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Editorial 1Consortium for Small-Sale Modelling ontinues to mount e�orts towards replaing the limited-area model COSMO with the Limited Area Mode of the omprehensive modelling framework ICON(ICON-LAM). Considerable progress along this line has been made, partiularly within the frameworkof the priority projet C2I (http://www.osmo-model.org/ontent/tasks/priorityProjets/2i)launhed in 2018 to failitate a smooth transition from the COSMO model to ICON-LAM. TheCOSMO members beome aquainted with ICON-LAM inreasingly losely, and various problemsof sienti� and tehnial harater are being gradually solved. The transition to ICON-LAM alsoposes problems of organizational and legal harater, suh as the o-ordination of e�orts betweenCOSMO and the ICON Partners (DWD and MPI for Meteorology), the future role of the SteeringCommittee and of the Sienti� Management Committee of the Consortium, the liense poliies, andthe intelletual property rights. These issues are thoroughly srutinized by the COSMO STC andSMC and the ICON governing bodies. Several key douments should be ready by the 21st COSMOGeneral Meeting to be held 9-13 September 2019 in Rome, Italy, where the various ritial issues willbe further disussed.In spite of the advent of ICON-LAM, the development of the COSMO model is not yet stopped. Therelease of the version 6.0 of the COSMO model is expeted in the end of 2019. Version 6.0 is intendedto be the last o�ial release of the COSMO model. Importantly, version 6.0 will integrate the resultsobtained within the COSMO NWP and COSMO CLM ommunities and will be a uni�ed COSMO-model version for both the NWP and regional limate modelling appliations. No development isplanned beyond the COSMO-model version 6.0, although the maintenane of the COSMO ode(inluding bug �xes) will be provided for some years to ome.I would like to gratefully thank all olleagues who ontributed to the urrent issue of the COSMONewsletter. Worthy of mention is a new setion entitled "Mission Reports". That setion ontainsmission reports, namely, brief reports on various meetings (onferenes, symposia, et.) that COSMOolleagues have attended using the COSMO liense money. Last but not the least, I am pleased tomention that, starting with the urrent issue (No. 19), the COSMO Newsletters will be published withthe Digital Objet Identi�ers. The DOI format reads 10.5676/dwd_pub/nwv/osmo-nl_XX_YY, whereXX is the number of the Newsletter, and YY is the number of ontribution within the NewsletterNo. XX. The landing page for the COSMO Newsletters is https://www.dwd.de/EN/ourservies/osmo_newsletter/osmo_newsletters.htm. DOIs are also provided for COSMO Tehnial Re-ports. The DOI format reads 10.5676/dwd_pub/nwv/osmo-tr_XX, where XX is the tehnial reportnumber. The latest �ve Tehnial Reports (Nos. 34-39) with DOIs are already available at the landingpage at DWD, https://dwd.de/EN/ourservies/osmo_tehnial_reports/osmo_tehnial_reports.htm. The work is underway to provide DOI for all COSMO Tehnial Reports published sofar. Great thanks are due to the DWD olleagues Ms. Magdalena Bertelmann and Dr. Jörg Rapp fortheir kind e�orts in providing DOIs for COSMO publiations.Dmitrii MironovCOSMO Sienti� Projet Manager
doi:10.5676/dwd_pub/nwv/osmo-nl_19_01COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



Figure 1: Partiipants of the 20th COSMO General Meeting in St. Petersburg, Russia

Figure 2: Partiipants of the 20th COSMO General Meeting in St. Petersburg, Russia



