors.A physi
al model is needed.Besides, 
onve
tion is a fast and strong phenomenon so that the 
onve
tive model errors we 
an measure arethe out
ome of 
onve
tion, not its sour
e. And it is a �
onve
tive sour
e� that we would like to isolate, study,and model in this study (and then perturb in an ensemble fore
ast).To verify the 
onje
ture that it the invisible �
onve
tive sour
e� that needs to be perturbed, we introdu
edtiny and 
onstant-in-spa
e-and-time model-error perturbations at all model levels and looked at the resultingfore
ast perturbation in a 15-min 
gm fore
ast. We imposed model-error perturbations with the magnitude
5 · 10−5 K per time step in T and 10−4 m/s in U, V . The resulting fore
ast-error perturbation of temperatureat the model level 30 is shown in Fig.5(right). The respe
tive model-error �eld is shown in Fig.5(left). It isseen that both �elds look quite similar, whi
h means that realisti
 
onve
tion-related fore
ast errors 
an beobtained by just �any� perturbation of temperature and other �elds. This 
an be 
ompared with �ndings byFla
k et al. [5℄, who introdu
ed temperature model-error perturbations of magnitude 0.1 K with the spatiallength s
ale of 6∆x (where ∆x is the horizontal mesh size) every 15 minutes during the model integration ata single model level at the model hybrid height 
oordinate 261.6 m.

Figure 5: Model errors, K/min, (left) and fore
ast perturbation, K (right).
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1. Working Group on Data Assimilation 234.3.2 Con
lusions on 
onve
tionThe above results indi
ate that errors in parameterized 
onve
tion 
annot be treated using the �true-model� approa
h (whi
h we pursue in this study) for the following reasons.1. Evaluating model errors as di�eren
es between 
gm and fgm short-time tenden
ies implies, in 
ase of
onve
tion, that di�eren
es in the out
omes of 
onve
tion are a
tually measured.However, initiation of 
onve
tion plumes is a sporadi
 pro
ess �modulated� by a hypotheti
al �
onve
-tive sour
e� (like CAPE). And it is this sour
e whose un
ertainty needs to be modeled, not the out
ome.Obje
tively sensing the un
ertainty in this �
onve
tive sour
e� is not possible with our approa
h and,maybe, impossible in prin
iple.2. A deterministi
 
onve
tive parameterization (
urrently in use in the standard 
on�guration of COSMOadopted in this resear
h) attempts to represent the 
ontribution of subgrid 
onve
tive elements to thegrid-s
ale �elds. However, with the 
g mesh as small as 1�2 km, the number of those 
onve
tiveelements (modeled by fgm) in a 
g 
ell is not large enough for their 
ombined e�e
t to be 
onsideredas deterministi
 Shutts and Pallarès [15℄. It is inherently random with high varian
e. And this highvariability is the major 
ontributor to the 
gm-minus-fgm di�eren
e we 
an measure � be
ause thedeterministi
 
gm tenden
y produ
ed by the 
onve
tive s
heme is inevitably almost always far fromthe highly random ups
aled fgm tenden
y. But this random di�eren
e is, a
tually, not the error, it isthe un
ertainty related to the manifestation of the sto
hasti
 nature of 
onve
tion and should not beregarded as model error. This kind of error requires a sto
hasti
 
onve
tive parameterization s
hemelike Plant and Craig [11℄), whose development, estimation, and 
alibration is beyond the s
ope of thisresear
h.So, in this work, we do not treat model errors due to parameterized 
onve
tion. The 
onve
tive parameteri-zation is swit
hed o� both in 
gm and fgm, and predominantly non-
onve
tive 
ases are studied.4.3.3 Non-
onve
tive model errorsFirst, we show the temperature model-error �eld (ε) at a high enough model level 21 (about 7 km aboveground)su
h that there is, likely, no 
onve
tion there, see Fig.6. The ε �eld looks here like a Gaussian random�eld (in 
ontrast to the above 
onve
tion-
ontaminated model-error �elds).

Figure 6: Non-
onve
tive model error at level 21, temperature, K/minNext, Fig.(7) displays the temperature model-error within the planetary boundary layer (level 43 about 500m above ground). The �eld looks like a random �eld with very 
ompli
ated stru
ture, with multiple s
ales,and, likely, with multiple 
omponents. Building a sto
hasti
 model for su
h �eld is a very 
hallenging task.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 244.3.4 Physi
al tenden
y as a predi
tor for model errorWe start with looking at the physi
al tenden
y as a potential predi
tor for model errors. Figure 8 shows themeridional-wind (V ) model-error �eld (left) along with the physi
al-tenden
y �eld P (right) at the modellevel 31 (about 3 km above ground). It is 
learly visible that if P is large, then ε is also, usually, large, sothat the physi
al tenden
y is indeed a useful indi
ator of the magnitude of model error. However, there areseveral areas where the model-error �eld ε is large while the physi
al-tenden
y �eld P is small. This impliesthat physi
al tenden
y is, a
tually, of limited use as a model-error predi
tor.To get a deeper understanding of the relationship between the model error and the physi
al tenden
y, weestimated the 
onditional probability density of ε given the absolute value of P, i.e. p(ε | abs(P)). In theestimator, 2 per
ent of largest |ε| and |P| ≡ abs(P) were taken down with the intention to �lter out gridpoints with 
onve
tion. Values of |P| were then grouped in 10 equipopulated bins for whi
h histograms of εwere plotted. As an example, the histogram of ε for the 4-th bin of |P| (temperature, level 30) is displayed inFig.9.Remarkably, this 
onditional distribution is seen to be not too far from Gaussian. More qualitatively, itskurtosis is 4.0 (the Gaussian kurtosis is 3).For other variables and levels, kurtosis remained, mainly, between3 and 4,thus indi
ating that Gaussianity is, perhaps, a reasonable hypothesis for the probability distributionof non-
onve
tive model errors given the physi
al tenden
y, ε | abs(P).Next, having estimated p(ε | abs(P)), we used it to examine the 
onditional varian
e of non-
onve
tive modelerrors: Var (ε | abs(P)). We 
omputed s
atterplots of ε2 vs. P2 and then smoothed them using a kernel smootherwith the Epane
hnikov kernel and an empiri
ally sele
ted bandwidth. The resulting dependen
ies are exem-

Figure 7: Non-
onve
tive model error at level 43, temperature, K/min

Figure 8: Model error (left) and physi
al tenden
y (right), meridional wind, ms−1min−1COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 25pli�ed in Fig.10 for temperature at the model level 28 (about 4 km above ground), where the x-axis is P
2 andthe y-axis is ε2.The resulting 
onditional varian
e 
urves were somewhat noisy even after smoothing but two their salientfeatures were standing out. First, there always was a signi�
antly non-zero o�set (the value of Eε2 for P =

0), whi
h 
an be interpreted as the varian
e of the additive (physi
al-tenden
y independent) model-error
omponent.Se
ond, the model-error varian
e, by and large, grew with the in
reasing physi
al tenden
y. Thegrowth was, in a �rst approximation, linear, thus suggesting that it 
an be interpreted as the multipli
ative(physi
al-tenden
y dependent) model-error varian
e. As a result, the following additive-multipli
ativemodel-error model is our �rst (and preliminary) �nding:
ε(s) = α(s) + µ(s) · P(s), (9)where α(s) is the additive model-error 
omponent and µ(s) is the random multiplier �eld.To a �rst approximation, α(s) and µ(s) 
an be assumed to be Gaussian random �elds with their horizontal,verti
al, temporal, and multivariate stru
ture to be identi�ed.Finally, in Table 1 we show the relationship between the magnitudes of the additive and multipli
ative model-error 
omponents. One 
an see that the magnitudes of the additive error 
omponents were somewhat largerthan the magnitudes of the multipli
ative error 
omponents. Only in the boundary layer (where turbulen
edominates the physi
al tenden
y), the multipli
ative errors were 
omparable to additive errors or even larger(not shown).The di�eren
e between the values for U and for V is, perhaps, due to insu�
ient statisti
s.

Figure 9: Histogram of ε for the 4th bin of P. Temperature, level 30.

Figure 10: Conditional varian
e Var (ε | abs(P)) for non-
onve
tive model errors. Temperature, level 28.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



1. Working Group on Data Assimilation 26Table 1: Verti
ally averaged ratio of multipli
ative to additive error st.dev.
T U V

s.d. (mult)
s.d. (add) 0.5 0.5 0.85 Con
lusionsApproa
h and preliminary stage results of a model-error obje
tive estimation and modeling study are pre-sented. The approa
h is based on the 
omparison of model's instantaneous tenden
ies with those of a higher-resolution �true model�. The �true-model� tenden
ies are ups
aled (
oarse-grained) to the resolution of themodel-in-question and subtra
ted from the (total) tenden
ies of the latter, yielding a proxy to the model-error�elds. The goal of the study is a multivariate spatiotemporal sto
hasti
 model-error model. The model-errormodel is to be identi�ed and estimated from a sample of the proxy model-error �elds.The model in question (the 
oarse-grid model) is COSMO with the horizontal resolution 2.2 km and 50levels in the verti
al.The high-resolution (�true�) model is COSMO with the horizontal resolution 0.55 km,the same verti
al grid, and a number of di�eren
es in the setup of the physi
al parameterizations. Prelim-inary results show that, �rst, errors in 
onve
tive parameterization 
annot and should not be ta
kled withthe 
oarse-graining approa
h. Se
ond, we found that non-
onve
tive model errors have both additive andmultipli
ative 
omponents. The additive model-error 
omponent is independent of the physi
al tenden
y andapproximately Gaussian. The multipli
ative model-error 
omponent is proportional to the physi
al tenden
y,with the multiplier being, again, approximately Gaussian. Third, the spatial stru
ture of the non-
onve
tivemodel-error �eld is too 
omplex to be modeled with a reasonably simple model-error model, espe
ially in thelower troposphere and in the planetary boundary layer. This suggests that pro
ess-level model-error treatmentis to be attempted.Next steps (whi
h are underway) are the following. Te
hni
ally, (i) an even higher-resolution true model(fgm) is to be used, (ii) a more 
areful treatment of stati
 �elds (in
luding orography), soil �elds, and allinitial �elds in the two models is to be employed (so that their 
oarse-grid-resolved 
omponents be thesame for the two models).Con
eptually, (i) the starting point of the tenden
y-fore
asts is to be 
omputedusing the true model (fgm) instead of the model (
gm) � to better represent the role of subgrid s
alesin the formation of model errors,(ii) errors due to di�erent physi
al parameterizations are to be treatedseparately whenever possible, (iii) a spatial (horizontal and verti
al), spatiotemporal, and multivariate (mutualdependen
ies between temperature, winds, et
.) aspe
ts are to be addressed in the model-error sto
hasti
modeling.Referen
es[1℄ J. Berner, S.-Y. Ha, J. Ha
ker, A. Fournier, and C. Snyder. Model un
ertainty in a mesos
ale ensemblepredi
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 representation of model un
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tion system. Quart. J. Roy. Meteor. So
., 125(560):2887�2908, 1999.[3℄ H. Christensen, I. Moroz, and T. Palmer. Sto
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i., 72(6):2525�2544, 2015.[4℄ H. Christensen, S.-J. Lo
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Implementation of the new cloud-radiation scheme in COSMOPavel Khain1, Harel Muskatel1 and Ulri
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her Wetterdienst

1 Introdu
tionIn
oming solar radiation is a primary driving sour
e of atmospheri
 weather and 
limate pro
esses. For realisti
weather simulation, an NWP model has to in
lude an appropriate parametrization of the radiative transferthrough the atmosphere. The divergen
e of solar and thermal radiative �uxes in the atmosphere, whi
hintera
t strongly with gases, aerosols and the simulated 
loud �eld and its inherent properties, 
ontributes
onsiderably to the diabati
 for
ing in the prognosti
 model equations. At the earth's surfa
e radiative �uxes
onstitute the major for
ing for the thermodynami
 state of the soil and the intera
tion with the atmospherevia turbulent �uxes of heat and moisture. In COSMO, the radiative transfer s
heme is based on the solution ofthe δ-two-stream version of the radiative transfer equation in
orporating the e�e
ts of s
attering, absorption,and emission by 
loud droplets and i
e 
rystals, gases (water vapor, ozone, 
arbon dioxide, air mole
ules)and aerosols in ea
h one of the eight spe
tral intervals [15, 3℄. Opti
al properties are 
omputed from relevantprognosti
 and/or diagnosti
 model variables like spe
i�
 humidity, 
loud water- and i
e 
ontent and 
loudfra
tion. Some layer properties, like ozone, 
arbon dioxide and aerosols are spe
i�ed as 
limatologi
al values.In parti
ular, the spatially variable aerosol distribution is derived from a 
limatology provided by Tanre [17℄(namelist parameter itype_aerosol=1). The a
tual layer mean values of opti
ally relevant substan
es are
onverted to radiative properties like opti
al depth τ , single s
attering albedo ω and asymetry parameter
g and forward-s
attered fra
tion through the use of empiri
al relations des
ribed in [15℄. As part of theCOSMO priority proje
t "Testing and Tuning of the Revised Cloud Radiation Coupling" T 2(RC)2, the
al
ulation of the opti
al properties at the model layers was signi�
antly revised, and an additional version ofa radiative solver was implemented. From a te
hni
al point of view, the new parametrizations 
an be a
tivatedvia 
ompilation with the "DCLOUDRAD" prepro
essor �ag. The 
hanges 
an be divided into three topi
s:radiative solver, 
lear sky opti
al properties, and 
loudy part opti
al properties.2 Implementation of the new s
hemeRadiative solverRadiation transfer s
hemes are one of the most 
omputational expensive 
omponents in numeri
al weatherpredi
tion (NWP) models. In COSMO model, with only eight spe
tral intervals, a full radiation 
al
ulation
osts as mu
h as eight times the 
ost of the entire COSMO model run. Most of NWP models 
ompromiseon the spatial and/or temporal resolution of the radiation s
heme. In the operational setup of COSMO-2.8km, with a full spatial resolution and with a temporal resolution of 15 minutes, the 
omputational 
ost ofradiation is only 3% of the entire model. This 
ompromise 
an lead to lo
al biases in net downward radiationand surfa
e temperatures. In an attempt to both redu
e errors and to de
rease the run-time we implementeda di�erent approa
h whi
h is to de
rease the spe
tral resolution by a wise sampling te
hnique, a methodknown as Monte Carlo Spe
tral Integration (MCSI) [13℄ was implemented (namelist parameter itype_m
si).doi:10.5676/dwd_pub/nwv/
osmo-nl_19_05COSMO Newsletter No. 19: O
tober 2019 www.
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al Aspe
ts: Upper Air 29Many radiative transfer s
hemes in
luding COSMO s
heme [15℄, use the k-distribution method for the gases-radiation intera
tion 
al
ulations [4℄. In this method the spe
trum is transferred from wavelength spa
e to
umulative probability spa
e. This spa
e is divided to intervals whi
h are 
alled g-points. In COSMO forea
h gas and for ea
h spe
tral interval there are between two to eight g-points. In the operational mode ofCOSMO the Fast Exponential Sum Fitting Te
hnique (FESFT) is used to fully 
al
ulate all of the mentionedg-points. In MCSI only one g-point is 
al
ulated in ea
h time step a

ording to its probability. In COSMO weused a softer version of MCSI where a g-point is sele
ted in ea
h of the spe
tral intervals whi
h in
reases the
omputational 
os but does negle
t either of the spe
tral intervals in every time step. Of 
ourse that if theuser 
hooses to use MCSI the radiation s
heme should be 
alled more frequently. We found out the using theMCSI with full temporal resolution (
alling the radiation s
heme every time step) in COSMO-2.8km setup
an in
rease runtime by 33% with only slight redu
tion of global radiation and 2-meter temperature biases
ompared to FESFT. But using MCSI with a 100 se
onds temporal resolution (every 5 time steps) 
an givethe same bene�ts but with only 4% in
rease in runtime.Clear sky opti
al propertiesTwo new options of an aerosol 
limatology were introdu
ed (namelist parameter itype_aerosol). The �rst,Tegen [18℄ (itype_aerosol=2), is a 2-dimensional monthly map of opti
al thi
knesses for 5 aerosol 
lasses.In COSMO it is interpolated in time, and 3-dimensional opti
al properties are 
al
ulated assuming a prede-�ned exponentially de
aying verti
al pro�le. The se
ond, Kinne [10℄ (itype_aerosol=3), is a 2-dimensional
limatology whi
h is 
onsidered to better des
ribe real aerosol loading [12℄.In addition, two new options to use time- and spa
e-interpolated (via the int2lm software) 3-dimensionalaerosol �elds of external prognosti
 fore
ast models have been implemented. The �rst (itype_aerosol=4) 
anpro
ess CAMS-ECMWF [1, 11℄ 3-dimensional aerosol mixing ratio �elds, whi
h in
lude sea salt, mineral dust,bla
k 
arbon, organi
 matter and sulphate and whi
h are sub-divided to eleven tra
ers, be
ause sea salt anddust have three size bins while bla
k 
arbon and organi
 matter have both hydrophobi
 and hydrophili
 types.The se
ond new option (itype_aerosol=5) 
an pro
ess ICON-ART [14℄ 3-dimensional aerosol mixing ratio�elds; 
urrently the operational ICON-ART only in
ludes mineral dust, but it might be expanded to otherspe
ies in the future.Cloudy part opti
al propertiesFirst, in addition to 
loud water and i
e, the opti
al e�e
t of prognosti
 snow, graupel and rain water 
ontentswas (optionally) in
luded (namelist parameter lrad_in
l_qrqsqg). The opti
al properties of solid parti
les in
louds (spe
i�
 extin
tion 
oe�
ient β, single s
attering albedo ω, asymmetry fa
tor g and delta-transmissionfun
tion δ) have been formulated as fun
tion of e�e
tive radius Re and aspe
t ratio Ar (assuming hexagonalneedles as des
ribed in [5℄) for the 8 COSMO spe
tral bands, using the spe
tros
opi
 s
attering fun
tion datafor single needles used previously in [5℄, [6℄ and [7℄. Based on these data, for ea
h realization of a Monte-Carlo-Ensemble over 7000 di�erent Gamma-type i
e parti
le size distributions the parameters Re following[5℄, Ar following [7℄, β, ω, g and δ have been 
omputed. New and rather a