1. Working Group on Data Assimilation 3
Statistical analysis of radar reflectivities observed and simulated by

EMVORADOVirginia Poli[1℄, Thomas Gastaldo[1,2℄, Pier Paolo Alberoni[1℄ and Tiziana Paagnella[1℄[1℄Arpae-SIMC Emilia-Romagna, Bologna, Italy[2℄ Universitá degli Studi di Bologna, Bologna, Italy
1 IntrodutionIn the COSMO Consortium (Consortium for Small-sale Modeling), the assimilation of radar data is nowon-going into the Kilometer-sale ENsemble Data Assimilation (KENDA) LETKF system [1℄ by means of theE�ient Modular VOlume RADar forward Operator (EMVORADO, [2℄, [3℄, [4℄, [5℄, [6℄). At Arpae-SIMC,the HydroMeteorologial and Climate Servie of the Emilia-Romagna (Italy), the attention is foused on theassimilation of radar re�etivity volumes.The o�-line version of EMVORADO, i.e. not inluded in the assimilation yle, has been implemented toalulate the re�etivity volumes from KENDA analyses in order to estimate the observation error by meansof a method based on statistial averages of observation-minus-bakground and observation-minus-analysisresidual.As a side result, the omparison between the observed and simulated re�etivities allows us to under-stand how muh the values derived by the operator deviate from reality. Hene, the use of the o�-line operatormakes it possible to verify how the re�etivity distributions vary both using di�erent analyses, oming fromvarious KENDA on�gurations, and by diretly modifying the parameters of the operator himself.2 Statistial distributions of re�etivitiesTo quantify the di�erenes between re�etivities simulated with di�erent EMVORADO on�gurations andalso between observed and simulated ones, the o�-line radar operator was applied, i.e. separately from theassimilation yle, to all the analyses obtained from di�erent assimilation yles of KENDA. In partiular, forthis topi, hourly analyses ome from KENDA with the assimilation of onventional observations (SYNOP,TEMP and AIREP) and KENDA with the assimilation of onventional observations and radar re�etivityvolumes. The radar operator on�gurations that have been tested are summarized in table 1. Among all thepossible ombinations, the di�erent type of sattering (Mie/Rayleigh) for re�etivity omputation has beenused. Subsequently, the attenuation along the beam was also taken into aount for the Mie sattering. Thisoption annot be used for Rayleigh sattering. With regard to Rayleigh sattering, the e�et of the use ofdi�erent beam propagation methods has been veri�ed. By default, the "4/3-earth" limatologial model isused, the other two options enable the ray traing and the beam bending omputations based on the simulatedair refrative index �eld [5℄. Spei�ally the TORE method is based on Snell's law for spherially strati�edmedia inluding e�ets of total re�etion, while the SODE method is based on the seond-order ordinarydi�erential equation for the beam height as a funtion of range.One all the simulated volumes were produed, re�etivities above 0 dBZ were onsidered and boxplots weregenerated independently for the ase studies indiated in table 2 (Figures 1 and 2). The hoie to alulatethe statistial distributions aording to the events was due to the fat that the hosen periods have verydi�erent weather harateristis.doi:10.5676/dwd_pub/nwv/osmo-nl_19_02COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 4Table 1: EMVORADO on�gurationsName Sattering options Propagation optionsMie Mie sattering Climatologial �4/3-earth� modelMie_atten Mie sattering taking into aount Climatologial �4/3-earth� modelattenuation along the ray pathRayleigh Rayleigh sattering Climatologial �4/3-earth� modelRayleigh_sode Rayleigh sattering Method SODE based on the seond-order ordinary di�erentialequation for the beam height as funtion of rangeRayleigh_tore Rayleigh sattering Method TORE based on Snell's law for spherially strati�edmedia inluding e�ets of total re�etionTable 2: Case studiesEvent Start of the event End of the event Type of eventSeptember 2018 31/08/2018 01 UTC 09/09/2018 00 UTC thunderstormsOtober 2018 30/09/2018 16 UTC 14/10/2018 00 UTC thunderstorms and organized onvetivestruturesNovember 2018 26/10/2018 13 UTC 11/11/2018 00 UTC stratiform strutures with some onvetiveepisodes at the beginning of the period

Figure 1: Boxplots alulated for September 2018 (a), Otober 2018 (b) and November 2018 () with inputanalyses from KENDA yles with the assimilation of onventional observations.Using as input analyses those derived from KENDA yles with the assimilation of only onventional obser-vations (Figure 1), the distributions do not vary signi�antly depending on the ase study onsidered. Smalldi�erenes an be observed on the estimated maximum values: for the Otober ase the simulated maximumre�etivities are higher. On the other hand, onsidering the di�erent on�gurations of EMVORADO, theuse of Mie sattering generally produes a distribution with higher re�etivity values. By ativating attenua-tion, values between 25th and 75th perentiles are realigned with other on�gurations, but values above 95thperentiles are all limited to below 50 dBZ. For the on�gurations with the Rayleigh sattering, the use ofdi�erent beam propagation shemes does not bring to any signi�ant hanges.The simulations behavior using as input analyses those derived from KENDA yles with the assimilationof only onventional observations and radar re�etivity volumes at the analysis time (Figure 2), alulatedonly for Otober 2018, di�er slightly from the previous ones. Median values are higher, but maximum valuesabove the 95th perentiles are smaller.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 5

Figure 2: Boxplot alulated for Otober 2018 with the input analyses from KENDA yles with the assim-ilation of onventional observations and radar re�etivity volumes at the analysis time.3 Case Study: �ooding in Sardinia in Otober 2018To understand in more detail how the simulated re�etivity hanges aording to the hosen namelist pa-rameters, the �ood that hit southern Sardinia on Otober 10, 2018 was analyzed. As shown in �gure 3, inthis part of the region, several rain gauges have measured values greater than 100 mm over the two days,with a maximum value at Santa Luia di Capoterra of 493.4 mm. For this rain gauge the trend of the hourlyaumulated preipitation (Figure 4) displays a �rst passage of the preipitating strutures in the morning ofOtober 9 and a persistene of the phenomena from the evening of Otober 10 until the end of the event.
Figure 3: Aumulated preipitation measured by rain gauges from 09/10/2018 - 00 UTC to 11/10/2019 -00 UTC in Southern Sardinia.

Figure 4: Aumulated hourly preipitation measured by the rain gauge loated at Santa Luia di Capoterrafrom 08/10/2018 - 23 UTC to 11/10/2019 - 00 UTC.Two hours were seleted and the polar volume at its lowest elevation was displayed for Armidda radar (inred, in �gure 5) for the di�erent EMVORADO on�gurations and depending on the input analyses.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 6

Figure 5: Armidda's radar, highlighted in red, inside the radar Italian radar network used for this study.In �gure 6 and �gure 7, olumns 2, 3 and 4 show the re�etivity �elds simulated using Rayleigh, Mie andMie with attenuation on�gurations. Simulations an be diretly ompared with the observation in olumn1. The di�erent rows refer to the di�erent analyses used as input. In the �rst row the analyses used omefrom KENDA yles with assimilation of only onventional observations (SYNOP, TEMP and AIREP). Inthe seond row analyses ome from KENDA yles with assimilation of onventional observations and LHN,while in the third one they omes from KENDA yles with assimilation of onventional observations andradar re�etivity volumes at the analysis time. Figure 6 refers to 9 Otober at 9 UTC, while �gure 7 is for10 Otober at 10 UTC.