urate �ts of type rationalfun
tions were developed for β and ω as fun
tion of Re, and g and δ as fun
tion of Ar ([7℄). In 
ontrast toprevious literature, our new �ts span a very large parameter range for Re from 2.5 to 300mi
rons and behaveasymptoti
ally �reasonably well� for larger sizes. This range is su�
ient for the �ts to be applied to the snow-and graupel hydrometeors in any model. Opti
al thi
kness τ is obtained by multiplying the respe
tive β forea
h hydrometeor type by the respe
tive spe
i�
 mass 
ontent and summation. Usage of the new �ts 
an bea
tivated by namelist parameter iradpar_
loud=4, and small modi�
ations 
an be 
hosen by the namelistswit
hes lrad_i
e_smooth_surfa
es and lrad_i
e_fd_is_gsquared.The opti
al properties of water parti
les in 
louds have been formulated as fun
tion of parti
les' water 
ontentand e�e
tive radius for the 8 COSMO spe
tral bands, using [8℄ up to 60 mi
ron with an own asymptoti
ally
orre
t extrapolation towards larger sizes up to mm diameters (namelist parameter iradpar_
loud=4).COSMO Newsletter No. 19: O
tober 2019 www.
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al Aspe
ts: Upper Air 30For the large parti
les (snow, graupel and rain) a geometri
al-opti
s large-size approximation based on semi-transparent spheres for the opti
al properties was (optionally) implemented (namelist parameter lrad_use_largesizeapprox).Several new options for 
al
ulation of water 
ontents, e�e
tive radii and aspe
t ratios (both are fun
tions ofnumber 
on
entration and mass 
on
entration) for various hydrometeors were implemented. That in
ludes:� Estimating NCa - the number 
on
entration of 3-dimensional hydrophili
 aerosol �elds using Tegen[18℄ or CAMS-ECMWF [1, 11℄ input data.� Estimating weff - the subgrid lo
al updraft velo
ity, using turbulent kineti
 energy, radiative 
oolingand optionally 
onve
tive velo
ity s
ale after Deardor� [2℄ (namelist parameter lin
l_wstar_in_we�).� Utilization of NCa and weff to 
al
ulate NCCN , the number 
on
entration of nu
leated 
loud dropletsfor 
omputing Re of 
loud water, using the Segal-Khain method [16℄ (namelist parameters i
loud_num_type_rad and i
loud_num_type_gs
p). i
loud_num_type_rad a�e
ts the radiation indire
t aerosolse�e
t on 
louds and i
loud_num_type_gs
p a�e
ts the auto-
onversion rate in the 1-momment mi-
rophysi
al s
heme.� Number 
on
entrations of other spe
ies (rain, 
loud i
e, snow and graupel) are either estimated 
on-sistently to assumptions on parti
le size distributions in the 1-moment 
loud mi
rophysi
s s
heme, orare prognosti
 for grid s
ale 
louds in 
ase of the 2-moment s
heme.� "Stratiform" subgrid-s
ale 
loud droplets and i
e water 
ontents (LWCsgs and IWCsgs, respe
tively)are estimated as fun
tions of temperature and humidity. The shallow 
onve
tion LWCsgs is esti-mated by one of the 3 following methods: as fun
tion of temperature and humidity, similarly tostratiform 
louds; as equal to the LWC of COSMO shallow 
onve
tion s
heme (namelist parameterluse_q
_
on_sgs); and as fra
tion of the theoreti
al adiabati
 water 
ontent [9℄ (namelist parameterluse_q
_adiab_for_re�
_sgs). The overall LWCsgs is estimated by the default COSMO method asweighted average of the "stratiform" and "
onve
tive" parts, using the 
orresponding 
loud fra
tions.The grid s
ale water 
ontents of 
loud water and i
e, snow, graupel and rain are prognosti
 variables.� E�e
tive radii and aspe
t ratios for 
loud droplets and 
loud i
e, as well as snow, graupel and rainare estimated as fun
tion of the 
orresponding water 
ontents and number 
on
entrations. For sit-uations dominated by subgrid-s
ale shallow 
onve
tion, the e�e
tive radius of subgrid-s
ale 
louddroplets 
an be, alternatively, estimated using the "adiabati
" parametrization [9℄ (namelist parameterluse_q
_adiab_for_re�
_sgs).The list of parameters of the new 
loud-radiation 
oupling s
heme is presented in Table 1 in the Appendix.The Table in
ludes the meaning of ea
h parameter, its type, default value, available range and re
ommendedvalue.3 Case StudyPreliminary tests of the new 
loud-radiation 
oupling s
heme (implemented in COSMO 5.5) were performedover the eastern Mediterranean (COSMO-IL domain 26-36N, 25-39E) with grid spa
ing of 2.8 km. The weatherevent was 
hosen to be on 16/02/2018. During that day the eastern Mediterranean was in the warm se
tor ofa deep upper air trough approa
hing from the west (see sattelite image in Figure 1). The SW winds 
auseddesert dust adve
tion into the region. The COSMO runs (driven by IFS data) were initialized on 16/2/201800 UTC and produ
ed fore
asts up to 16/2/2018 12 UTC.
COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



3a. Working Group on Physi
al Aspe
ts: Upper Air 31

Figure 1: IR 10.8 MeteoSat satellite image for 16/2/2018 at 12 UTC.
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al Aspe
ts: Upper Air 32Eight COSMO runs have been performed, with namelist parameter variations as summarized in Figure 2. Thereferen
e experiment (Ref) in
ludes the default 
loud-radiation s
heme (iradpar_
loud=1) and Tanre aerosol
limatology (itype_aerosol=1). Exp.1 is similar to Ref, with Tegen aerosol 
limatology (itype_aerosol=2).Exp.2 is similar to Exp. 1 with Segal-Khain estimation of 
loud-droplet number 
on
entration (i
loud_num_type_rad=2 and i
loud_num_type_gs
p=2). Exp. 3 is similar to Exp.2 with 
onsideration of Deardor�
onve
tive velo
ity s
ale in 
al
ulation of the lo
al subgrid-s
ale updraft (lin
l_wstar_in_we�=TRUE),andwith tuned hydrometeor number 
on
entrations (lredu
e_qnx_vs_qx=TRUE). Exp.4 is similar to Exp.3 withsubgrid s
ale droplets and i
e e�e
tive radius 
al
ulation using water 
ontents and number 
on
entrations(luse_re�_ini_x_as_re�x_sgs=FALSE), and with tuned water 
ontent redu
tion (luse_tq
qiqs=TRUE).Exp.5 is similar to Exp.4 with an estimation of shallow Cu droplets e�e
tive radius using the "adiabati
"parametrization (luse_q
_adiab_for_re�
_sgs=TRUE), and their water 
ontent using the shallow 
onve
-tion parametrization (luse_q
_
on_sgs=TRUE). Exp.6 is similar to Exp.5 with revised asymmetry fun
tionof i
e parti
les (lrad_i
e_smooth_surfa
es= FALSE and lrad_i
e_fd_is_gsquared= TRUE). Exp.7 is simi-lar to Exp. 6 with MCSI parameterization of spe
tral bands sampling in the radiation solver (itype_m
si=1)
ompensated by more frequent 
alls to the radiation s
heme (every 3 minutes instead of 15).

Figure 2: Summary of the eight COSMO experiments.The sensitivity results of the COSMO runs are presented in 3 as fun
tion of the fore
ast range. The upperleft panel presents the averaged global radiation over the 
loudy grid points (
loud 
over > 0.1). For ea
hexperiment the global radiation of the Ref run is subtra
ted, showing the sensitivity e�e
t of the 
urrentexperiment. The upper right panel presents similar results for the averaged 2 meter tempearture. Similarly,the lower panels present the sensitivity results for the 
lear sky regions (
loud 
over < 0.1), highlighting thedire
t e�e
ts of aerosols and the MCSI parameterization.
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Figure 3: Sensitivity results of the COSMO runs as fun
tion of the fore
ast range. The upper left panelpresents the averaged over the 
loudy grid points (
loud 
over > 0.1) global radiation. For ea
h experimentthe global radiation of the Ref run is subtra
ted, showing the sensitivity e�e
t of the 
urrent experiment. Theupper right panel presents similar results for the averaged 2 meter tempearture. Similarly, the lower panelspresent the sensitivity results for the 
lear sky regions (
loud 
over < 0.1).One 
an see (Exp. 1) that the use of Tegen aerosol instead of Tanre strongly in
reases the global radiation(up to 120 W/m2) and the 2 meter temperature up to 0.5 K. Exp. 2 shows that in the 
loudy areas thenew opti
al properties and Segal-Khain nu
leation, and � most importantly � 
onsideration of rain, snow andgraupel parti
les in radiation, de
reases the enhan
ement to about 50 W/m2. Exp. 3 shows that in the 
loudyareas revision of the lo
al updraft for Segal-Khain nu
leation and tuning the number 
on
entration de
reasesthe enhan
ement further to about 35 W/m2. Exp. 4 shows that in the 
loudy areas revision of SGS e�e
tiveradius 
al
ulations and imposing upper limits to the total water 
ontents brings the enhan
ement ba
k toabout 50 W/m2. Experiments 5,6 and 7 show smaller sensitivity on average. Generally, one 
an see that thenew 
loud-radiation 
oupling s
heme a�e
ts the global radiation by 30-120 W/m2 whi
h 
orresponds to a 2meter temperature variation range of about 1 K. Important to note is, that these results are preliminary andre�e
t the model sensitivity at a single day over a spe
i�ed region only. Also, the results in
lude averaging overlarge areas, whi
h suggests mu
h higher sensitivities lo
ally. We should also note that this is the �rst attemptto test the 
ode within the 5.5 framework. Ea
h of the new s
heme 
omponents was massively tested withinthe 5.1 framework. In the appendix we provide the "re
ommended" namelist based on the studies during thelast 4-years, whi
h were dis
ussed and published in various presentations and papers, as 
an be viewed on
T 2(RC)2 web page (http://www.
osmo-model.org/
ontent/tasks/priorityProje
ts/t2r
2/default.htm).
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al Aspe
ts: Upper Air 344 SummaryIn this short arti
le we inform the COSMO 
ommunity about the re
ent implementation of a revised 
loud-radiation 
oupling s
heme into COSMO 5.5. O�
ially this 
ode will be distributed with the �nal versionof COSMO - COSMO-6. The new s
heme in
ludes an optional modi�
ation to the radiation solver (MCSIparametrization). It further in
ludes implementation of new aerosol 
limatologies and prognosti
 aerosol�elds whi
h modify the 
lear sky opti
al properties. Moreover, the indire
t e�e
t of aerosols on number
on
entrations, e�e
tive radiuses and water 
ontents in grid and subgrid s
ale 
louds is signi�
antly revised.The opti
al properties of solid and water hydrometeors for the di�erent spe
tral intervals were revised aswell. Preliminary tests show a signi�
ant e�e
t of the new 
loud-radiation 
oupling s
heme on radiation and2 meter temperature.A
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al Aspe
ts: Upper Air 36lrad_i
e_smooth_surfa
es E�e
tive if iradpar_
loud=4. If T assumesmooth surfa
es for solid spe
ies (fd>0),otherwise assume rough surfa
es (fd 
loseto 0) LOG T T/F Frad_i
e_fd_is_gsquared E�e
tive if iradpar_
loud=4 andlrad_i
e_smooth_surfa
es=T. If T
ompute forward s
attered fra
tion as
f = g2 (RG92 method), otherwise 
om-pute f = 1/(2ω) + fd with fd = fct(AR)a

ording to the new �ts. Con
erns onlythe solar frequen
y bands

LOG F T/F F
lrad_in
l_qrqsqg in
lude/ex
lude QR, QS and QG in radia-tive transfer 
al
ulations LOG F T/F Tlrad_use_largesizeapprox E�e
tive for iradpar_
loud = 4: if F new�ts for all opti
al properties of solid spe
iesare used without 
lipping. If T only for theextin
tion the large-size approximation isapplied starting from Re�=150 mi
rons LOG T T/F T
itype_aerosol Type of aerosol map. Climatology: 1-Tanre, 2-Tegen, 3-Kinne. Prognosti
 datafrom int2lm: 4-CAMS, 5-ART INT 1 1-5 4i
loud_num_type_rad Derivation of 
loud number 
on
entrationfor radiation. 1: use 
loud_num_radtuning parameter. 2: derive fromTegen/CAMS aerosol data using Segal-Khain parametrization (e�e
tive foritype_aerosol=2,4 only)

INT 1 1,2 2
i
loud_num_type_gs
p Derivation of 
loud number 
on
entra-tion for 1-moment mi
rophysi
s. 1: use
loud_num tuning parameter. 2: derivefrom Tegen/CAMS aerosol data usingSegal-Khain parametrization (e�e
tive foritype_aerosol=2,4 only)

INT 1 1,2 2
lin
l_wstar_in_we� E�e
tive in 
ase ofi
loud_num_type_rad/gs
p=2 (Segal-Khain). If T, the e�. w for 
loud nu
leationis enfor
ed to be >= w∗ (
onv. vel. s
alein PBL), but only below the PBL heightor below the upper bound of the lowest"
onve
tive 
loud layer�, whi
hever ishigher. F � otherwise

LOG F T/F T

loud_num_rad Tuning parameter for 
loud number 
on-
entration for radiation (1/m3)

REAL 2E8 [0.1-10℄E8 2E8
loud_num Tuning parameter for 
loud number 
on-
entration for 1-moment mi
rophysi
s
(1/m3)

REAL 5E8 [0.1-10℄E8 5E8
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3a. Working Group on Physi
al Aspe
ts: Upper Air 37zref_
loud_num_rad Height of lower layer (above MSL in m)above whi
h the 
loud number 
on
entra-tion is exponentially redu
ed with height REAL 2000 500-3000 2000dz_oe_
loud_num_rad 1/e de
rease height in m of exponentialde
rease of 
loud number 
on
entrationabove zref_
loud_num_rad REAL 2000 500-3000 2000lredu
e_qnx_vs_qx T: redu
e qnx vs qx for radiation. In this
ase the 9 tuning parameters below are a
-tivated. F: otherwise LOG F T/F Trho
_n
high_rad For q
<=rho
_n
high_rad, qn
 is not re-du
ed as fun
tion of q
 [kg/m3]

REAL 0.5 E-4 [0.1-20℄E-4 0.5 E-4rho
_n
low_rad For rho
_n
high_rad < q
 <rho
_n
low_rad qn
 is linearly redu
edas fun
tion of q
 [kg/m3℄ REAL 2.0 E-4 [0.1-20℄E-4 2.0 E-4n
fa
t_low_rad For q
>=rho
_n
low_rad, the lin-ear redu
tion bottoms out at the n
-fa
t_low_rad'th fra
tion of qn
 REAL 0.1 [0...1℄ 0.1rhoi_nihigh_rad For qi <= rhoi_nihigh_rad, ni(T) is notredu
ed as fun
tion of qi [kg/m3℄ REAL 0.5 E-5 [0.1-20℄E-5 0.5 E-5rhoi_nilow_rad For rhoi_nihigh_rad < qi <rhoi_nilow_rad, ni(T) is linearly re-du
ed as fun
tion of qi [kg/m3℄ REAL 2.0 E-5 [0.1-20℄E-5 2.0 E-5nifa
t_low_rad For qi >= rhoi_nilow_rad, the lin-ear redu
tion bottoms out at the ni-fa
t_low_rad'th fra
tion of ni(T) REAL 0.1 [0...1℄ 0.1rhos_n0shigh_rad For qs <= rhos_n0shigh_rad, n0s is notredu
ed as fun
tion of qs [kg/m3℄ REAL 1.0 E-5 [0.1-20℄E-5 1.0 E-5rhos_n0slow_rad For rhos_n0high_rad < qs <rhos_n0low_rad, n0s is linearly redu
edtowards n0s_low_rad [kg/m3℄ REAL 5.0 E-5 [0.1-20℄E-5 5.0 E-5n0s_low_rad For qs>=rhos_n0slow_rad, n0s attainsthis 
onst. value [m−3℄ REAL 8 E5 [1-50℄E5 8 E5luse_re�_ini_x_as_re�x_sgs Use tuning parameters re�_ini_
,re�_ini_i for SGS e�. radius LOG T T/F Fre�_ini_
 E�e
tive radius for SGS
loud droplets (m). Only ifluse_re�_ini_x_as_re�x_sgs=T REAL 5 E-6 [3-15℄E-6 5 E-6re�_ini_i E�e
tive radius for SGS 
loud i
e (m).Only if luse_re�_ini_x_as_re�x_sgs=T REAL 10 E-6 [5-30℄E-6 10 E-6
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al Aspe
ts: Upper Air 38radq
_fa
t, radqi_fa
t,radqs_fa
t, radqg_fa
t Portion of GS and SGS q
, qi, qs, qg (re-spe
tively) "seen" by the radiation. Shouldbe <1 be
ause of subgrid-s
ale variability.In
rease leads to higher opti
al thi
kness REAL 0.5 [0.5-1℄ 0.5qvsatfa
t_sgs
l_rad S
aling fa
tor for q
 and qi of SGS 
louds:lo
al supersaturation whi
h is assumed tohave been depleted by SGS 
loud forma-tion [-℄. In
rease leads to higher opti
althi
kness REAL 0.01 [0.005-0.02℄ 0.01
luse_tq
tqitqs limit TQC, TQI, TQS to some integralmaximum. Adjust q
, qi, qs a

ordingly(for radiation). T leads to lower opti
althi
kness LOG F T/F T
luse_q
_adiab_for_re�
_sgs Use "adiabati
" parametrization for SGSshallow 
onve
tion e�e
tive radius LOG F T/F Tluse_q
_
on_sgs E�e
tive if luse_q
_adiab_for_re�
_sgs=T.F: use "adiabati
" parametrization forSGS shallow 
onve
tion LWC. T: use LWCfrom shallow 
onve
tion parametrization(if l
onv=T) LOG F T/F T
alpha1_adiab_rad Linear deviation with height (above
loud base) of SGS shallow 
on-ve
tion e�e
tive radius from theadiabati
 value alpha1_adiab_rad-alpha2_adiab_rad*(z-z
b). [-℄ REAL 0.95 [0.7-1℄ 0.95
alpha2_adiab_rad Linear deviation with height (above
loud base) of SGS shallow 
on-ve
tion e�e
tive radius from theadiabati
 value alpha1_adiab_rad-alpha2_adiab_rad*(z-z
b). [1/m℄ REAL 1.2 E-4 [1-2℄E-4 1.2 E-4
beta_adiab_rad Ratio of 
loud-average number 
on
entra-tion (of SGS shallow 
onve
tion) with re-spe
t to the 
loud 
ore value (obtainedfrom Segal-Khain) REAL 0.38 [0.2-1℄ 0.38gamma_adiab_rad Linear deviation with height (abovere�=12mi
ron level) of SGS shallow 
onv.q
 from the "pseudo-adiabati
" value.[1/km℄ REAL 0.45 [0.2-0.7℄ 0.45
itype_m
si 1: Monte Carlo Spe
tral Integration in theradiation solver. Re
ommended togetherwith nin
rad=5. 0-Default from RG92 INT 0 0,1 0
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al Aspe
ts: Upper Air 39Table 1: List of parameters of the new 
loud-radiation 
oupling s
heme. The parametersare separated to groups a

ording the 
orresponding parametrization: Opti
al propertiesderivation; E�e
t of large hydrometeors on radiation; Aerosols e�e
t in 
lear sky and ondroplets number 
on
entration in 
louds; Redu
tion of hydrometeors number 
on
entrationsfor large water 
ontents; Method of e�e
tive radius 
al
ulation; Tuning water 
ontents "seen"by radiation; "Adiabati
" parametrization for liquid water 
ontent and e�e
tive radius inshallow 
umulus; New method for radiation solver. The Table in
ludes the meaning of ea
hparameter, its type, default value, available range and re
ommended value.
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Impacts on model performance score from CALMO and CALMO-MAXVoudouri A.1 *, Carmona I.2, Avgoustoglou E.1, Levi Y.2,Bettems J.M.3and E.Bu

hignani41.Helleni
 National Meteorologi
al Servi
e 2.Israel Meteorologi
al Servi
e 3.MeteoSwiss 4.ItalianAerospa
e Resear
h Center (CIRA)

∗
orresponding author e-mail: antigoni.voudouri�hnms.gr
1 Introdu
tionThe priority proje
t CALMO of COSMO (years 2013-2016) indu
ed an obje
tive multivariate 
alibrationmethod aiming on substituting expert tuning. Expert tuning is a pro
edure by whi
h free or poorly 
on�nedparameters existing in the parameterization s
hemes of RCM and NWP models are mainly tuned using expertknowledge (Duan et al., 2006; Skamaro
k, 2004;Bayler et al., 2000).This pro
edure, performed for spe
i�
parameterization s
hemes addressed by model developers, usually underestimates parameter intera
tions,follows a non-obje
tive pro
edure, and is di�
ult to repli
ate without a dire
t involvement of the modeldevelopers.Several studies, over the last years, have been 
ondu
ted towards substituting expert tuning by obje
tive andautomati
 methodologies to 
alibrate un
on�ned model parameters existing in both NWP and RCM model(Bellprat et al., 2012a and 2012b, Gong et al.,2015, Duan et al., 2016, Gong et al., 2016, Voudouri et al.,2017, 2018).At the framework of CALMO, the implementation of the 
alibration method that has been developed byBellprat et al. (2012a) and implemented for a regional 
limate model has been applied on COSMO-NWPmodelusing a horizontal resolution of 0.0625o and then tested for a horizontal resolution of 0.02o (approximately2km) over a mainly 
ontinental domain 
overing the Alpine Ar
.In the priority proje
t CALMO-MAX (years 2017�in progress) additional tests on the advantages ofthe
alibration method for COSMO model, using a �ner resolution of 0.01o are studied. The steps followed,namely model setup, parameter sele
tion as well as basi
 di�eren
es between the two priority proje
ts arebrie�y des
ribed in Se
tion 2. Results from CALMO to be 
onsidered in CALMO-MAX are presented inSe
tion 3. A summary and 
on
lusions are given in Se
tion 4.2 Data and Methodology2.1 Model setupThe 
ode used is the refa
tored version of the COSMO model (Lapillonne and Fuhrer,2014) based on theo�
ial version 5.00 of the model, 
apable of running on GPU-based hardware ar
hite
tures, operationallyused by MeteoSwiss. In CALMO, simulations were performed with COSMO model over the whole year 2013and operated with horizontal resolution of 0.02o (approximately 2km) for a domain in
luding the wider areaof Switzerland and Northern Italy (Fig. 1), while in CALMO-MAX a �ner resolution of 0.01° (about 1 km) isused. The verti
al extension rea
hes 23.5 km ( 30hPa) with 60 model levels for CALMO and 80 for CALMO-MAX. Initial and boundary �elds for all tests are derived from the MeteoSwiss operational fore
asting ar
hivesystem at 0.02o horizontal resolution ( 2km).doi:10.5676/dwd_pub/nwv/
osmo-nl_19_06COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



3b. Working Group on Physi
al Aspe
ts: Soil and Surfa
e 41In addition, the history of the soil, not used in the 
on�guration of CALMO, is 
onsidered in the CALMO-MAX simulations (hind
ast mode). Finally, for CALMO-MAX, the soil has been initialized by a 3 yearsspin-up using TERRA Standalone (TSA).

Figure 1: Topography of the simulation area2.2. Data and sele
ted parametersThe un
on�ned parameters existing in COSMO model are related to sub-grid s
ale turbulen
e, surfa
e layerparameterization, grid-s
ale 
louds, pre
ipitation, moist and shallow 
onve
tion, radiation, soil s
heme et
.(Doms et al., 2011, Gebhardt et al., 2011). Thus, sensitivity experiments using twelve parameters asso
iatedwith turbulen
e (tur_len, tkhmin, tkmmin), surfa
e layer parameterization (rat_sea, rlam_heat, 
rsmin),grid-s
ale pre
ipitation (v0snow), moist and shallow 
onve
tion (entr_s
), radiation (rad_fa
, u
1) and thesoil s
heme (
_soil) have been performed and the most sensitive ones have been sele
ted. Figure 2 illustratesthe sensitivity of minimum 2m temperature with respe
t to 7 (left panel) and 5 parameters (right panel)respe
tively. The red polygon refers to the zero sensitivity �axis� while sensitivities 
lose to zero are depi
tedwith blue bullets. In left panel of �gure 2, negative sensitivities, well below the red polygon are depi
tedwith orange bullets while positive sensitivities well above the red polygon are depi
ted with green bullets.In right panel of �gure 2, all negative and positive sensitivities are depi
ted with green bullets. The dashedpolygon line that 
onne
ts the dots denotes opti
ally the overall sensitivity for the 
onsidered meteorologi
alvariable espe
ially to the degree that it is 
onvex/
on
ave and mainly in referen
e to the zero sensitivity redpolygon. In CALMO, the six model parameters sele
ted were: asymptoti
 turbulen
e length s
ale, tur_len[m℄; minimal di�usion 
oe�
ients for heat, tkhmin[m2/s℄; s
alar resistan
e for the latent and sensible heat�uxes in the laminar surfa
e layer, rlam_heat [no units℄; the surfa
e-area index of the evaporating fra
tionof grid points over land, 
_soil[no units℄; the fa
tor in the terminal velo
ity for snow, v0snow[no units℄; andthe mean entrainment rate of boundary layer humidity into the shallow 
onve
tion 
louds, entr_s
 [m-1℄.In CALMO-MAX �ve parameters were sele
ted: tkhmin, rlam_heat, v0snow(already used in CALMO), andadditionally the fra
tion of 
loud water/i
e 
onsidered for radiation, radfa
[no units℄ and the parameter for
omputing the amount of 
loud 
over in saturated 
onditions, u
1[no units℄.The parameters are 
alibrated against daily minimum and maximum 2m temperature values (Tmax and Tminrespe
tively) as well as 24h a

umulated pre
ipitation (pre
). For temperature, available measurements of dailyCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



3b. Working Group on Physi
al Aspe
ts: Soil and Surfa
e 42mean surfa
e air temperature sele
ted at the station network of MeteoSwiss were used. More spe
i�
ally theinterpolated values of all available 2m-temperature maximum and minimum observations over Switzerland toa 2km-grid are provided by Frei (2014).For pre
ipitation observations over Switzerland, the gridded MeteoSwiss radar 
omposites were used, 
orre
tedby rain gauges and interpolated to the model grid. Over Northern Italy, observations interpolated to the modelgrid were used only where the grid points in the vi
inity of the stations get a value. In addition to Tmin,Tmax and pre
, radio soundings data and the asso
iated model pro�les at grid points near the soundingslo
ations were used. Sunshine duration and 2m dew point temperature are also 
onsidered in CALMO-MAXwith observational data provided by MeteoSwiss.

Figure 2: Spider graphs of minimum 2m temperature sensitivity with respe
t to 7 (left panel) and 5 param-eters (right panel)2.3. MethodologyThe 
alibration methodology is presented in detail in Voudouri et al. 2017 and 2018. It relies on a Meta-Model(MM) that approximates the parameter spa
e, using a multi-variate quadrati
 regression in an n-dimensionalmodel (Neelin et al., 2010 and 2010a). The spe
i�
 MM is based on the assumption that 
hanges of thesimulated model quantity, due to a parameter perturbation, are smooth and thus 
an be approximated by a2nd order polynomial regression.As a quadrati
 �t is determined by only three points, this assumption allows �tting the MM by performing alow number of simulations, namely 2N+0.5N(N-1)+1, for N parameters, whi
h is 
ru
ial for 
omputationallyexpensive NWP and RCM models.The use of a quadrati
 regression further inhibits over-�tting and allowsfor analyti
al solutions of the parameter spa
e. On
e the MM has been 
onstru
ted, it 
an be used as asurrogate to perform a large number of simulations, testing several parameter values in order to �nd theoptimal
ombination of values.In CALMO, the MM adapted for COSMO-CLM by Bellprat et al., 2012a, has been 
onsolidated and extendedby adding the option not to average Tmax/Tmin over regions, the predi
tion of multiple verti
al pro�le 
har-a
teristi
s, and the possibility of supporting new geographi
al regions. The quality s
ore to a

ount for modelperforman
e was a RMSE-type performan
e s
ore initially tested in CALMO preliminary phase.Su

essively,an advan
ed performan
e s
ore was introdu
ed based on the COSMO Index (COSI) developed by Damrath(2009). The COSI s
ore 
ombines the RMSE-type for 
ontinuous variables and the ETS (Equitable Thresh-old S
ore) for 
ategori
al �elds. The COSI s
ore in CALMO-MAX is updated to in
lude sunshine duration,mean, maximum and minimum dew point temperature, while for pre
ipitation ETS is repla
ed with the FSS(Fra
tion Skill S
ore).COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



3b. Working Group on Physi
al Aspe
ts: Soil and Surfa
e 433 ResultsDuring the preliminary phase of CALMO, it has been shown (Voudouri et al., 2017 and 2018) that theMM developed for 
limate models (Bellprat 2012a, 2012b) 
an be adapted to COSMO-NWP. Therefore, theobje
tive methodology 
an be transferred from RCM to NWP. During the se
ond phase of CALMO, anoptimal set of six parameters over the entire year has been extra
ted, as well as monthly optimal valuesillustrating model parameters sensitivity on di�erent weather types. Figure 3 shows the 24 hour a

umulatedpre
ipitation (pre
), Tmax and Tmin values provided by MM against COSMO simulation results during theyear 2013. The related 
orrelation values are 79.9%, 80.6% and 78.2% respe
tively.