Figure 6: Observed (�rst olumn) and simulated (olumns 2, 3 and 4) re�etivity of Armidda's �rst radarelevation by hanging EMVORADO on�gurations (olumn 2: Rayleigh, olumn 3: Mie, olumn 4: Mie withattenuation) and input analyses (top row: analysis from KENDA with the assimilation of onventional ob-servations, middle row: analysis from KENDA with the assimilation of onventional observations and LHN,bottom row: analysis from KENDA with the assimilation of onventional observations and radar re�etivityvalues at the analysis time) for Otober 9 at 9 UTC.In both instants examined the strutures are simulated in a more aurate way, both in terms of loationand shape, if the analyses ome from KENDA yles with assimilation of radar volumes. The use of analyseswith only the assimilation of onventional observations leads to the modeling of strutures that have littlerelevane to the observation, in partiular this an be observed at the �rst instant.Simulations starting from the analyses in whih the LHN is used overestimate the re�etivity. This is mostCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 7

Figure 7: As �g. 6, but for Otober 10 at 10 UTC.visible at the �rst instant where not only the struture in the south-west part of the domain is overestimated,but unobserved preipitation is simulated in the eastern part of the domain.The use of Rayleigh's sattering with the analyses oming from the assimilation of radar volumes brings to ageneral underestimation of the �eld of re�etivity.The ombination of the LHN analyses and the use of the Mie on�guration leads to a strong overestimationof all simulated values. As a general result, regardless of input �elds, the use of attenuation improves overes-timation by bringing the simulations more similar to those obtained using the Rayleigh sattering.For this ase study, omparing the obtained simulations with the observations, the use of Mie satteringprovides the best results.4 Conlusions and future workThe results obtained from this ase study deviate partially from what is highlighted by the distributions ofre�etivity on all events. In this ase, the use of Mie sattering seems to provide the best results, while thedistributions show a lear overestimation of the values with respet to the observations.At the moment the foreasts initialized with KENDA analyses, obtained with the on�guration of EMVO-RADO with Rayleigh sattering, provide a good improvement over the operational runs. However, the Miesattering will be used for the ase studies presented, providing a quantitative omparison between foreasts.Referenes[1℄ Shra�, C., Reih, H., Rhodin, A., Shomburg, A., Stephan, K., Periáñez, A., and Potthast, R. 2016:Kilometre-sale ensemble data assimilation for the COSMO model (KENDA), Q. J. Roy. Meteor. So.,142, 1453�1472, URL https://doi.org/10.1002/qj.2748.[2℄ Blahak, U., 2016: RADAR_MIE_LM and RADAR_MIELIB - alulation of radar re�etivity frommodel output. Tehnial Report 28, Consortium for Small Sale Modeling (COSMO), URL http://www.osmo-model.org/ontent/model/doumentation/tehReports/dos/tehReport28.pdf.[3℄ Zeng, Y., 2013: E�ient radar forward operator for operational data assimilation within the COSMO-COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 8model. Dissertation, IMK-TRO, Department of Physis, Karlsruhe Institute of Tehnology, URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000036921.[4℄ Jerger, D., 2014: Radar forward operator for veri�ation of loud resolving simulations within theCOSMO-model. Dissertation, IMK-TRO, Department of Physis, Karlsruhe Institute of Tehnology,URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000038411.[5℄ Zeng, Y., Blahak, U., Neuper, M. and Epperlein, D., 2014. Radar beam traing methods based onatmospheri refrative index. J. Atmos. Oean. Teh., 31, 2650-2670.[6℄ Zeng, Y., Blahak, U. and Jerger, D., 2016. An e�ient modular volume-sanning radar forward operatorfor NWP models: desription and oupling to the COSMO model. Quart. J. Roy. Met. So., 142, 3234-3256, URL http://onlinelibrary.wiley.om/doi/10.1002/qj.2904/abstrat.
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1. Working Group on Data Assimilation 9
Assimilation of radar reflectivity volumes employing different observation

error covariance matricesThomas Gastaldo1,2, Virginia Poli1, Chiara Marsigli3, Pier Paolo Alberoni1 and TizianaPaagnella1 [1℄ Arpae-SIMC Emilia-Romagna, Bologna, Italy[2℄ University of Bologna, Italy[3℄ Deutsher Wetterdienst, O�enbah, Germany
1 IntrodutionAt Arpae-SIMC, the HydroMeteorologial Servie of Emilia-Romagna Region (Italy), the KENDA assimila-tion system [1℄ provides the analyses to the onvetion-permitting omponents of the operational modellinghain, onsisting of one deterministi run and one ensemble system, both at 2.2 km horizontal resolution andwith the same domain (greysale in Figure 1). Currently, only onventional observations are assimilated, buttests are ongoing to inlude also re�etivity volumes [2℄ from the Italian radar network (solid lines in Figure1).
Figure 1: Integration domain (greysale) of the COSMO model employed at Arpae-SIMC for high resolutionmodel runs. The approximate overage area for eah radar at their lowest resolution of the Italian network isshown with solid lines.The high spatial and temporal density of radar data demands a great are in setting the observation errorovariane matrix R. In fat, due to the great amount of data, small departures of the observation error fromits atual value may lead to large errors in the analysis. Furthermore, re�etivity observations are spatiallyand temporally orrelated and, therefore, the assumption made in most operational data assimilation systemsof a diagonal R matrix is not realisti (see for example [2℄).The impat of using di�erent estimations of the R matrix in the assimilation system is presented over two testperiods. Results obtained when employing an unique observation error for all re�etivity volumes are omparedto those obtained when a di�erent value is spei�ed for eah observation, depending on the radar station andthe distane from the station. The analyses, derived by eah observation error matrix on�guration, are usedto initialize di�erent foreasts. The omparison of the quantitative preipitation foreast (QPF) using theFrations Skill Sore (FSS [3℄) allows to estimate the auray of the analysis itself. Finally, an estimation ofspatial orrelations between re�etivity observations is provided.doi:10.5676/dwd_pub/nwv/osmo-nl_19_03COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 102 Observation errorThe observation error ǫo has two omponents [4℄: the measurement and the representation error. The former,also alled instrument error, is the error assoiated with the measuring devie alone, independently of howthe measurements are used. The latter arises from 3 soures:� errors due to a mismath between the sales represented in the observations and the model �elds;� errors introdued by the observation operator;� errors due to pre-proessing or quality ontrol.In data assimilation, an aurate estimation of the observation error is ruial sine the observation errorovariane R = E[ǫoǫ
T
o ] weights observations as B = E[ǫbǫ