Figure 3: 24h a

umulated pre
ipitation (upper panel), Tmax (left panel), Tmin (right panel) Meta-Modelpredi
tion for the tested parameter 
ombination, vs. COSMO simulation results during the year 2013. X axispresents the simulated �eld minus the referen
e simulation. Y axis presents the Meta-Model �eld minus thereferen
e simulation.Monthly and yearly improvement of the model performan
e asso
iated with daily minimum and maximum2m temperature, as well as 24h a

umulated pre
ipitation when using the set of optimum parameter values,against the values re
ommended in the default model setup have been investigated. More spe
i�
ally theannual 
y
le of the performan
e s
ore using the optimum set of six parameters is presented in Figure 4. Theannual 
y
le of the improved performan
e s
ore when the optimum parameter sets is used is presented in theblue dotted line in Figure 4, while the red line stands for the improvement of the s
ore over the entire year,when the optimum set of parameters is used repla
ing the default ones.The monthly variability of the performan
e s
ore with respe
t to the overall improvement (over the entire year)indi
ates that the model performan
e is sensitive to di�erent weather patterns. This feature is pronoun
edduring winter (and spe
i�
ally for February) with the overall improvement rea
hing up to 12%. The e�e
tsof 
alibration methodology on yearly and monthly performan
e s
ore, using �ner model resolution, is nowinvestigated at the framework of CALMO-MAX
COSMO Newsletter No. 19: O
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Figure 4: 
y
le of the performan
e s
ore improvement using the optimum set for six parameters used inCALMO
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al Aspe
ts: Soil and Surfa
e 454 Con
lusionsThe methodology used in CALMO and CALMO-MAX priority proje
ts showed that the 
alibration of theun
on�ned model parameters using the MM is feasible. Model performan
e 
an be improved on monthlyand yearly basis. However, the methodology remains 
omputationally expensive. Towards this dire
tion, itwill be examined within CALMO-MAX whether the 
omputational 
ost 
ould be redu
ed by e.g. applyingCALMO methodology on10-20 days set, representing most of the synopti
 situation, instead of an entire year.On
e the 
omputational 
ost is redu
ed, the developed methodology 
ould be used by ea
h COSMO member,to de�ne an optimal parameter set over the target area of interest, for re-
alibration after major model
hanges (e.g. higher horizontal and / or verti
al resolution), for an unbiased assessment of di�erent modules(e.g.parameterization s
hemes), as well as for optimal perturbation of parameters when run in ensemble mode.A
knowledgments The present work is part of CALMO priority proje
t of COSMO. CSCS is a
knowledgedfor providing the 
omputer resour
es.Referen
es[1℄ Albergel, C., de Rosnay, P., G. Balsamo, G., Isaksen, L., Munoz-Sabater, J., 2012: Soil Moisture Analysesat ECMWF: Evaluation Using Global Ground-Based In Situ Observations. J. Hydrometeor, 13, 1442-1460.[2℄ Aligo, E. A., Gallus, W. A. and Segal, M., 2007: Summer Rainfall Fore
ast Spread in an EnsembleInitialized with Di�erent Soil Moisture Analyses. Wea. Fore
asting, 22, 299-314.
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Spatial verification techniques applied to high resolution models for an

intense precipitation summer event in GreecePresented in the: 14th International Conferen
e on Meteorology,Climatology and Atmospheri
 Physi
sO
tober 15-17, 2018 Alexandroupolis, Gree
eBou
ouvala D.1*, Gofa F1., Samos I11 Helleni
 National Meteorologi
al Servi
e, Hellinikon GR-16777, Athens, Gree
e
1 Introdu
tionTraditional pre
ipitation veri�
ation metri
s based on point-to-point 
omparison without providing informa-tion regarding spatial distribution are insu�
ient to evaluate pre
ipitation fore
asts, espe
ially from highresolution mesos
ale models. For example, when a small s
ale feature (also de�ned as an obje
t) is 
orre
tlyfore
ast but slightly displa
ed in time and spa
e, the fore
ast will be penalized both for a miss and a falsealarm (double penalty), espe
ially for high resolution datasets (Ebert 2008).Spatial veri�
ation methods that allow for some toleran
e to reasonably small errors in spa
e and time tend toresolve this problem (Cassola et al. 2015). The two main 
ategories are: neighbourhood (or fuzzy) veri�
ationmethods (Ebert 2008) based on a s
ale-dependent veri�
ation approa
h where the requirement for exa
tmat
hes between fore
asts and observations is relaxed and obje
t oriented te
hniques whi
h deal on withhow well the fore
ast 
aptures the overall stru
ture of meteorologi
al features by identifying and 
omparingpre
ipitation features in the fore
ast and observations (Ebert and M
Bride 2000).The aim of this study is to evaluate the relative model performan
e of the operational Numeri
al WeatherPredi
tion (NWP) systems of the Helleni
 National Meteorologi
al Servi
e (HNMS) (with di�erent horizontalresolutions) for a rare summer pre
ipitation event that a�e
ted almost the entire area of Gree
e by applyingspatial veri�
ation methods.2 Data and MethodologyAn unusually strong pre
ipitation event that o

urred on the 16-17th of July 2017 was sele
ted as a test 
ase.The event, whi
h was a 
ombination of both dynami
 and 
onve
tive a
tivity was a

ompanied by relativelylow temperatures for the season and a�e
ted a large part of the 
ountry, 
ausing hailstorms, �ooding, propertydamage and unfortunately loss of human life. The event was pre
eded by a series of relatively warm dayswith 850hPa temperatures around 15-20°C. On 17/04 00UTC, a trough 
entered over Russia 
overing all ofEastern Europe moved southwards toward Gree
e, resulting in 
old air masses (-15°C) at 500hPa (Fig 1a)moving slowly E-NE. The trough was a

ompanied by a low pressure system at the surfa
e, whi
h movedfrom west to east (Fig 1b). Initially, 
onve
tive pre
ipitation was observed over northern and western Gree
ewhi
h extended to the 
entral and eastern parts of the 
ountry by the afternoon. This was a

ompanied bylightning (Fig 1
) and hail at several lo
ations on the mainland.2.1 DataSpatial veri�
ation te
hniques require data de�ned 
ontinuously over a 
ommon spatial domain 
overingthe area of interest. 3-hourly 
umulative HSAF (EUMETSAT Satellite Appli
ation Fa
ility on Support todoi:10.5676/dwd_pub/nwv/
osmo-nl_19_07COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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ation and Case Studies 47Operational Hydrology and Water Management) gridded observations and fore
asts from: a) the global s
aleECMWF (IFS) model with a horizontal resolution of 9km and b) the lo
al model COSMO-GR (Gofa et al.2008) with horizontal resolutions of 7, 4 and 1km were used.The data were regridded (interpolated or extrapolated) to a 
ommon grid spa
ing of 0.06° (4km) in order tofa
ilitate 
omparison. This grid spa
ing is also 
onsistent with the spatial frequen
y of observations. Despitethe smoothing e�e
t asso
iated with ups
aling, the high resolution model 
on�guration preserves details ofthe pre
ipitation stru
ture while also featuring larger magnitude departures from the observations at somelo
ations. This 
an possibly be attributed to the 
oarser resolution of the initial observed pre
ipitation �eld.2.2 MethodologyNeighborhood veri�
ation (or fuzzy) te
hniques evaluate fore
ast performan
e using more elasti
 
onditionsregarding the exa
t spatio-temporal mat
h between observed and fore
ast �elds. It is based on the prin
ipleof expanding the area of 
omparison to in
lude data points nearby (�neighbors�), employing a spatial window,or "neighborhood", surrounding the fore
ast and/or observed points. A relaxing �lter 
an be applied to both�elds, and the penalty for di�eren
es between modeled and observed values is relaxed. The properties ofthe relaxed �elds (mean values, maximum values, number of grid points ex
eeding a threshold) 
an then be
ompared using traditional statisti
al methods.The size of this window starts at the smallest possible s
ale (neighborhood of one grid box) and is graduallyin
reased in order to provide insight into the s
ales at whi
h the model has the most skill. The methodshows how fore
ast skill varies with neighborhood size and 
an be used to determine the smallest neighbor-hood size that provides a su�
iently skillful fore
ast. A more detailed review of neighborhood approa
hesis available in Ebert (2008). There is a variety of methods that fall within this 
ategory, di�erentiated bytheir treatment of the points within ea
h window, depending on the neighborhood method used. In order todetermine if a fore
ast is �useful� or �good enough�, de
ision models are applied su
h as: Ups
aling, MinimumCoverage, Anywhere in the Window and Pra
ti
ally Perfe
t Hind
ast. Traditional di
hotomous s
ores arethen 
al
ulated.The Fra
tions Skill S
ore (FSS) is a de
ision model based on the 
omparison of frequen
y of fore
ast andobserved events. In this study, the VAST (VERSUS Additional Statisti
al Te
hniques) software pa
kage,whi
h was developed by the COSMO 
onsortium and o�ers a number of neighborhood veri�
ation tools, wasemployed (Gofa at al. 2018). SAL (whi
h stands for Stru
ture, Amplitude and Lo
ation) is an obje
t-basedmethod developed by Wernli et al. (2008, 2009) to measure the quality of a fore
ast by identifying obje
tsin both fore
ast and observed �elds at a given time and provide information on obje
t shape and lo
ationdi�eren
es between the two �elds. The s
ore 
onsists of three 
omponents whi
h 
orrespond to a global �eldmeasure of: Stru
ture (S), Amplitude (A) and Lo
ation (L). The S parameter 
ompares the volume of the

Figure 1: (left): 17/04 00UTC 500hPa (sour
e: University of Wyoming), 1b. (
enter): Surfa
e Analysis(sour
e: UK Met O�
e), 1
. (right) Lightning a
tivity at 10UTC (http://el.blitzortung.org) with dots indi-
ating the lo
ation of lightning strikes where the 
olor refers to the age of the strike (20 min intervals).COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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ation and Case Studies 48normalized pre
ipitation obje
ts of the two �elds. Positive S values indi
ate that modeled pre
ipitation obje
tsare too large or too �at (more stratiform pre
ipitation), while a negative value indi
ates that obje
ts are toosharp and too small (more 
onve
tive type pre
ipitation).The A parameter represents the normalized di�eren
e of the domain-averaged pre
ipitation �elds and isindependent of stru
tural features. Positive (Negative) values of the A parameter indi
ate overestimation(underestimation) of total domain pre
ipitation. The range of the S and A parameters is [-2, 2℄. The L
omponent 
ombines information about the distan
e of predi
ted and fore
ast mass 
enters (L1) and thenormalized distan
e between the pre
ipitation obje
ts (L2). L ranges from 0 to 2. A perfe
t fore
ast is
hara
terized by zero values for all three SAL 
omponents. The S and L (spe
i�
ally the L2 
omponent)parameters require the identi�
ation of obje
ts in observed and fore
ast �elds. An obje
t is de�ned when itex
eeds a �xed or statisti
ally de�ned threshold value. Wernli et al. (2009). Consequently, if no features arefound in either or both fore
ast and observed �elds, the SAL values 
annot be de�ned. The SAL parametersare 
al
ulated with a SpatialVx based software pa
kage (Gilleland 2017).
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ECMWF-IFS COSMOGR-7 COSMOGR-4 COSMOGR-1

Figure 2: Neigborhood method plots for lead time 16/07 00 UTC derived for the various model setups.From top to bottom: FSS (Fra
tions Skill S
ore), ETS (Equitable Thread S
ore), Bias, POD (Probability ofDete
tion) and FAR (False Alarm Rate)
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5. Working Group on Veri�
ation and Case Studies 503 ResultsA sele
tion of the evaluation plots for July 17th applying neighborhood methods to the various models andresolutions is presented in Fig 2. (time lead 1600 UTC). The s
ores are plotted as intensity-s
ale diagrams,where the intensity threshold and spatial s
ale averaging in
rease along the x and y axes respe
tively, andthe 
olor shade gives an indi
ation of the value of the s
ore (also plotted expli
itly). By evaluating the 
olorintensity (darkness), s
ales and thresholds at whi
h a parti
ular model system performs best, it is possibleto evaluate model performan
e without fo
using on the absolute value of ea
h 
olored window. The fore
astskill (as represented by the FSS s
ore) does not di�er signi�
antly between models, but it does in
rease aswindow size (<15km) and pre
ipitation thresholds (<3mm/3h) de
rease. For high pre
ipitation thresholds,on the other hand, fore
ast skill de
reases.ETS (Equitable Thread S
ore) index diagrams (Pra
ti
ally perfe
t Hind
ast de
ision method) show that thefore
ast quality is better for window sizes <50km and thresholds 0.1-0.2mm. The indi
es for COSMO-GR1and COSMO-GR4 are slightly better than those of ECMWF-IFS. However, signi�
ant di�eren
es appear inthe Bias s
ore (ups
aling method) as ECMWF-IFS has the tenden
y to overestimate both the low thresholds(0.1-3mm) and high thresholds (>10mm/3h) while underestimating the remaining thresholds. The COSMOmodel generally overestimates rainfall for windows up to 27km for all thresholds, ex
ept for COSMO-GR7whi
h underestimates only the high thresholds. The POD (Probability of Dete
tion) and FAR (False AlarmRate) (
al
ulated using the Anywhere in the Window method) show that ECMWF-IFS had more su

essfulhits (dark red) but also more false alarms (dark blue). SAL parameters for the 24h a

umulated pre
ipitaionfor July 17th are estimated for the 1600 UTC model run with di�erent �xed thresholds (from lower to higher)(Fig 3).The positive S parameter indi
ates that �atter obje
ts (more stratiform pre
ipitation) are 
al
ulated bythe models for higher thresholds, while sharper obje
ts (more 
onve
tive) are produ
ed at lower thresholds.COSMO7 predi
ts �atter obje
ts versus sharper obje
ts by COSMO1. The L parameter is 
onstant and lowerfor ECMWF-IFS, while higher values are 
al
ulated for COSMO4. COSMO7 S values tend to be lower forhigher pre
ipitation thresholds. The A parameter, whi
h is independent of obje
ts and depends on the entire�eld, is positive, whi
h means that for all models, espe
ially for COSMO7, 24h pre
ipitation is overestimated.

Figure 3: Left:S (Stru
ture), Center: L(Lo
ation) parameters with threshold, Right: A (Amplitude) param-eter for ECMWF-IFS, COSMOGR-7, COSMOGR-3 and COSMOGR-1.
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ation and Case Studies 514 Con
lusionsThe aim of this study was to 
ompare the metri
s of two spatial veri�
ation methods applied to the 
aseof an intense summer pre
ipitation event. Neighborhood veri�
ation results showed that for high rainfallrate thresholds and large spatial windows, the fore
ast skill and quality de
reased for all models used inthe study. Di�eren
es between the COSMO and ECMWF-IFS models at di�erent s
ales and thresholds aremainly evident in Bias and ETS s
ores, with the latter model tending to overestimate pre
ipitation for lowthresholds and 
onsequently produ
ing more false alarms. Appli
ation of the SAL obje
t-based method to24h pre
ipitation fore
asts showed that �ner resolution models led to predi
tion of sharper obje
ts, that allmodels overestimate domain pre
ipitation while lo
ation errors are more variable with threshold for �nerresolution models. These results 
on�rm that, when 
ombined with traditional veri�
ation te
hniques, spatialveri�
ation methods enable more detailed and more 
omplete assessment of model performan
e.Referen
es[1℄ Cassola F, Ferrari F, Mazzino A (2015) Numeri
al simulations of Mediterranean heavy pre
ipitationevents with the WRF model: analysis of the sensitivity to resolution and mi
rophysi
s parameterizations
hemes. Atmos. Res. 164�165, 210�225.[2℄ Ebert E (2008) Fuzzy veri�
ation of high resolution gridded fore
asts: A review and proposed framework.Meteorol. Appl. 15, 51-64.[3℄ Ebert E, M
Bride JL (2000) Veri�
ation of pre
ipitation in weather systems: Determination of systemati
errors. J. Hydrol. 239, 179-202.[4℄ Gilleland E (2017) R pa
kage Version 0.6-1.https://
ran.r-proje
t.org /pa
kage =SpatialVx[5℄ Gofa F, Pytharoulis I, Andreadis T, Papageorgiou I, Fragkouli P, Louka P, Avgoustoglou E, Tyrli V(2008) Evaluation of the operational numeri
al weather fore
asts of the Helleni
 National Meteorologi
alServi
e. Pro
. 9th COMECAP Conferen
e of Meteorology, Thessaloniki, Gree
e, 51-58.[6℄ Wernli H, Hofmann C, Zimmer M (2009) Spatial Fore
ast Veri�
ation Methods Inter
omparison Proje
t:Appli
ation of the SAL Te
hnique. Wea. Fore
asting. 24, 1472�1484.[7℄ Wernli H, Paulat M, Hagen, Frei C (2008) SAL-A novel quality measure for the veri�
ation of quantitativepre
ipitation fore
asts. Mon. Wea. Rev. 136, 4470�4487.
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A user oriented verification methodology for wind forecastMaria Stefania TesiniARPAE, HydroMeteoClimateServi
e of Emilia-Romagna region, Bologna, Italy

1 Introdu
tionThe 10-m wind is a weather parameter 
hara
terized by strong dependen
e on orographi
 and topographi
details and high temporal variability. Therefore the veri�
ation of wind fore
ast requires a methodology takinginto a

ount these features.On top, any veri�
ation method should be tailored for the spe
i�
 purpose de�ned by the user of that fore
ast,being the developer of the model, the fore
aster in the operational room or the stakeholder for a pra
ti
alappli
ation.One of the main uses of wind fore
ast at Arpae-SIMC is to issue warnings when wind speed ex
eeds somethreshold. For example, strong easterly winds 
an determine the possible o

urren
e of sea storms over theItalian 
oast of the Adriati
 Sea (see �gure 1), but also less intense winds 
an 
ause problems to the tourist'sa
tivity on the bea
h.

Figure 1: Wind observations in the north Adriati
 Sea 
oastVeri�
ation should therefore address several user-related aspe
ts, in parti
ular it should quantify:� the ability of the model to predi
t wind speed above (or below) 
riti
al thresholds, in
luding falsealarms or misses,� the fore
ast skill in terms of wind dire
tion,� the dependen
e of fore
ast error on wind dire
tion� the interplay between wind-speed and wind-dire
tion ina

ura
iesIn addition, another very important aspe
t to 
onsider is the 
ommuni
ation of the results to the end user,whi
h should be as 
lear and 
on
ise as possible.doi:10.5676/dwd_pub/nwv/
osmo-nl_19_08COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



5. Working Group on Veri�
ation and Case Studies 532 The Performan
e-RoseIn order to meet the needs of our end-user we have studied a methodology of veri�
ation that seeks totake into a

ount wind speed and dire
tion at the same time, but that it is also e�e
tive in 
ommuni
atingresults. For this purpose we developed a novel summary-plot of the s
ores derived from the 
ontingen
ytable, denominated "Performan
e Rose". In a wind-rose plot, the observed and fore
ast wind frequen
y isrepresented subdivided into the usual 8 se
tors. In additions to this, ea
h spoke is broken down into 
olor-
oded bands that show information about errors in wind speed and dire
tion. Moreover usual s
ores su
h asthe Probability of Dete
tion, the Threat S
ore and the Su

ess Ratio are plotted for ea
h se
tors (i.e. for ea
hdire
tion) as symbols on the appropriate s
ale (from 0 to 1 for all of them) in the radial axes.First of all, for ea
h station 10m-wind observations (hourly or 3/6-hourly) and 
orresponding data predi
tedby model are 
ategorized in o
tants for wind dire
tion (N, NE, E, SE, S, SW, W, NW) and in 
lasses forwind speed, a

ording to table 1.LIGHT ws < 10 Knots ws < 5.1 m/sLIGHT-MODERATE 10 ≤ ws < 20 Knots 5.1 ≤ ws < 10.3 m/sMODERATE 20 ≤ ws < 30 Knots 10.3 ≤ ws < 15.4 m/sSTRONG ws ≥ 30 Knots ws ≥ 15.4 m/sTable 1: Wind speed 
lassesFor ea
h spe
i�
 wind speed 
lass (e.g. "Light-Moderate") a "Performan
e-Rose" diagram is produ
ed, asshowed in �gure 2.