T
b ] weights model bakground information (ǫb isthe bakground error). While during the past deades a great e�ort has been done to improve the estimationof B (for example in the KENDA system it is fully �ow dependent), small improvement have been doneregarding the R matrix. In fat, R is �xed in time and generally assumed to be diagonal, that is observationsare onsidered unorrelated. Regarding the way to estimate it, one of the most used is the method proposedby Desroziers[5℄ whih is based on the expet value of the produt between observation-minus-analysis andobservation-minus-bakground residuals.3 Estimation of re�etivity errorsIn order to estimate re�etivity error with a spatial dependene, we estimate the diagonal of R using Desroziersstatistis and then we bin observations and the assoiated errors aording to their horizontal and vertialdistane from radar station. We use an horizontal step of 50 km and a vertial step 2 km. The estimation isperformed for eah radar of the Italian network over 3 periods,in order to have also a temporal dependene:from 31/08/18 at 00 UTC to 09/09/18 at 00 UTC (sept2018), from 30/09/18 at 15 UTC to 10/10/18 at 00UTC (ot2018) and from 26/10/18 at 12 UTC to 11/11/18 at 00 UTC (nov2018).Estimated values averaged over the three periods (sept2018, ot2018 and nov2018) and over all radars of theItalian network are shown in Figure 2. Values (y axis) are shown as a funtion of horizontal distane (x axis)and vertial distane (olours). As a general behaviour, we an notie that observation error inreases withhorizontal distane. This seems to be reasonable sine the size of observed atmospheri volumes inreases withthe distane from the radar station. At the same time, we an notie that the observation error dereaseswith vertial distane up to the 4-6 km bin and then stabilizes. Also this behaviour seems to be reasonablesine re�etivity observations lose to the ground are more likely a�eted by non meteorologial signals (i.e.lutter).

Figure 2: Estimated observation error for re�etivity volumes averaged over all periods and over all radarsof the Italian network.Due to the heterogeneity of our radar network and to the presene of di�erent weather regimes in Italy,when the statistis is applied separately to eah radar we an notie a ertain variability. As an example, inCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 11Figure 3 estimated values of re�etivity errors are shown for Serano radar (left panel) in Central Italy andfor Zoufplan radar (right) in North-Eastern Italy. Values are averaged over the 3 periods sept2018, ot2018and nov2018. It an be notied that the general behaviour desribed above is onserved but values and slopesof the urves vary quite signi�antly. A ertain variability an be observed also when onsidering one radarbut restriting the statistis to a single period. This is shown, for example, in Figure 4 for Zoufplan radarapplying the Desroziers statistis only at the sept2018 period (left panel) and at nov2018 (right).
Figure 3: Same as Figure 2 but for omputing the statistis only for Serano radar (left) in Central Italy andZoufplan radar (right) in North-Eastern Italy.

Figure 4: Same as Figure 2 but omputing the statistis only for Zoufplan radar at two di�erent periods:sept2018 (left) and nov2018 (right).4 Use of estimated values of the observation error in KENDAIn order to evaluate the impat of using the estimated values of re�etivity error in the KENDA assimilationsystem, we perform 3 experiments. In err_�x experiment all re�etivity volumes have an error of 10 dBZ,as in our standard set-up for the assimilation of radar data. In err_mean experiment the observation errorvaries with radar station and with horizontal and vertial distane from station and it is averaged over allperiods. Finally, in err_period experiment the observation error varies with radar station, with horizontaland vertial distane from station and with period.The three experiments are performed for sept2018 and ot2018 periods. The KENDA system employs a 20member ensemble plus a deterministi run and an assimilation window of 1 hour; Both onventional dataand radar volumes (only the losest to analysis time for eah radar) are assimilated. Finally, a deterministiforeast is initialized eah 3 hours and foreast preipitation is veri�ed by using the Frations Skill Sore(FSS). Regarding FSS, �xed spatial windows of 0.2 degrees are used and thresholds of 1 mm and 5 mm areonsidered. Observations are hourly rainfall �elds from the Italian radar omposite adjusted by rain-gauges.Results are shown in Figure 5. Di�erenes between the three experiments are small for both sept2018 (leftpanel) and ot2018 (right panel) periods. Regarding sept2018, FSS values for err_mean (red lines) are verylose to those of err_�x (blue) for both the 1 mm (solid lines) and the 5 mm (dashed lines) threshold.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 12In ontrast, the performane of err_period (green) is generally slightly better than that of the other twoexperiments. However, when onsidering the ot2018 ase, err_mean experiment is very slightly worse thanerr_�x and the worst results are obtained for err_period. In onlusion, due to the mixed results observed, wean state that the impat of employing a more aurate haraterization of the observation error for re�etivityvolumes in the assimilation system does not a�et signi�antly the quality of foreast preipitation.
Figure 5: Frations Skill Sore for err_�x (blue lines), err_mean (red) and err_period (green) experimentsemploying a threshold of 1 mm (solid lines) and 5 mm (dashed lines). The veri�ation is applied to sept2018(left panel) and to ot2018 (right panel) periods.5 Estimated values of orrelation between radar observationsEmploying the Desroziers statistis, we also ompute an estimation of spatial orrelations for re�etivityerrors. Similarly to the method desribed in Setion 3, we bin pairs of radar observations aording to theirhorizontal and vertial distane. We employ an horizontal step of 10 km and a vertial step of 1 km. Resultsobtained for the sept2018 ase averaged over all radars of the Italian network are shown in Figure 6. Asexpeted, errors are strongly orrelated vertially and signi�ant orrelations an be seen up to 40 km inhorizontal.

Figure 6: Spatial orrelation between pair of re�etivity observations during sept2018 ase.6 Conlusions and future workEven if re�etivity observation error varies quite signi�antly with time, radar station and distane from theradar, the use of more aurate values of errors in KENDA does not improve foreast auray. However,further tests are needed to on�rm this result. The estimation of orrelations between re�etivity errorsshows that there is a strong orrelation in spae. Therefore, the exploitation of the orrelation between pairof observations in the R matrix may be bene�ial.
COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Estimation of model errors on convective scales: a coarse-graining study

(preliminary stage results)Mihael Tsyrulnikov and Dmitry Gayfulinmik.tsyrulnikov�gmail.om
AbstratAn attempt to objetively estimate model tendeny errors using a �true model� is desribed. The model inquestion (the �model�) is COSMO with the horizontal resolution 2.2 km. The �true model� is COSMO withthe horizontal resolution 0.55 km. The model error is evaluated as the di�erene between 1-minute �model�and upsaled (oarse-grained) �true-model� tendenies started from the same initial onditions. Preliminaryresults show, that, �rst, onvetion is not to be treated with this approah. Seond, non-onvetive modelerrors ontain both additive and multipliative omponents. The additive omponent and the multiplier(applied to the physial tendeny) appear to be approximately Gaussian. Third, the model-error �eld is tooomplex (espeially in the planetary boundary layer) to be modeled with a reasonably simple stohastimodel, so a proess-level model error treatment is to be employed.1 IntrodutionTo perform numerial weather predition, three omponents are needed: initial onditions, boundary ondi-tions, and a foreast model. The lassial paradigm is deterministi: we (naively) assume that all these threeomponents are perfet (however they are prepared), and ome up with a deterministi foreast. But in reality,the three omponents needed to ompute a foreast are, of ourse, imperfet and subjet to unertainty, sothat the foreast inevitably ontains an error. The (expeted) magnitude of the error is of great interest toany user of the foreast and thus should be quanti�ed.1.1 Ensemble preditionThe most widely used paradigm to aount for the unertainties is stohasti: the foreast-error is assumedto be a random �eld with the probability distribution to be omputed/estimated/spei�ed. Correspondingly,all data used to prepare the foreast and the foreast-model itself are assumed to be random. Initial andboundary onditions are treated as multidimensional random �elds. Foreast model equations are assumed tobe subjet of error traditionally represented by the model error, the di�erene of the model's right-hand sidesfrom the hypothetial true right-hand sides.The model-error �eld is, then, also modeled as a spatiotemporalrandom �eld.The randomness of the three �input� random �elds, that is, initial, boundary, and model-error�elds, results in a randomness of the foreast. Therefore, to quantify the foreast probability distribution,we need, �rst, to adequately model the three input probability distributions and seond, to map these inputdistributions to the output (i.e. foreast) distribution.These two tasks are performed nowadays using Monte-Carlo, that is, the input probability distributions arerepresented by pseudo-random samples from an initial ensemble, a boundary ensemble, and a model-errorensemble. These samples are fed to the foreast model (in other words, the initial and boundary data asdoi:10.5676/dwd_pub/nwv/osmo-nl_19_04COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 15well as the model equations are �perturbed�)1. The perturbed input �elds give rise to a perturbed foreast.Multiple realizations of the input �elds give rise to a foreast ensemble. The foreast ensemble is then, byonstrution, a sample from the foreast probability distribution. Otherwise stated, the foreast ensembleis obtained, ideally, by replaing deterministi initial and boundary onditions and deterministi right-handsides of the model equations by random samples from the respetive distributions. This approah is knownin geosienes as ensemble modeling and predition. From the foreast ensemble, a probabilisti foreast anbe omputed, replaing the deterministi foreast and quantifying the foreast unertainty.For the ensemble predition to adequately desribe the foreast unertainty, the �input� unertainties need tobe adequately represented. The initial ensemble is, normally, generated by a data assimilation sheme. Thelateral-boundary ensemble for a limited-area model is generated from a parent-model foreast ensemble. Thelower-boundary ensemble requires a foreast ensemble in the soil/sea/lakes/rivers et. In global models, theupper boundary ondition is normally not perturbed. In limited-area models, the upper-boundary ensembleis generated in the same way as the lateral-boundary ensemble. It remains to generate samples from thedistribution of model errors. Our fous in this study is on model errors.1.2 Model errorsExisting approahes to model-error modeling an be haraterized as follows. Non-stohasti approahesinlude multi-model and multi-physis tehniques e.g., Berner et al. [1℄. The most popular stohasti approahis the sheme alled Stohasti Perturbations of Physial Tendenies (SPPT) e.g., Buizza et al. [2℄, see alsoits more �exible version Christensen et al. [4℄. Another stohasti tehnique involves additive perturbations(alled additive in�ation in data assimilation) e.g., Houtekamer et al. [6℄, Tsyrulnikov and Gayfulin [17℄. Thefollowing tehniques are also widely used: parameter perturbation shemes Ollinaho et al. [9℄, Christensenet al. [3℄, the Stohasti Kineti Energy Baksatter sheme (SKEB) Shutts [13℄, the stohasti onvetionsheme Kober and Craig [7℄, and the Stohasti Convetion Baksatter Shutts [14℄. See also the reviewby Leutbeher et al. [8℄ and other referenes therein. The ommon shortoming of all the numerous above-mentioned shemes is their lak of objetive justi�ation and objetive parameter estimation.The goal of this researh is to objetively estimate and stohastially model the multivariate spatiotemporalmodel-error �eld using the oarse-graining approah Shutts and Palmer [16℄, Shutts and Pallarès [15℄. Aord-ing to this approah, a higher-resolution �true model� is introdued and used (after upsaling or oarse-grainingto the model resolution � hene the name of the approah) to expliitly evaluate model errors with respetto the true model. The limitation of this approah is its reliane on a �true model�, whih of ourse is alsoapproximate (as any model). The advantage of the oarse-graining approah is that it o�ers an opportunityto arefully and rigorously identify and estimate a model for proxy model errors.Our approah is as follows.1. As a �model�, take the COSMO model with a relatively high, onvetion-permitting resolution (2.2km).2. As a �true model�, take the same model but with a signi�antly higher resolution and more sophistiatedphysial parameterizations.3. Start the �model� and the �true model� from the same initial onditions and ompute the two short-timetendenies.4. Upsale (oarse-grain) the �true-model� tendenies to the �model� resolution and expliitly omputethe model-error �eld.5. Aumulate a sample of model-error �elds.6. Use this sample to build a multivariate spatiotemporal stohasti model for model errors.1When foreast models beome inherently stohasti, there will be no need for the additive model error�eld, and then the stohasti (�perturbed�) foreast model will be diretly applied to the initial and boundaryensembles.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 16Note that Tsyrulnikov [19℄ used a similar approah that involved a �true model� but for a muh simpler pairof �model� and �true-model� (vortiity equation vs. the shallow-water model).2 Model error de�nition2.1 Standard de�nitionTo de�ne the model error we follow Orrell et al. [10℄ but onvert their de�nition from the time ontinuous tothe time disrete form. Let the time ontinuous foreast model equation be
dxmod