Figure 2: The Performan
e-Rose diagramLike in a usual wind rose, the frequen
y of winds of the spe
i�
 wind 
lass blowing from parti
ular dire
tionsover a spe
i�ed period is represented:� Blue line is the observed frequen
y of the spe
i�
 speed-
lass� Red line is the fore
ast frequen
y of the spe
i�
 speed-
lassThe number of events 
an be read on the radial s
ale (frequen
y axis), in
reasing outwards from the 
enter.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



5. Working Group on Veri�
ation and Case Studies 54Using se
tors of di�erent 
olours we des
ribed how model predi
ts the referen
e speed 
lass in ea
h dire
tion,being the dire
tion 
orre
t . For example:Green means speed 
lass is 
orre
tly fore
astCyan means speed is underestimated of 1 
lass ( e.g. the fore
ast is �Moderate� but the observationis �Strong�)Yellow means speed is overestimated of 1 
lass ( e.g. the fore
ast is �Moderate� but the observationis �Light-Moderate�)The number of events of ea
h se
tor 
an be dedu
ed using the radial s
ale of the frequen
y axis.In addition, the gray half-se
tors represent the number of fore
ast in ea
h dire
tion that are "nearly" 
orre
tin dire
tion, being the intensity 
orre
t :Half se
tor on the left means fore
ast is shifted of 1 o
tant 
lo
k-wise (e.g. if the f
st is NE, theobs in N)Half se
tor on the right means fore
ast is shifted 
ounter
lo
k-wise (e.g. if the f
st is NE, obs isE)In this parti
ular 
ase, the number of events 
an be dedu
ed using the reverse radial s
ale of the frequen
yaxis (starting from the outermost 
ir
le).A quantitative assessment of the goodness of the fore
asts is made using some s
ores evaluated form theelements in a 
ontingen
y table (see �gure 3) that shows the frequen
y of "yes" and "no" fore
asts ando

urren
es:
POD =

hits

hits + misses
(Probability of Dete
tion)

TS =
hits

hits + misses + false alarms
(Threat S
ore)

SR = (1 − FAR) =
hits

hits + false alarms
(Su

ess Ratio)

FAR =
false alarms

hits + false alarms
(False Alarm Ratio)

BIAS =
hits + false alarms

hits + misses
(Bias S
ore)

Figure 3: Contingen
y table for di
hotomous (yes/no) fore
astsFor our purposes, we have de�ned two types of "yes"/"no" events and for ea
h of them a spe
i�
 
ontingen
ytable has been 
onstru
ted:1. "Class & Dire
tion": the "yes" event is de�ned by speed 
lass and dire
tion 
orre
tly fore
ast atthe same time, while other entries of the 
ontingen
y table are de�ned as in the table in �gure 42. Class & Dire
tion ±1: the "yes" event is de�ned by speed 
lass 
orre
tly fore
ast, but dire
tionis 
onsidered 
orre
t even if di�ers by one o
tant. A

ording to the table in �gure 5 we de�ned only"false alarm" and "miss" events, sin
e 
orre
t negatives have been removed from 
onsideration.This de�nition of "extended dire
tion", even if not 
ompletely proper, is meant to address the user'srequest to know whether the sour
e of error depends on either wind speed or wind dire
tion, if 
omparedwith s
ores based on the exa
t 
orresponden
e of dire
tion and speed.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 4: Contingen
y table for event de�ned as "speed 
lass anddire
tion 
orre
tly fore
ast at the same time"
Figure 5: Contingen
y table for event de�ned as "speed 
lass 
orre
tlyfore
ast, but dire
tion is 
orre
t even if di�ers by one o
tant"In the Performan
e Rose, the s
ores related to the two event de�nitions are plotted as symbols of di�erent
olors (bla
k for the event "Class & Dire
tion" and magenta for event "Class & Dir ±1").Their value 
an be read on the radial s
ale (s
ore axis) and, as in a ar
hery target, the perfe
t s
ore 1 isrepresented in the innermost ring.The Frequen
y Bias is not expli
itly 
al
ulated but it 
an be dedu
ed for the "Class & Dire
tion" event bythe relative position of observed frequen
y line (in blue) and fore
ast frequen
y line (in red):� Red line outer means overestimation of the number of events� Blue line outer means underestimation of the number of events3 Examples of appli
ation of the Performan
e-Rose diagramsThe Performan
e-Rose is designed primarily to help fore
asters understand the behaviour of models, parti
-ularly on some 
oastal stations, where for geographi
al reasons it is essential to identify errors in the fore
astof wind intensity as a fun
tion of dire
tion.For example, in �gure 6 are plotted the Performan
e-Rose diagrams for the veri�
ation of 10m wind predi
tedby COSMO-I7 00 UTC run for the station "Chioggia" lo
ated in the north Adriati
 sea near Veni
e.The statisti
s refer to 1 year (JAN-DEC 2016 ) of hourly data from 1 to 24 hours of fore
ast (DAY 1) and
orresponding observations. Looking to the plots, following the possible interests of fore
asters as �nal users,some 
onsiderations 
an be done:When the wind is predi
ted in the "Light" 
lass the errors on dire
tion are signi�
ant as suggested bythe dimension of the gray se
tors and the better s
ores for the "Class & Dir ±1" event with respe
t to"Class & Dir". The errors in dire
tion de
rease as the wind is predi
ted in higher 
lasses (very smalldi�eren
es in the s
ores for "Moderate" or "Strong" winds).Underestimation of the intensity ,with 
orre
t dire
tion predi
ted, is more evident for "Light" and"Light-moderate" 
lasses (see 
yan se
tors). In 
ase of "Moderate" winds predi
ted the number of
ases of underestimation is very small, while the number of overestimated events is signi�
ant (seeyellow se
tors).This information is important for the fore
asters as they 
an be 
on�dent about the low risk of missing
riti
al events.Unfortunately the performan
e-rose relative to "Strong" wind shows that the s
ores relative to thistype of event are very low. In addition to 
ases of overestimations, the most frequent error is the 
om-plete missing of the event (predi
ted in lower wind 
lasses with very di�erent dire
tion and thereforenot visible in the Performan
e-Rose diagram).COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



5. Working Group on Veri�
ation and Case Studies 56

Figure 6: Performan
e-Roses for the veri�
ation of 10-m wind hourly data predi
ted by COSMO-I7 00 UTCrun for the station "Chioggia" in the period January-De
ember 2016. Ea
h single plot refers to a spe
i�
 speed
lass: "Light" (top-left), "Light-Moderate" (top-right), "Moderate" (bottom-left), "Strong" (bottom-righ).If instead we 
onsider the 
ase in whi
h models developers are the end user of our veri�
ation, it 
an beinteresting to 
ompare if some errors in the wind fore
ast of a parti
ular model are also found in othermodels, 
onsidering the same station and period. For this purpose, in the framework of WG5 Common plotsa
tivities during the year 2018 the produ
tion and analysis of Performan
e-Rose diagrams for several modelswas started.Data of 10m wind fore
ast from COSMO-5M (Arpae-Italy), COSMO-PL (IMGW), COSMO-GR4 (HNMS),ICON-EU (DWD),COSMO-DE/D2 (DWD) were used to produ
e Performan
e-Rose diagrams for four di�er-ent periods (JJA2017,SON2017,DJF2017-18,MAM2018) on a set of sele
ted stations belonging to CommonArea 1 (see �gure 7).Sin
e the goal of the Performan
e-Rose diagram is to provide the end user with e�e
tive feedba
k on themodel's fore
asts, trying to answer the question of a spe
i�
 user, it was de
ided to 
ompare the variousmodels by identifying some targeted issues, depending on the 
hara
teristi
s of the wind �eld on individualstation.For example, wind veri�
ation of both COSMO-5M and COSMO-I2 (2.8 Km resolution) performed in Emilia-Romagna region (Italy) pointed out a a general underestimation of the fore
ast intensity in mountain stations.To see if this behaviour was also 
ommon to other models, the station "Svratou
h", lo
ated at 740 metera.s.l., was 
hosen and Performa
e-Roses representing the performan
e of the �rst 24 hours of fore
ast of thefour di�erent models during the period June 2017 - May 2018 were produ
ed.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 7: Sele
ted stations in Common Area 1. The 
olors of the symbols represent the height of the stationsin meter a.s.l.In �gure 8 the Peforman
e-Roses of COSMO-5M for the four di�erent wind-speed 
lass are represented, whilein �gures 9-11 only the two lower wind-speed 
lasses of COSMO-PL , COSMO-GR and ICON-EU are plotted,sin
e there are no fore
ast in the "Moderate" and "Strong" 
lasses.With referen
e to �gures 8-11 some 
onsiderations 
an be done: In general, 
yan se
tors indi
ate that thefore
ast is 
orre
t only in dire
tion while the intensity is underestimated , i.e. the observed wind intensity isone speed-
lass higher.The COSMO models 
onsidered exhibit this type of behaviour in the two lover speed-
lass and parti
ularlyin the dire
tion "South" for the "Light-Moderate" 
lass, indi
ating that the 
orresponding wind observationswere in the "Moderate" 
lass. In fa
t, if you look to the plot referring to the "Moderate" 
lass of COSMO-5M (see �gure 8) the number of observations (blue line) is higher than the number of the fore
ast (redline). For other models fore
ast events are zero (not shown). ICON-EU graphs show less 
yan se
tors, i.e. lessunderestimation, but also less green se
tors and therefore less 
orre
t fore
asts in both intensity and dire
tion.The presen
e of grey se
tors indi
ates that the intensities have been 
orre
tly predi
ted while it is the dire
tionthat is missed, as for example 
an be seen from the underestimation of the number of events in the "South"dire
tion that seems partly 
ompensated by the o

urren
es in the "South-East" dire
tion (grey se
tor).
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Figure 8: Performan
e-Roses for the veri�
ation of 10-m wind hourly data predi
ted by COSMO-5M 00 UTCrun for the station "Svratou
h" in the period June 2017-May 2018. Ea
h single plot refers to a spe
i�
 speed
lass: "Light" (top-left), "Light-Moderate" (top-right), "Moderate" (bottom-left), "Strong" (bottom-righ).

Figure 9: Performan
e-Roses for the veri�
ation of 10-m wind hourly data predi
ted by COSMO-PL 00UTC run for the station "Svratou
h" in the period June 2017-May 2018. Ea
h single plot refers to a spe
i�
speed 
lass: "Light" (top-left), "Light-Moderate" (top-right).
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Figure 10: Performan
e-Roses for the veri�
ation of 10-m wind hourly data predi
ted by COSMO-GR 00UTC run for the station "Svratou
h" in the period June 2017-May 2018. Ea
h single plot refers to a spe
i�
speed 
lass: "Light" (top-left), "Light-Moderate" (top-right).

Figure 11: Performan
e-Roses for the veri�
ation of 10-m wind hourly data predi
ted by ICON-EU 00 UTCrun for the station "Svratou
h" in the period June 2017-May 2018. Ea
h single plot refers to a spe
i�
 speed
lass: "Light" (top-left), "Light-Moderate" (top-right).
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ation and Case Studies 605 Con
lusionOne of the most tri
ky aspe
ts of veri�
ation is to provide end-users with an e�e
tive feedba
k on model fore-
ast, both in terms of 
ontents and 
ommuni
ation. The idea of the �Performan
e Rose� diagram addressespre
isely this issue, trying to answer the questions of a spe
i�
 users.Sin
e a lot of information is summarized in the Performan
e-Rose diagram, it is ne
essary to fo
us from timeto time on spe
i�
 aspe
ts, depending on the user's needs.

COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



7. Predi
tability and Ensemble Methods 61
Performances of COSMO-based ensemble systems for cases of

High-Impact Weather over ItalyG. Pin
ini (1), A. Montani (2), T. Pa

agnella (1), M.S. Tesini (1), C. Marsigli (3)(1) Arpae-SIMC, (2) ECMWF, (3) DWD
Introdu
tionThe predi
tion of weather events related to strong winds, heavy rain and snowfall is still nowadays a serious
hallenge, espe
ially when high spatio-temporal details are required. Despite Numeri
al Weather Predi
tion(NWP) modelling has made great progress in re
ent de
ades, thanks to the in
reases in model resolution,better understanding of atmospheri
 dynami
al pro
esses and advantages in data assimilation te
hniques,the above-mentioned atmospheri
 events, usually referred to as �High-Impa
t Weather� (HIW), 
an havehorizontal dimension too small to be expli
itly resolved. HIWs provide the most dramati
 examples of howthe atmospheri
 a�e
ts people daily lives, sin
e they may 
ause both human and e
onomi
 
osts. Therefore,there is a need of better ways to predi
t this type of phenomena, also a

ounting for their inherent degree ofnon-predi
tability.The ensemble fore
asting provide a representation of model un
ertainty, due to the imperfe
t knowledge ofatmospheri
 initial 
onditions and the approximate model formulation. Instead of running just one fore
astwith an unknown error, an ensemble of slightly di�erent fore
asts are run, in order to integrate the deter-ministi
 fore
ast with an estimate of the �fore
ast of fore
ast skill�. Probabilisti
 fore
asts provide a more
omplete, reliable and a

urate view of what might happen in the future, ideally providing information onthe relative frequen
y of an event o

uring. Therefore, they bring de�nite bene�ts for de
ision-makers. Theestimation of un
ertainty is even more 
ru
ial when lo
al e�e
ts 
ome into play and a high spatio-temporaldetail is required as in the 
ase of pre
ipitation, where NWP limitations be
ome more evident.The aim of this work is to assess the added value of the enhan
ed horizontal resolution in the probabilisti
predi
tion of surfa
e �elds. In parti
ular, the performan
e of three di�erent ensemble predi
tion systems were
ompared: ECMWF ENS (51 members, 18 km horizontal resolution), COSMO-LEPS (16 members in 2016,20 members now; 7 km horizontal resolution) and COSMO-2I-EPS (10 members in 2016, 20 members now;2.2 km horizontal resolution). While the �rst two ensemble systems are operational, COSMO-2I-EPS is stillin a pre-operational phase. The inter
omparison window 
overs two limited periods, whi
h range from 20 to27 June 2016 and from 15 O
tober to 15 November 2018. As for the surfa
e variables, 2-metre temperatureand pre
ipitation are veri�ed against the non-
onventional station network provided by the National CivilProte
tion Department.The ensemble spread and the root mean square error of 2-metre temperature are 
omputed, while RankedProbability S
ore and Per
entage of Outliers are 
onsidered for pre
ipitation. The best s
ores are mainlyobtained by the COSMO-based ensemble systems with higher horizontal resolution and lower ensemble size;in parti
ular COSMO-2I-EPS often a
hieves the most satisfa
tory performan
es. Although the results arebased over two relative short periods due to limited data availability and further investigations is needed, theadded value of high resolution in mesos
ale ensemble systems seems to play a 
ru
ial role in the probabilisti
predi
tion of atmospheri
 �eds at all levels. In parti
ular, the more detailed des
ription of mesos
ale andorographi
-related pro
esses in COSMO-ensembles provides an added value for the predi
tion of lo
alisedHigh-Impa
t Weather events.doi:10.5676/dwd_pub/nwv/
osmo-nl_19_09COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



7. Predi
tability and Ensemble Methods 62Global and limited-area ensemble predi
tion systems and des
ription of the ex-perimentsA summary of the te
hni
al 
hara
teristi
s of the three ensembles used in the veri�
ation is shown in thetable (Fig. 1).