dt
= F(xmod), (1)

x
mod ∈ Xmod is the model state vetor, Xmod is the model state spae, and F(xmod) is the model operator.Numerially integrating this equation yields its time disrete solution

x
mod
k = M(xmod

k−1), (2)where k denotes the time step and M(xmod) is the time disrete model operator.Next, let the truth be denoted by x
tru
k ∈ X tru, where X tru is the true state spae.Finally, postulate that there is a projetion (see, e.g., Tsyrulnikov [19℄) Π : X tru → Xmod suh that any truestate is mapped to the model spae, getting a model state (denoted by the tilde):

ex
tru = Πx

tru. (3)Normally, elements of X tru are ontinuous �elds in physial spae (as opposed to spae-disrete �elds in
Xmod), in this ase the ation of Π amounts to upsaling the true �eld to the model-spae �elds resolution2.Now we are in a position to de�ne the model error. To this end, we start the �model� from the true initialonditions x

tru
k−1 at time k − 1 (that is, from the upsaled truth ex

tru
k−1), ompute the one-step model foreast,and ompare it with the (upsaled) truth at time k.The di�erene is solely due to the inability of the model to predit the true evolution of the system (atmo-sphere) and therefore it is alled the model error:

εk = M(ex
tru
k−1) − ex

tru
k . (4)Adding and subtrating ex

tru
k−1 from the right-hand side of Eq.(4) shows that the model error is the modeltendeny error as well:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

−
ˆ

ex
tru
k − ex

tru
k−1

˜

≡ T
mod
k − eT

tru
k , (5)where T stands for the one-step (total) tendeny.2.2 De�nition of model error that assumes that there is a true modelIt is essential that the model operator is applied in Eq.(4) to the (upsaled) truth. To understand why thisis required, let us hypothesize that there is a true model:

x
tru
k = Mtru(xtru

k−1), (6)where Mtru is the operator of the true model. Note that from now on the supersript �tru� denotes the truemodel (not the truth as in setion 2.1).2It is also plausible that the truth or the �true model� involves more �elds (e.g. additional air onstituents)than the model. In that ase, the projetor Π just ignores the �elds present in the truth or the �true model�but absent in the �model�. This situation is not onsidered in this study.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 17Substituting x
tru
k from Eq.(6) into Eq.(4) yields