Figure 1: The table shows the te
hni
al 
hara
teristi
s of ECMWF ENS, COSMO-LEPS and COSMO-2I-EPS in 2016; now COSMO-LEPS has 20 members as well as COSMO-2I-EPSThe inter
omparison between the three ensemble systems is performed starting at 00 UTC and with a fore
astrange of 48 hours, be
ause COSMO-2I-EPS runs on
e a day at 00 UTC and the fore
ast stops on the se
ondday. The veri�
ation domain was sele
ted in su
h a way as to in
lude the entire Italian territory, more pre
iselythe domain having the following geographi
 
oordinate as borders (Fig. 2)� latitude: 35oN - 48oN� longitude: 6oE - 19oEThe station networks, used in the evaluation pro
edure, are:� the Northern-Italy non-GTS 3 (lo
al) network : it refers to about 1000 stations, over most NorthernItaly and shared by the regional weather servi
es operating in the area. These stations provide hourlydata;� network from National Civil Prote
tion Department (DPCN-Dipartimento Protezione Civile Nazionale):this network is 
omposed of about 5524 stations over the national territory. Also these stations providehourly data.3Global Tele
ommuni
ations Systems

Figure 2: The domain, 
entered over Italy, 
onsidered for the veri�
ation of the three ensemble systems. Thepoints are the 5524 stations of National Civil Prote
ion Department used for the veri�
ation of pre
ipitation.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



7. Predi
tability and Ensemble Methods 63These station networks were used for the veri�
ation of 2-metre temperature and pre
ipitation respe
tively.DPCN stations have been subdivided, in three groups depending on the lo
ation altitude. For the subdivisionit was de
ided to adopt the WMO (World Meteorologia
al Organization) dire
tives on the subje
t, as follows:� lowland station (under 200 m of altitude) 2311 DPCN observatories belong to this 
ategory;� hill stations (between 200 m and 599 m of altitude) 1690 observatories belong to this 
ategory;� mountain stations (above 600 m of altitude) 1523 observatories belong to this 
ategory.The evaluation of the performan
e of the model 
onsists in the 
omparison of gridded model output againstpoint observations. A number of statisti
al s
ores evaluate di�erent aspe
ts of model performan
e while thefore
ast "error" is simply de�ned as the di�eren
e between the fore
ast value and the observation. In a"standard" deterministi
 approa
h, the un
ertainty asso
iated with the fore
ast value is not estimated. AnEPS aims at quanti�ng this un
ertainty using a set of perturbed Initial Conditions (ICs) and/or perturbedmodel formulations. Veri�
ation methods applied to ensemble fore
asts have two main obje
tives:� to assess the 
hara
teristi
s of the ensemble distribution;� to verify the probability fore
ast.Sin
e all perturbed ICs should be equally possible be true and all perturbed physi
s or varying physi
s s
hemesor alternative models be equally plausible, the performan
e of any ensemble member should, in prin
iple, beequivalent to that of another member on average. If this is not the 
ase, that is indi
ative of problems withthe 
hoi
e of ensembling the te
hnique employed. For example, either the IC perturbations are too largeor alternative models, physi
s s
hemes or perturbations are not equally plausible. In the veri�
ation theevaluation method of the nearest grid point will be used: sin
e observations seldom o

ur at the pre
iselo
ations represented by the grid points of one parti
ular model, it is ne
essary to 
ompare the fore
ast valuesin the grid points with those of the nearest observations (ECMWF Fore
ast User Guide). In the experimentalveri�
ation of the three ensemble systems will be used the following s
ores:The Root Mean Square Error (RMSE) provides the square root of the average square error of thefore
asts, whi
h has the same units as the fore
asts and observations. Here, the fore
ast 
orresponds tothe ensemble mean value and an 'error' represents the di�eren
e between the ensemble mean Y and theobservation x. The equation for the RMSE is:
RMSE =

v

u

u

t

1

n

n
X

i=1

(xi − Yi)2RMSE of the ensemble mean measure the distan
e beetween fore
asts and analyses (or observations). Theensemble spread (SPRD) is 
al
ulated by measuring the deviation of ensemble fore
asts from their mean[11℄. Usually, SPRD is de�ned as:
SPRD =

v

u

u

t

1

N − 1

N
X

n=1

(f − f(n))2Where f = 1
N

PN

n=1 f(n) is for the ensemble mean and f is for the ensemble fore
ast. In general, an idealensemble fore
ast will be expe
ted to have the same size of ensemble spread as their RMSE at the same leadtime in order to represent full fore
ast un
ertainty [11℄ [2℄; but most of the ensemble systems are underdispersed(lower spread) for longer lead times due to an imperfe
t model system (or physi
al parameterizations) andother fa
tors. Anyway over a large number of ensemble fore
asts, the statisti
al properties of the true value
XTRUE of any quantity X are identi
al to the statisti
al properties of a member Xj of the ensemble; inparti
ular:

ensemblevariance
z }| {

|Xj − XMEAN |2 =

meansquarederror
z }| {

|XTRUE − XMEAN |2where XMEAN is the ensemble mean. The time-mean ensemble spread around the mean equals the time-meanRMSE of the ensemble mean [3℄.COSMO Newsletter No. 19: O
tober 2019 www.
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7. Predi
tability and Ensemble Methods 64The Ranked Probability S
ore (RPS) is an extension of the RMSE to the probabilisti
 world and to themulti-
ategory events; it ranges between 0 and 1.
RPS =

1

J − 1

J
X

m=1

[(
m

X

j=1

fi) − (
m

X

j=1

oj)]
2where� J is the number of fore
ast 
ategories� oj = 1 if the event o

urs in 
ategory j, oj = 0 if the event does not o

ur in 
ategory j� fj is the probability of o

urren
e in 
ategory jThis s
ore is used to assess multi-
ategory fore
ast, where J is the number of fore
ast 
ategories (for example,rainfall bins). The RPS penalizes fore
asts less severely when their probabilities are 
lose to the true out
omeand more severely when their probabilities are further from the a
tual out
ome. The lower the RPS, the betterthe ensemble system.The Per
entage of Outliers of a probabilisti
 fore
ast system is de�ned as the probability of the analysis(or observation) lying outside the fore
ast range [1℄. Therefore this 
an be seen as the per
entage of times the�truth� falls out of the range spanned by the fore
ast values. Here, it is 
omputed as the fra
tion of points ofthe domain where the observed value lies outside the minimum or maximum fore
ast value.Performan
e of the ensemble systemsFirst veri�
ation period: from 20t to 29th June 2016To begin the performan
e of the three ensemble systems is veri�ed against the two-metre temperature. Asalready mentioned before, for this veri�
ation it was de
ided to 
onsider the observational dataset 
omingfrom the regional networks of the weather servi
es on Central-Northern Italy. In this way, data 
oming fromonly one part of the Peninsula were 
onsidered. Infa
t, the temperature data from the national 
ivil prote
tionnetwork 
ould have been used, but these data are from time to time of low-quality in Central and SouthernItaly and their use would have provided wrong evaluation on the model skill. The period under investigation isfrom 20th June 2016 at 00 UTC to 29th June 2016 at 00 UTC, infa
t, although the last runs examined are thoseat 00 UTC on 27th June 2016, a 48-hour fore
ast range must always be 
onsidered. The performan
e of thethree ensemble systems is evaluated by 
al
ulating the spread and the RMSE of the ensemble, the veri�
ationmethod used is the nearest grid point. The table 1 summarizes the 
hara
teristi
s of the veri�
ation.
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Veri�
ation featuresvariable: 2-metre temperature;period: from 20/06/2016 00UTC to 29/06/2016 00UTC (9 days);region: Central-Northern Italy;method: nearest grid point;obs: non-GTS lo
al �du
iary network, no obs error;f
st ranges: 0-48h (veri�
ation every 6h);systems: ECMWF EPS, COSMO-LEPS, COSMO-2I-EPS;s
ores: spread, RMSE;Table 1: 2-metre temperature veri�
ation features
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7. Predi
tability and Ensemble Methods 66The results are reported in (Fig. 3) and 
an be summarised as follows:

Figure 3: The �gure shows the spreads (
ontinuous lines) and the RMSE (dotted lines) values obtained forthe 48 hours of the fore
ast range every 6 hours. The ECMWF EPS s
ores appear in red, COSMO-LEPS inblue and COSMO-2I-EPS in green. The forea
st range (in hours) is shown in the abs
issa, in the ordinatethe value of spread and RMSE (in oC). All details are indi
ated in the legend at the top left.� the spread values are similar for all the three ensemble systems;� the spread values are smaller with respe
t to the RMSE ones, showing a tenden
y of all ensembles tobe underdispersive;� with the ex
eption of the shortest time range, COSMO-based models always show slightly higher (andtherefore better) spread values than ECMWF EPS;� RMSE values show a marked diurnal 
y
le, with maxima during the 
entral hours of the day and theminimums in the night. This daytime 
y
le is very pronoun
ed for ECMWF EPS and for COSMO-LEPS, less for COSMO-2I-EPS;� the RMSE of COSMO-2I-EPS is the lowest of the three ensemble systems on the entire fore
ast range.Therefore, from this 2-metre temperature veri�
ation, COSMO-based models get ex
ellent results, espe
iallyCOSMO-2I-EPS.The performan
e of ECMWF ENS, COSMO-LEPS, COSMO-2I-EPS is veri�ed also against the 6-hourlypre
ipitation. For this veri�
ation work it was de
ided to use the pre
ipitation data re
orded by the raingauges of National Civil Prote
tion Department network. In this way, the results obtained are representativeof what happened on the entire national territory between the 20th June 2016 at 00 UTC and the 29th June2016 at 00 UTC. The method of the nearest grid point was used for the 
al
ulation of Ranked ProbabilityS
ore and per
entage of outliers. In table 2 are reported all the details of the veri�
ation.In the Fig.4, the results obtained for the RPS 
an be 
onsulted.Considering all DPCN staions, regardless of the altitude (top left graph), it is worth pointing out:� the diurnal 
y
le of pre
ipitation is very marked. Sin
e it is almost ex
lusively afternoon 
onve
tivepre
ipitation, the highest, and therefore the worst, RPS are just in the afternoon time slots: fore
astrange 12-18 h, 36-42 h;� however, the RPS of COSMO-2I-EPS, and generally the RPS of COSMO ensemble systems, is betterthan ECMWF ENS one over the whole fore
ast range.In this 
ase the RPS points out to the added value of COSMO-2I-EPS.The station of DPCN has been subdivided, a

ording to their altitude, in three groups: plain, hill andmountain. Therefore, the purpose of this further study is to evaluate RPS variations a

ording to the stationaltitude and see how this a�e
ts the results. Looking at the plots it 
an be 
on
luded that:COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



7. Predi
tability and Ensemble Methods 67Veri�
ation featuresvariable: 6-hourly total pre
ipitation ;period: from 20/06/2016 00UTC to 29/06/2016 00UTC (9 days);region: Italy;method: nearest grid point;obs: DPCN network, no obs error;f
st ranges: 0-48h (veri�
ation every 6h);systems: ECMWF EPS, COSMO-LEPS, COSMO-2I-EPS;s
ores: RPS, outliers;thresholds: 1mm, 5mm, 10mm, 15mm, 25mm, 50mm in 6 hoursTable 2: 6-hourly total pre
ipitation veri�
ation features

Figure 4: The �gure shows the RPS for four di�erent observational dataset, indi
ated in the
aption under ea
h image. The ensemble systems are ECMWF ENS in red, COSMO-LEPSin blue, COSMO-2I-EPS in green. The fore
ast range of 48 hours, in 6-hour steps, is shownin the abs
issa; the dimensionless values of the RPS are marked in the ordinate.� the RPS values obtained for the lowland stations are lower (therefore better) than those obtained forhill and mountain ones, in parti
ular the results of mountain stations are the highest;� in most 
ases, regardless of altitude, the RPS obtained for COSMO-2I-EPS is always lower (thereforebetter) than for COSMO-LEPS and ECMWF ENS;� in the plain stations (top-right panel), there is a good gap beetween COSMO-2I-EPS and ECMWFENS in the �rst day of fore
ast range. For the other stations this gap extends no longer than the�rst 18 hours, then the RPS tend to be similar for the three ensembles, ex
ept for the pre
ipitationCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 5: The �gure shows the per
entage of outliers for four di�erent observational dataset,indi
ated in the 
aption under ea
h image. The ensemble systems are ECMWF ENS in red,COSMO-LEPS in blue, COSMO-2I-EPS in green. The fore
ast range of 48 hours, in 6-hoursteps, is shown in the abs
issa; the per
entage of outliers is marked in the ordinate.
umulated beetween the 36th and the 42nd hour of the fore
ast range;� in the graph for hill and mountain stations (bottom left and bottom right panel respe
tively), the RPSfollows a very strong daytime 
y
le, that is de�nitely less visible on the plain: this is 
ould be due tothe pluviometri
 regime of those days, with rainfall 
on
entrated almost always in the afternoon hoursand on the internal areas of hills and mountains.So all the observational networks, built on altitude, 
on�rm that the RPS of COSMO-based ensembles, butin parti
ular COSMO-2I-EPS, are better than the global ensemble of Reading.The per
entages of outliers for the ensemble system 
onsidered as a fun
tion of the fore
ast range are shownin Fig. 5.Considering all DPCN staions (top left graph), it is possible to see that despite the lower ensemble size,COSMO-2I-EPS has often the lowest values, 
ompared to the other two ensemble systems with a lowerhorizontal resolution. So, it 
an be stated that in this 
ase too, the results obtained by COSMO-2I-EPS aresatisfa
tory. Looking at the other three panels of the Fig. 5 it 
an be stated that:� the per
entage of outliers in
reases a

ording to the station altitude: there are less outliers in the plainsthan in the mountains;� in the plain there is little di�eren
e between the three ensemble systems; these di�eren
es in
reasewith the altitude, infa
t the per
entage of outliers obtained with the only mountain stations shows
onsiderable dissimilarity beetween the ensembles;� for hill and mountain observation datasets, a diurnal 
y
le is visible only in systems with parametrized
onve
tion (ECMWF ENS, COSMO-LEPS); instead, the diurnal 
y
le is hardly identi�able for thelowland stations;� for almost all fore
ast ranges COSMO-2I-EPS has the lowest per
entage of outliers.Therefore also the per
entages of outliers, studied a

ording to the altitude of DPCN stations, indi
ate thegood skill of COSMO-2I-EPS.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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ond veri�
ation period: from 15th O
tober to 15th November 2018In this se
ond period it has 
onsidered only the 24-hour total pre
ipitation, the veri�
ation is performed withthe rank historam.
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Figure 6: The rank histograms for COSMO-LEPS in blue and COSMO-2I-EPS in green, on the left for the�rst 24 hours of the fore
ast range, on the right for the se
ond 24 hours.The rank histogram is not a veri�
ation method per se, but rather a diagnosti
 tool to evaluate the spreadof an ensemble. The underlying assumption is that the ensemble member fore
asts are distributed so as todelineate ranges or �bins� of the predi
ted variable su
h that the probability of o

urren
e of the observationwithin ea
h bin is equal. For ea
h spe
i�
 fore
ast, the bins are determined by ranking the ensemble memberfore
asts from lowest to highest. The interval between ea
h pair of ranked values forms a bin. If there are Nensemble members, then there will be N+1 bins. The outer bins, lowest and highest-valued, are open-ended.Rank histograms are prepared by determining whi
h of the ranked bins the observation falls into for ea
h
ase, and plotting a histrogram of the total o

urren
es in ea
h bin, for the full veri�
ation sample. Theassumption underlying the rank is that the probability that the observation will fall in ea
h bin is equal.If this is true, then over a large enough sample, the histogram should be �at or roughly so. Then one 
an
on
lude that on the average, the ensemble spread 
orre
tly represents the un
ertainty in the fore
ast. Also inthis 
ase the veri�
ation method is the nearest grid point and the 
omparison is only between COSMO-LEPSand COSMO-2I-EPS, be
ause these systems have the same number of member (20 in 2018).The U-shape of the rank histograms (see Fig. 6) indi
ates the subdispersion of both ensemble systems, inparti
ular COSMO-LEPS. This subdispersion is stronger in the last bin of the most intense pre
ipitation andin parti
ular for COSMO-LEPS.Summary and OutlookThe present work aims to establish the performan
e of three ensemble systems with di�erent 
hara
teristi
s,but in parti
ular with a di�erent horizontal resolution. While ECMWF ENS and COSMO-LEPS run onan daily basis, COSMO-2I-EPS is still on a pre-operational phase, with a full operational implementationplanned towards the next months. Therefore, parti
ular attention has been paid to this new ensemble, espe-
ially be
ause it provides new types of numeri
al modeling produ
ts whi
h needs to be assessed and be
ausethe best performan
es were expe
ted from it. A systemati
 