εk = M(ex
tru
k−1) − fMtru(xtru

k−1), (7)where fMtru(xtru
k−1) ≡ ΠMtru(xtru

k−1). From Eq.(7), we see that the model error is the di�erene of the one-time-step model solution and the one-time-step true-model solution provided that the two models areinitialized from the same state (up to the subgrid-sale �eld omponents). We all this requirement thesame start ondition. Informally, the same start ondition is very meaningful: in order to ompare the twomodels we speify the same inputs and look at the outputs so that di�erene is only due to the di�erene inthe model's operators.Remark. The above model error de�nition an also be viewed as follows. If we take the upsaled truth atthe two onseutive time steps k − 1 and k and substitute them into the foreast-model Eq.(2), then Eq.(2)will not be exatly satis�ed beause the truth is not governed by the (inevitably approximate) foreast modelequation. The disrepany is, by Eq.(4), the model error. Formulated this way, the model error de�nitionappears to exatly orrespond to the de�nition of the trunation error of a numerial sheme in solving adi�erential equation. Indeed, following eg Rihtmyer and Morton [12℄, setion 1.6, we substitute the exatsolution to the di�erential problem (i.e. the truth we seek to approximate) into the �nite-di�erene sheme(the �approximating model�) and all the residual the trunation (model) error.Equation (7) an be rewritten in terms of tendenies by subtrating and adding ex
tru
k−1 in its right-hand sideand rearranging the terms:

εk =
ˆ

M(ex
tru
k−1) − ex

tru
k−1

˜

− Π
ˆ

Mtru(xtru
k−1) − x

tru
k−1

˜

≡ T
mod
k − eT

tru
k . (8)We reiterate that here and for the remainder of the artile eT

tru
k denotes the tendeny of the true model, notthe true tendeny as in Eq.(5). Tehnially, sine the true model may have a shorter time step, we allow thetendenies to be omputed for several time steps so that the tendeny foreasts used to ompute T

mod
k and

T
tru
k have the same lead time.This generalization an also be used to hek if there is an initial transient proess due to possible imbalanesin the starting points (�elds) from whih the tendeny foreasts are initialized (by omparing the tendeny�elds for di�erent tendeny-foreast lengths, see setion ).To summarize, the standard de�nition of model error, Eq.(4), assumes that the truth at the time instants inquestion, k − 1 and k, that is, x

tru
k−1 and x

tru
k , is the atual truth, that is, the truth atually observed in thenature by real-world observations. By ontrast, the de�nition that makes use of a true model, Eqs.(7)�(8),allows us to lift this restrition and assume that the x

tru
k−1 is an be any point on the true-model �attrator�(in pratie, not far from the true-model �attrator�, that is, with reasonably balaned initial onditions forthe true model).3 Evaluation of model error3.1 MotivationTsyrulnikov and Gorin [18℄ tried to use the standard de�nition of model error, Eq.(4), to evaluate modelerrors through omparing �nite time model tendenies with �nite-time observed tendenies. They found ina simulation study with the COSMO model (with 20 km horizontal resolution) that the main obstale wasthe requirement to start the model from the truth. Starting from analyses led to too high estimation errors.In order to make the analyses aurate enough to reliably estimate even the simplest onstant-in-spae andpieewise-onstant-in-time model error of realisti magnitude, the assimilated observations of temperatureand wind needed to have urrently unreahable auray (0.1 K for temperature and 0.02 m/s for winds)and be available at eah model grid point. Hene, reliable estimation of realisti model errors by omparing�nite-time model tendenies with �nite-time observed tendenies is not possible with existing observationalCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 18

Figure 1: Model error evaluation shemati. Dots denote points in state spae. Di�erenes between the truestate spae and model state spae are not highlighted for simpliity here.networks. This has motivated the present researh, in whih we expliitly speify a �true model� and usethe extended de�nition of the model error introdued in setion to evaluate the model error.3.2 NotationThe �model� in question is referred to as the oarse-grid model (gm, also abbreviated as mod). The oarsegrid is abbreviated as g. Fields on g are denoted by the tilde.The �true model� is referred to as the �ne-grid model (fgm, also abbreviated as tru). The �ne grid is abbrevi-ated as fg. By �grid-sales� (abbreviated as gs) we mean sales resolved on g. By �subgrid-sales� (abbreviatedas sgs) we mean sales not resolved on g (but resolved by fgm).3.3 The proposed approahIn order to generate the ommon starting point for the two tendeny foreasts and apply the model-errorevaluation methodology desribed in setion , we run a gm pre-foreast (to �spin� the model up). The pre-foreast starts from the initial point x
ini generated from a global model. The alternative approah in whihthe pre-foreast is performed using fgm will be investigated on a later stage of the projet.At the end of the pre-foreast, we obtain the gm foreast �elds denoted by xk−1 in Fig.1 and by exstart inwhat follows. The gm tendeny foreast starts immediately from exstart. The fgm tendeny foreast startsfrom a downsaled version of exstart denoted by xstart.Then, we run two very-short-term tendeny foreasts of the same lead time x