omparison between the three ensemble systemswas undertaken during a �pilot period� from 20th to 27th June 2016. During this period, 
hara
terised byparti
ularly unstable weather situation over the Italian Peninsula, the performan
es of the three systems were
ompared in terms of 2-metre temperature and pre
ipitation. The fore
asts in terms of 2-metre temperatureand 6-hourly 
umulated pre
ipitation were veri�ed against the Northern-Italy non-GTS network and the Na-tional Civil Prote
tion Department network respe
tively. The results for 2-metre temperature indi
ate theunder-dispersion issue for the di�erent ensemble systems, although it 
an be noti
ed that the performan
eobtained by COSMO-2I-EPS (and in general by the COSMO-based ensembles) is quite satisfa
tory.Rank Probability S
ore and per
entage of outliers were 
onsidered to evaluate the skill of the three ensemblesystems in terms of pre
ipitation. In most 
ases, the s
ores indi
ate COSMO-2I-EPS having the best perfor-man
e. In order to provide more insight on the obtained results and to assess the dependen
e of the s
oreson the altitude, it was de
ided to divide the stations of the National Civil Prote
tion Department into threeCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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tability and Ensemble Methods 71groups: plain, hill and mountain stations. With this division, it turns out that the performan
e of the systemstends to worsen with the altitude, also a

entuating the diurnal 
y
le. This happens be
ause it has rainedmore over mountain areas and during the afternoon. Anyway the s
ores obtained by COSMO-2I-EPS remainthe best in most 
ases. COSMO-2I-EPS a
hive good results also in the veri�
ation with rank histograms, forthe period from from 15th O
tober to 15th November 2018. This work 
an be seen as a pilot study, there isno 
laim to 
onsider it 
omplete and exhaustive, but rather a starting point for further developments andinvestigations or a "modus operandi" for similar studies. In fa
t, the periods examined are too short to havesolid results from a statisti
al point of view. This would take a longer evaluation time, 
omparing the threeensembles for di�erent atmospheri
 phenomena and weather types. All the results shown in this work havebeen obtained with the veri�
ation method of the nearest grid point. So a further idea for future studies maybe to use the method of boxes to 
al
ulate the probabilisti
 s
ores in other 
ases; it will be interesting to seeif the results will be better or worse than those obtained with the nearest grid point.Referen
es[1℄ Buizza, 1997. Potential fore
ast skill of ensemble predi
tion and spread and skill distributions of theECMWF Ensemble Predi
tion Systems. Mon. Wea. Rev., 125, 99-119.[2℄ Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2005: A 
omparison of the ECMWF,MSC and NCEP global ensemble predi
tion systems. Monthly Weather Review, 133, 1076-1097.[3℄ Gofa, F., Tzaferi, D. and Charantonis, T., 2010. Appli
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ation of ECMWF produ
ts.Helleni
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al Servi
e (HNMS)[4℄ Ghelli, A., 2009. Observations and their importan
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ation pro
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ast Veri�
ation Method Resear
h. ECMWF, Twelfth Workshop on Meteorologi
alOperational Systems, 2-6 November 2009[5℄ Montani, A., Capaldo, M., Cesari, D., Marsigli, C., Modigliani, U. and 
o-authors, 2003a. Operationallimited-area ensemble fore
ast based on the Lokal Modell. ECMWF Newsletter 98, 2-7. Available at:http://www.e
mwf.int/publi
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ription of the Nonhydrostati
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Influence of Perturbation Type on Results of EPS Forecasts of Surface

ElementsGrzegorz Dunie
, Andrzej MazurInstitute of Meteorology and Water Management � National Resear
h Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland
1 Introdu
tionAbstra
tThe results from resear
h on COSMO-EPS, 
arried out at IMWM, are presented. The operational EPS(Ensemble Predi
tion System) set-up is based on perturbations of soil surfa
e-area index of the evaporatingfra
tion of grid points over land. In the resear
h mode, six di�erent types of perturbation is additionallyapplied. Long-term evaluation results of di�erent methods of EPS-post-pro
essing is presented in the paper.As a general rule, using Arti�
ial Neural Network (ANN) values of EPS mean are signi�
antly 
loser toobservation of air temperature/dew point temperature/surfa
e pressure or wind speed than those 
omputedas deterministi
 fore
ast.Introdu
tionExtensive tests 
ondu
ted during the COTEKINO Priority Proje
t proved that small perturbations of sele
tedsoil parameter were su�
ient to indu
e signi�
ant 
hanges in the fore
ast of the state of atmosphere and toprovide qualitative sele
tion of a valid member of an ensemble(Dunie
 and Mazur,2014). Changes of 
_soil�*)had a signi�
ant impa
t on values of air temperature, dew point temperature and relative humidity at 2m agl.,wind speed/dire
tion at 10m agl., and surfa
e spe
i�
 humidity (ibidem). Other approa
hes of perturbation(as presented in previous work) would result in di�erent fore
ast, expe
ting even a synergy while 
ombiningperturbation methods for the same run(s). The resear
h has been 
arried out for the entire year 2011. Forthe ANN training results from January to O
tober have been set. Methods (approa
hes) have been tested onresults from November 2011. 4.

Figure 1: EPS operational 
on�guration (Dunie
 et al., 2016)doi:10.5676/dwd_pub/nwv/
osmo-nl_19_104*)surfa
e-area index of the evaporating fra
tion of gridpoints over landCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



8. Reports 73Table 1: Deterministi
 model(s) � sour
e of ICs/BCs for operational EPS ibidem)Model Grid size NxMxL Fore
ast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 13 7COSMO v. 5.01�* 380x405x50 78 2.8Fore
asts of air temperature and dew point temperature at 2m agl., surfa
e pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/
hart of EPS mean, spread, probabilities of thresholdex
eedan
es are prepared in the routine manner. Results in a raw form are subsequently stored for furtherresear
h resear
h (e.g. skill-spread relation) and simultaneously 
alibrated.Arti�
ial Neural Network(ANN) mean(s) in this resear
h have been 
ompared with dire
t results from "de-terministi
" fore
asts (DET). ANN in this resar
h 
onsisted of 24 input neurons (20 members, geographi
al
oordinates, fore
ast start and fore
ast hour; there were 5 neurons set in a single hidden layer, with hyperboli
tangent a

epted as the a
tivation fun
tion.The following perturbations were 
onsidered:a) 
_soil -perturbation of a parameter des
ribing evaporation from soil(des
ribed above);b) e�-
oe� -perturbation of the 
olle
tion e�
ien
y 
oe�
ient;
) e�-
_soil -perturbation of the 
olle
tion e�
ien
y 
oe�
ient together with 
_soil;d) laf-pert-perturbation of the surfa
e temperature of the soil;e) laf-
_soil -perturbation of soil surfa
e temperature in the set of initial 
onditions with 
_soil;f) laf-e� -perturbation of the soil surfa
e temperature (as in e) with the 
olle
tion e�
ien
y 
oe�
ient(b);g) eps-all -perturbation of all the above quantities (�elds and parameters) at the same time;h) operational perturbation of 
_soil with a di�erent random number generator (Dunie
 et al., 2016),operational runs3 Results � 
omparison of results for di�erent methods of perturbations.
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8. Reports 74Table 2: Basi
 statisti
s for di�erent perturbation methods with ANN post-pro
essing, 
ompared with valuesfrom deterministi
 runs, as 
al
ulated for November, 2011 (ME � mean error, MAE � mean absolute error,RMSE-root-mean square error, MinE-minimum error, MaxE-maximum error)Means ME MAE RMSE MaxE MinEDew point
_soil -0.11338 1.45981 1.99090 12.30946 -9.88111e�-
oe� -0.01667 1.47110 2.00072 11.11471 -9.41829e�-
_soil 0.04247 1.45814 1.98011 11.53134 -9.92467eps-all -0.00854 1.49234 2.02759 11.24309 -9.09813laf-pert -0.04460 1.46721 1.99155 10.89753 -9.27700laf-
_soil 0.01080 1.51334 2.04447 10.83230 -8.87939laf-e� -0.05678 1.46489 1.99521 10.47621 -9.37223operational 0.02424 1.46355 1.98274 10.49569 -9.10767deterministi
 -0.40246 1.58561 2.18141 13.04700 -10.08800Air temp
_soil 0.17387 1.77275 2.32496 10.93927 -15.88361e�-
oe� -0.15550 1.77681 2.34730 11.16211 -16.14814e�-
_soil -0.08983 1.76932 2.34525 10.54141 -16.63289eps-all 0.07055 1.77859 2.34857 10.31766 -15.89856laf-pert 0.09633 1.78876 2.34243 10.67038 -14.61441laf-
_soil 0.06539 1.76116 2.31501 10.84628 -15.06645laf-e� -0.18840 1.77813 2.33403 10.50841 -15.01652operational -0.13666 1.78166 2.34402 10.80536 -15.59283deterministi
 0.44751 1.90295 2.62627 11.77100 -12.86600Windspeed
_soil 0.04309 1.17025 1.58737 9.72965 -9.05961e�-
oe� -0.07475 1.17811 1.59937 9.64747 -9.06740e�-
_soil 0.02018 1.16574 1.58048 9.74929 -9.87465eps-all 0.04844 1.16578 1.58195 9.74003 -6.55868laf-pert 0.10026 1.17006 1.58576 9.77432 -5.21126laf-
_soil -0.04346 1.17756 1.60043 10.00780 -11.41867laf-e� -0.07655 1.17344 1.58327 9.63682 -7.45664operational -0.03980 1.17237 1.59618 9.70848 -10.99594deterministi
 -0.26905 1.30687 1.88147 12.76900 -3.03400Pressure
_soil 0.00985 1.60175 2.08209 32.14813 -23.20300e�-
oe� 0.06719 1.63273 2.10419 31.09039 -24.85364e�-
_soil -0.13769 1.68544 2.20423 30.00128 -22.65503eps-all 0.01005 1.64700 2.14694 31.19647 -22.99243laf-pert -0.10553 1.65470 2.14979 30.91657 -23.75635laf-
_soil -0.08059 1.64437 2.15423 30.03619 -23.26672laf-e� -0.12735 1.59559 2.08393 30.57135 -25.36975operational -0.01102 1.65513 2.15091 30.22253 -23.53040deterministi
 1.03752 4.22822 8.11503 26.29303 -47.95404Green 
olor denotes best values,red � worst values
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Figure 2: Spatial distribution of air temperature at 2m: ANN (e�-
_soil) mean (upper left) and skill (upperright), deterministi
 mean fore
ast (lower left) and skill (lower right).All avg. values for November 2011
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Figure 3: Spatial distribution of wind speed at 10m: ANN (e�-
_soil) mean (upper left) and skill (upperright), deterministi
 mean fore
ast (lower left) and skill (lower right). All avg. values for November 2011
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Figure 4: Spatial distribution of surfa
e pressure: ANN (
_soil) mean (upper left) and skill (upper right),deterministi
 mean fore
ast (lower left) and skill (lower right). All avg. values for November 2011

Figure 5: Spatial distribution of dew point temperature at 2m: ANN (e�-
_soil) mean (upper left) and skill(upper right), deterministi
 mean fore
ast (lower left) and skill (lower right). All avg. values for November2011
COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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lusionsEx
ept for few 
ases of min/max errors results of ANN postpro
essing gives evidently the best results interms of statisti
 evaluation in 
omparison to "deterministi
" fore
ast. Keeping in mind arguments againstANN (
ompli
ated pre- and post-pro
essing, need for big data sets and huge 
omputational resour
es, long
omputational time for training) one 
an say that this method, with ready-to-use dedi
ated software withsour
e 
odes (FORTRAN) is sophisti
ated yet elegant and intuitive 
on
ept.Improvement in preliminary 
ase study 
an be 
learly observed and fore
asts are getting better and betterwith the extension of learning period, whi
h is a key reason to go on with ANN in an operational EPS.However, there was no e�e
t of synergy with 
ombining perturbation methods and obje
ts. Yet, 
_soil aloneand with 
ombination with some other perturbation methods seemed to be the best as far as overall statisti
sis 
on
erned (see Table 2 and Figures 2-5 ).The results in a poster form to be presented partially at ICCARUS in O�enba
h, Germany, Mar
h 2019 andpartially at EGU General Assembly in Vienna, Austria, April 2019.Referen
es[1℄ Dunie
, G. and Mazur, A. (2014): COTEKINO Priority Proje
t � Results of Sensitivity Tests, COSMONewsletter 14, 106-113.[2℄ Dunie
, G., Interewi
z, W., Mazur, A. and Wyszogrodzki, A.(2016): Operational Setup of the COSMO-based, Time-lagged Ensemble Predi
tion System at the Institute of Meteorology and Water Management� National Resear
h Institute. Met. Hydrol. Water Manage. (2017) vol. 5; (2): 43-51.[3℄ Mazur, A. and Dunie
, G. (2017): SPRED PP a
tivities at IMWM-NRI. Presented at COSMO GM,Jerusalem, Israel.[4℄ Mazur, A., Dunie
, G. and Interewi
z, W. (2018): Introdu
tory a
tivities in PP APSU at IMWM-NRIand results of ANN post-pro
essing of EPS fore
asts. Presented at COSMO GM, Sankt Petersburg,Russia.
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ANN post-processing of EPSAndrzej Mazur, Grzegorz Dunie
Institute of Meteorology and Water Management � National Resear
h Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland

1 Introdu
tionThe results from resear
h on COSMO-EPS, 
arried out at IMWM, are presented. The operational EPS set-up is based on perturbations of soil surfa
e-area index of the evaporating fra
tion of grid points over land.Long-term evaluation results of di�erent methods of EPS-post-pro
essing. As a general rule, using Arti�
ialNeural Network (ANN) values of EPS mean are signi�
antly 
loser to observation of air temperature/dewpoint temperature or wind speed than those 
al
ulated as simple average or Multi-linear Mean. Extensivetests 
ondu
ted during the COTEKINO Priority Proje
t proved that small perturbations of sele
ted soilparameter were su�
ient to indu
e signi�
ant 
hanges in the fore
ast of the state of atmosphere and to providequalitative sele
tion of a valid member of an ensemble (Dunie
 and Mazur, 2014). Changes of 
_soil*) had asigni�
ant impa
t on values of air temperature, dew point temperature and relative humidity at 2m agl., windspeed/dire
tion at 10m agl., and surfa
e spe
i�
 humidity (ibidem). The usage of an idea of time-lagged initialand boundary 
onditions allowed obtaining a valid ensemble and using it e�
iently in an operational mode.Further work is intended to fo
us on �tuning� ensemble performan
e and to provide quantitative quality s
ores.For this purpose the random number generator 
ombined with perturbations of initial soil surfa
e temperatureand the dependen
e of amplitude of perturbation on soil type will be implemented in the COSMO model.While the set of equally weighted time-lagged fore
asts improve short-range fore
asts, the further progressmay also be sought by adopting a regression approa
h to 
ompute set of weights for di�erent time-laggedensemble members. EPS runs operationally at IMWM sin
e January, 2016. It 
overs 4 runs/day, with 48hours fore
asts, 20 members/4 groups (using Time-lagged I
s/BCs; see Dunie
 G. et al. (2016); 
onf. Fig.1below). Amplitude of perturbation of 
_soil depends on type of soil (
lay, sand, peat et
). 5

Figure 1: EPS operational 
on�gurationdoi:10.5676/dwd_pub/nwv/
osmo-nl_19_115*) surfa
e-area index of the evaporating fra
tion of gridpoints over landCOSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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 model(s) � sour
e of ICs/BCs for operational EPS ibidem)Model Grid size NxMxL Fore
ast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 13 7COSMO v. 5.01�* 380x405x50 78 2.82 Some FormulasDetails of the deterministi
 models 
on�guration are as follows:Fore
asts of air temperature and dew point temperature at 2m agl., surfa
e pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/
hart of EPS mean, spread, probabilities of thresholdex
eedan
e are prepared in the routine manner. Results are subsequently stored for further resear
h (e.g. skill-spread relation) Results of EPS fore
asts are subsequently 
alibrated. Three basi
 methods of 
alibration wereexamined as shown in Fig.2 � simple arithmeti
 mean (SM), multilinear regression mean (MLR) and arti�
ialneural network mean (ANN).

Figure 2: Ensemble 
alibration � Simple Mean (SM) vs. multilinear regression (MLR) mean vs. ANN mean

COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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omparison of results for three methods of post-pro
essing.

Figure 3: Spatial distribution of dew point temp. at 2m: mean observations (upper left), simple mean (upperright), MLR mean (24 predi
tors, lower left) and ANN mean (24 input neurons, lower right). All avg. valuesfor April 2018.

Figure 4: Spatial distribution of wind speed at 10m: mean observations (upper left), simple mean (upperright), MLR mean (24 predi
tors, lower left) and ANN mean (24 input neurons, lower right). All avg. valuesfor April 2018.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 5: Spatial distribution of Mean Absolute Error (MAE) for dew point temp. at 2m, April 2018. Left:observations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.

Figure 6: Spatial distribution of Mean Absolute Error (MAE) for wind speed at 10m, April 2018. Left:observations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.

Figure 7: Spatial distribution of Mean Absolute Error (MAE) for air temp. at 2m, April 2018. Left: obser-vations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org



8. Reports 83Table 2: Basi
 statisti
s for di�erent post-pro
essing methods, as 
al
ulated for April, 2018 (ME � mean error,MAE � mean absolute error, RMSE � root-mean square error, MinE � minimum error, MaxE � maximumerror) Means ME MAE RMSE MinE MaxEDew pointSM 0.253 2.009 2.812 -12.4 15.1MLR -0.310 1.989 2.755 -12.3 14.8ANN -0.244 1.981 2.750 -11.2 14.8Air temp.SM 0.771 2.369 3.443 -14.600 18.100MLR 0.475 2.252 3.206 -14.500 16.600ANN 0.066 2.214 3.135 -13.600 15.500WindspeedSM -0.618 1.737 2.297 -13.6 13.6MLR 0.113 1.488 1.978 -7.8 13.2ANN -0.200 1.436 1.814 -6.1 13.2

Figure 8: Skill/spread relation for air temp. at 2m, April 2018.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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lusionsEx
ept for single 
ase of mean error for windspeed results of ANN post-pro
essing gives evidently the bestresults in terms of statisti
 evaluation and skill-spread relation (see Fig. 7). Keeping in mind arguments againstANN (
ompli
ated pre- and post-pro
essing, need for big data sets and huge 
omputational resour
es, long
omputational time for training) one 
an say that this method, with ready-to-use dedi
ated software withsour
e 
odes (FORTRAN) is sophisti
ated yet elegant and intuitive 
on
ept. Improvement in preliminary
ase study 
an be 
learly observed and fore
asts are getting better and better with the extension of learningperiod, whi
h is a key reason to go on with ANN in an operational EPS.Arti�
ial Neural Network is linked to the DMO, to extend the learning period. In the operational mode 24predi
tors is set (values from twenty ensemble members + spatio-temporal 
oordinates). The system is set inan (quasi)operational mode (slight delay due to 
al
ulations). Results are 
olle
ted four times per day, so thestru
ture of ANN 
an be updated frequentlyThe results in a poster form were presented at 40th EWGLAM/25th SRNWPWorkshop in Salzburg, Austria,O
tober 2018.Referen
es[1℄ Dunie
, G. and Mazur, A. (2014): COTEKINO Priority Proje
t � Results of Sensitivity Tests, COSMONewsletter, 14, 106-113.[2℄ Dunie
, G., Interewi
z, W., Mazur, A. and Wyszogrodzki, A. (2016): Operational Setup of the COSMO-based, Time-lagged Ensemble Predi
tion System at the Institute of Meteorology and Water Management� National Resear
h Institute. Met. Hydrol. Water Manage. (2017) vol. 5; (2): 43-51.[3℄ Mazur, A. and Dunie
, G. (2017): SPRED PP a
tivities at IMWM-NRI. Presented at COSMO GM,Jerusalem, Israel.[4℄ Mazur, A., Dunie
, G. and Interewi
z, W. (2018): Introdu
tory a
tivities in PP APSU at IMWM-NRIand results of ANN post-pro
essing of EPS fore
asts. Presented at COSMO GM, Sankt Petersburg,Russia.
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Forecasts of Convective Phenomena Using EPS-based Computation of

Universal Tornadic IndexAndrzej MazurInstitute of Meteorology and Water Management � National Resear
h Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland
Abstra
tThe results from resear
h on COSMO-EPS, 
arried out at IMWM, are presented. The operational EPS set-upis based on perturbations of soil surfa
e-area index of the evaporating fra
tion of grid points over land. Usagea Universal Tornadi
 Index asso
iated with the EPS fore
asts system may be helpful in fore
asting of severe
onve
tion phenomena. This idea was tested in 
ase studies and in long-term evaluation.1 Introdu
tionA simple and e�
ient method was proposed to produ
e reasonable number of valid ensemble members, takinginto 
onsideration prede�ned soil-related model parameters. Introdu
ed method of obtaining ICs/BCs � time-lagged setup � is another important fa
tor that 
an add a signi�
ant in
rement to ensemble spread. Thesefeatures were used to prepare a well-de�ned ensemble based on the perturbation of soil-related parameters, tobe utilized both in operational (fore
asting) work and in diagnosti
 mode. A spe
ial approa
h � using EPS-based fore
asts for tornado fore
asting � of diagnosti
 approa
h is presented here. Small perturbations ofsele
ted soil parameter were su�
ient to indu
e signi�
ant 
hanges in the fore
ast of the state of atmosphereand to provide qualitative sele
tion of a valid member of an ensemble (Dunie
 and Mazur, 2014). Changes of
_soil�*) had a signi�
ant impa
t on values of air temperature, dew point temperature and relative humidityat 2m agl., wind speed/dire
tion at 10m agl., and surfa
e spe
i�
 humidity (ibidem). The usage of an ideaof time-lagged initial and boundary 
onditions allowed obtaining a valid ensemble and using it e�
iently inan operational mode. Further work is intended to fo
us on �tuning� ensemble performan
e and to providequantitative quality s
ores. For this purpose the random number generator 
ombined with perturbationsof initial soil surfa
e temperature and the dependen
e of amplitude of perturbation on soil type will beimplemented in the COSMO model.While the set of equally weighted time-lagged fore
asts improve short-range fore
asts, the further progress may also be sought by adopting a regression approa
h to 
ompute set ofweights for di�erent time-lagged ensemble members. EPS runs operationally at IMWM sin
e January, 2016.It 
overs 4 runs/day, with 48 hours fore
asts, 20 members/4 groups (using Time-lagged ICs/BCs; see Dunie
G. et al. (2016); 
onf. Fig.1 below). Amplitude of perturbation of 
_soil depends on type of soil (
lay, sand,peat et
).

doi:10.5676/dwd_pub/nwv/
osmo-nl_19_12COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 1: EPS operational 
on�guration (Dunie
 et al., 2016)
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8. Reports 87Table 1: Deterministi
 model(s) � sour
e of ICs/BCs for operational EPSModel Grid size NxMxL Fore
ast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 78 7COSMO v. 5.01*) 380x405x50 48 2.8*)time lagged ICs/BCs2 Details of the deterministi
 modelsDetails of the deterministi
 models 
on�guration are as follows:Fore
asts of air temperature and dew point temperature at 2m agl., surfa
e pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/
hart of EPS mean, spread, probabilities of thresholdex
eedan
e are prepared in the routine manner. Results are subsequently stored for further resear
h (e.g. skill-spread relation). In this work a new index to predi
t severe 
onve
tion phenomena (espe
ially tornadoes, butalso heavy thunderstorms, intensive pre
ipitation episodes et
.) was assessed. This index (
alled UniversalTornadi
 Index, UTI) is in general based on a number of predi
tors related with a strong 
onve
tion 
onditions,as follows:
UTI =

CAPE·SRH1km

200
·

5·(DLS−20)+( 200−LCL

10
)

100
+ CAPE3km + SRH1km

4

1000
·
LLS

12
·
AMR500

100whit:� CAPE being surfa
e based Conve
tive Available Potential Energy,� CAPE_3km-surfa
e based CAPE released below 3 km agl,� LCL -Surfa
e based lifting 
ondensation level height,� AMR_500-average mixing ratio below 500 m,both agl,� LLS -0-1 km wind shear,� DLS - 0-6 km wind shear (magnitude of ve
tor di�eren
e),� SRH_1km - 0-1 km storm relative heli
ity.Other 
onstrains applied are:- if SRH_1km<0,then SRH_1km =0;- if LCL>1500m or CAPE=0 or(
onve
tive pre
ipitation amount <2mm/h),then UTI=0Detailed des
ription of the index and its 
limatology 
an be found in Taszarek and Kolendowi
z (2013) orTaszarek et al., (2016).3 ResultsSingle 
ase, July 14th, 2012 (intensity peak 16:00 UTC). The event � a tornado that passed over the BoryTu
holskie primeval forest � was a
tually a 
ombination of four tornadoes, with damage tra
k at a distan
eof 60km, the total length of around 100km. Damaged was 105 buildings, tornado maximum intensity � F3(Fujita s
ale), 1 death, 10 injuries, felled 5 km2 of Bory Tu
holskie.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 2: Left � damage tra
k in Bory Tu
holskie forest due to tornado of 14 July 2012. Photography:Ka
per Kowalski. Right: Lightning 
aptured by the lightning dete
tion network(www.blitzortung.org),0600 to 1800 UTC. Dashed line � radar-based time and position of the thunderstorm. Red line indi
atetornado damage paths

Figure 3: UTI fore
ast, July 14th, 2012, 14:00 to 17:00 UTC. Left: 2.8km deterministi
 run, right: 2.8kmEPS-meanLong term evaluation � UTI EPS-based thunderstorm fore
asts.Sin
e UTI uses many fa
tors/indi
ators as predi
tors (espe
ially CAPE, storm relative heli
ity, 
onve
tivepre
ipitation, wind shear et
.) � it 
an be fun
tional in fore
asting not only tornadoes, but other 
onve
tionphenomena of severe intensity, like thunderstorms (observed with the Polish lightning dete
tion networkPERUN). This part was performed with the ar
hive data, starting from 2012. The results are shown in thefollowing �gures. Left panel present mean �ashrate, right � mean value of UTI for the period of interest.COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 4: Left � mean �ashrate (measurements), average values. Right � EPS-UTI fore
asts, average values.Upper 
harts � year 2012, middle 
harts � year 2015, lower 
harts � period 2012-2015.
COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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Figure 5: Correlation 
oe�
ient UTI vs. FR, 
onse
utive values 2012-2015 (overall avg. 0.1). Best 
orre
tionattained for July 3rd, 2012, 03:00 UTC (heavy storm over 
entral and northern Poland).

Figure 6: Left � mean �ashrate (measurements). Right � EPS-UTI fore
asts. July 3rd, 2012, 03:00 UTC4 Con
lusionsA relatively simple method of fore
asting extreme 
onve
tive phenomena has been proposed. This methoduses Universal Tornadi
 Index as an indi
ator of the o

urren
e of a 
onve
tive phenomenon. Sin
e it utilizesmany fa
tors (CAPE, storm relative heli
ity, 
onve
tive pre
ipitation, wind shear et
.) � it 
an be useful infore
asting not only tornadoes, but also thunderstorms or squalls. Appli
ation of EPS in CP s
ale based ontime-lagged ICs/BCs allows improving fore
asts (espe
ially due to the removal of false alarms). The resear
hwas 
arried out using ar
hive data, starting from 2012. The noteworthy 
orrelation between signi�
antlyhigher EPS-UTI values and o

urren
e of thunderstorms was established.Model fore
asts with a spatial resolution of 2.8km and initial 
onditions � results of deterministi
 model witha resolution 7km � were used for the study. Additional �lters (pre
ipitation amount, CAPE threshold valueet
.) were used. The use of numeri
al fore
asts of meteorologi
al model may be supportive of severe 
onve
tivestorm predi
tion. EPS-mean value of UTI is 
omparable with the ones 
al
ulated in a deterministi
 run(s),however signi�
antly less amount of �noise signals� is observed. Thus, one 
an expe
t (in operational mode)de
rease of FAR/in
rease of POD.Referen
es[1℄ Albergel, C., de Rosnay, P., G. Balsamo, G., Isaksen, L., Munoz-Sabater, J., 2012: Soil Moisture Analysesat ECMWF: Evaluation Using Global Ground-Based In Situ Observations. J. Hydrometeor, 13, 1442-COSMO Newsletter No. 19: O
tober 2019 www.
osmo-model.org
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ast Spread in an EnsembleInitialized with Di�erent Soil Moisture Analyses. Wea. Fore
asting, 22, 299-314.
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COSMO NewslettersNo. 1: February 2001.No. 2: February 2002.No. 3: February 2003.No. 4: February 2004.No. 5: April 2005.No. 6: July 2006; Pro
eedings from the COSMO General Meeting 2005.No. 7: May 2008; Pro
eedings from the COSMO General Meeting 2006.No. 8: August 2008; Pro
eedings from the COSMO General Meeting 2007.No. 9: De
ember 2008; Pro
eedings from the COSMO General Meeting 2008.No.10: January 2010; Pro
eedings from the COSMO General Meeting 2009.No.11: February 2011; Pro
eedings from the COSMO General Meeting 2010.No.12: Mar
h 2012; Pro
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 Numeri
al Di�usion in the LM.No. 4: Hans-Joa
him Herzog, Ursula S
hubert, Gerd Vogel, Adelheid Fiedler and Roswitha Kir
hner (2002):LLM � the High-Resolving Nonhydrostati
 Simulation Model in the DWD-Proje
t LITFASS.Part I: Modelling Te
hnique and Simulation Method.No. 5: Jean-Marie Bettems (2002):EUCOS Impa
t Study Using the Limited-Area Non-Hydrostati
 NWP Model in Operational Use atMeteoSwiss.No. 6: Heinz-Werner Bitzer and Jürgen Steppeler (2004):Des
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al grid experimentation using a 
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hetti, André Walser, Mar
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humann (2005):Evaluation of the Performan
e of the COSMO-LEPS SystemNo. 9: Erdmann Heise, Bodo Ritter, Reinhold S
hrodin (2006):Operational Implementation of the Multilayer Soil ModelNo. 10: M.D. Tsyrulnikov (2007):Is the parti
le �ltering approa
h appropriate for meso-s
ale data assimilation?No. 11: Dmitrii V. Mironov (2008):Parameterization of Lakes in Numeri
al Weather Predi
tion. Des
ription of a Lake Model.No. 12: Adriano Raspanti (2009):Final report on priority proje
t VERSUS (VERi�
ation System Uni�ed Survey).No. 13: Chiara Mirsigli (2009):Final report on priority proje
t SREPS (Short Range Ensemble Predi
tion System).No. 14: Mi
hael Baldauf (2009):COSMO Priority Proje
t "Further Developments of the Runge-Kutta Time Integration S
heme" (RK);Final Report.No. 15: Silke Dierer (2009):COSMO Priority Proje
t "Further Developments of the Runge-Kutta Time Integration S
heme" (RK);Final Report.No. 16: Pierre E
kert (2009):COSMO Priority Proje
t "INTERP"; Final Report.No. 17: D. Leuenberger, M. Stoll, A. Ro
hes (2010):Des
ription of some 
onve
tive indi
es, implemented in the COSMO model.No. 18: Daniel Leuenberger (2010):Statisti
al Analysis of high-resolution COSMO Ensemble fore
asts, in view of Data Assimilation.No. 19: A. Montani, D. Cesari, C. Marsigli, T. Pa

agnella (2010):Seven years of a
tivity in the �eld of mesos
ale ensemble fore
asting by the COSMO-LEPS system:main a
hievements and open 
hallenges.No. 20: A. Ro
hes, O. Fuhrer (2012):Tra
er module in the COSMO model.No. 21: M. Baldauf (2013):A new fast-waves solver for the Runge-Kutta dynami
al 
ore.No. 22: C. Marsigli, T. Diomede, A. Montani, T. Pa

agnella, P. Louka, F. Gofa, A. Corigliano (2013):The CONSENS Priority Proje
t.No. 23: M. Baldauf, O. Fuhrer, M. J. Kurowski, G. de Morsier, M. Muellner, Z. P. Piotrowski, B. Rosa, P. L.Vitagliano, D. Woj
ik, M. Ziemianski (2013):The COSMO Priority Proje
t `Conservative Dynami
al Core' Final Report.No. 24: A. K. Miltenberger, A. Ro
hes, S. Pfahl, H. Wernli (2014):Online Traje
tory Module in COSMO: A short user guide.No. 25: P. Khain, I. Carmona, A. Voudouri, E. Avgoustoglou, J.-M. Bettems, F. Grazzini (2015):The Proof of the Parameters Calibration Method: CALMO Progress Report.No. 26: D. Mironov, E. Ma
hulskaya, B. Szintai, M. Ras
hendorfer, V. Perov, M. Chumakov, E. Avgoustoglou(2015):The COSMO Priority Proje
t 'UTCS' Final Report.COSMO Newsletter No. 19: O
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ulation of Radar Re�e
tivity from Model Output.No. 29: M. Tsyrulnikov, D. Gayfulin (2016):A Sto
hasti
 Pattern Generator for ensemble appli
ations.No. 30: Dmitrii Mironov, Ekaterina Ma
hulskaya (2017):A Turbulen
e Kineti
 Energy - S
alar Varian
e Turbulen
e Parameterization S
heme.No. 31: P. Khain, I. Carmona, A. Voudouri, E. Avgoustoglou, J.-M. Bettems, F. Grazzini, P. Kaufmann (2017):CALMO - Progress Report.No. 32: A. Voudouri, P. Khain, I. Carmona, E. Avgoustoglou, J.M. Bettems, F. Grazzini, O. Bellprat, P.Kaufmann and E. Bu
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