mod
k and x

tru
k , ompute the twotendenies, downsale the fgm tendeny, and �nally ompute the model error �eld εk following Eq.(8). Amore preise and detailed desription of our approah is given in setion 4.2 .3.4 UpsalingAs noted in setion , an upsaling (oarse-graining, aggregation) is needed to properly projet a high-resolutionfgm �eld onto the gm phase spae. The upsaling removes the sales not represented on the oarse modelgrid and thus makes the true �eld omparable with its model ounterpart. Note that not performing upsaling(i.e. simply restriting the high-resolution �elds on a oarse grid) would give rise to the phenomenon knownas aliasing so that the sgs �eld omponents would be superimposed on the gs �eld omponents, irreversiblydistorting them.Normally, the resolution of fgm is higher than gm not only in spae but also in time (shorter time steps),COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 19whih implies that the upsaling must involve the dime dimension as well as the (three) spatial dimensions.There are two ommon approahes to upsaling: spetral and physial-spae based. A spetral upsaling ismore ommon in mathematis. It is performed by Fourier transforming the spatial �eld x
tru, trunating theresulting expansion at the model-grid resolution, and omputing ex

tru as the inverse Fourier transform of thetrunated expansion. This approah exatly removes all sgs spetral omponents.In meteorology, a physial-spae upsaling is more ommon, it onsists in averaging the high-resolution fg�eld x
tru over ells of lower-resolution g, see e.g. Shutts and Palmer [16℄. This tehnique is simpler (as it isloal, in ontrast to the spetral approah) and more physially appealing, albeit not preise mathematially.We will adopt this physial-spae de�nition to simplify our analysis.Note that in the ontext of oarse-graining studies, Shutts and Pallarès [15℄ used a spetral low-pass �lter inthe horizontal with a squared exponential (i.e. not retangular as in the ideal low-pass �lter) transfer funtion.In time, they performed low-pass �ltering by ad-ho averaging. Both �lters were applied both to the model(they alled it �target�) and to the true model (�truth�).
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1. Working Group on Data Assimilation 204 Numerial experiments4 ases were studied (all 12 UTC): 1 July and 29 July 2017 (�onvetive� days) and 17 July and 1 Deember2017(�non-onvetive� days).4.1 Models'setupThe gm was COSMO with 50 vertial levels and horizontal resolution 2.2 km. The fgm was the same COSMOwith the following di�erenes from gm:1. The horizontal resolution was 0.55 km.2. The time step was 5 s in fgm vs. 20 s in gm.3. The shallow onvetion parameterization (Tiedtke) was swithed o� in fgm whilst swithed on in gm.4. A 3D turbulene sheme was used in fgm vs. a 1D sheme in gm.5. Some more sophistiated options were used in the fgm's loud and preipitation sheme as well as inthe radiation sheme as ompared to gm.The models domains were entered at 52N 35E, see Fig.2. The outermost grid is g (250*250 points, 550*550km, marked in greenish). The seond-largest grid in Fig.2 is fg (600*600 points, 330*330 km, marked inpinkish). The innermost grid is the model-error evaluation grid (mesh size 2.2 km, 110*110 points, 220*220km, marked in bluish). The three domains/grids were nested one in another with the intention to redue anyimpat of lateral boundaries in a 3h foreast. This will be useful at a later stage of the projet when thedeveloped model-error model is veri�ed in an ensemble predition system.

Figure 2: The horizontal grids: fg (the outermost grid), g (the intermediate grid), and theinnermost model-error evaluation grid.4.2 Computation of the model errorThe model-error evaluation tehnique is summarized as follows.1. Pre-foreast: run gm for 1 h lead time. The pre-foreast is used as the gm starting point exstart.2. Downsale exstart to fg (using the COSMO tool INT2LM). This is xstart. This proedure is meant toapproximately satisfy the �same start� ondition.3. Run gm for 3 time steps (60 s in total) starting from exstart. Calulate the total tendeny T
mod
3 .4. Run fgm for 12 time steps (60 s in total) starting from xstart. Calulate the total tendeny T
tru
12 .COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 215. Upsale T
tru
12 to the oarse grid, getting eT

tru
12 .6. Compute the model error as ε = T

mod
3 − eT

tru
12 .The length of the tendeny foreasts (60 s) was seleted by trial and error. We also tried the tendeny-foreast lengths 20 s and 5 min and found that the results presented below were quite stable and not ritiallydependent on the tendeny-foreast length within the above range. With 20 s, there were some indiations ofan initial imbalane (not shown). The model-error �elds for 1 min and 5 min were similar in terms of theirspatial sales and variability.4.3 ResultsTo give an impression of how model errors are related to model tendenies, we show two (i.e. gm and fgm)total tendenies for the zonal wind omponent at an arbitrarily seleted model level 41 (about 700 m aboveground). One an see that the two tendenies are very similar, implying that the model error (whih istheir di�erene) is quite small, as expeted (reall that COSMO is an operational-lass model used in manyountries).

Figure 3: Total tendenies: gm (left) and fgm (right)4.3.1 Role of onvetionFigure 4 shows the model-error �eld ε (left) along with the onvetive physial-tendeny �eld Pconv (right)at the model level 32 (about 2.5 km above ground). It is striking that the model-error �eld ε is dominatedby a relatively small number of outliers, with the rest of the �eld being relative lose to zero. Comparing theleft and the right panels of Fig.4 suggests that it is the onvetive parameterization that produes those largemodel errors. At some grid points where the large gm's Pconv is mathed with a large tendeny produed bythe fgm-expliitly-resolved onvetion � at those points, ε is small. At other points where the gm's Pconvis large, it is not mathed with a similarly large fgm's tendeny � at those points, ε is big (and seen inFig.4(left) as outliers).

COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 22

Figure 4: Model errors (left) and onvetive tendeny (right) at the model level 32. The units are K/min.This outstanding impat of the shallow onvetion parameterization (a similar e�et of the deep onvetionparameterization in a 7-km-resolution COSMO was even muh bigger, not shown) suggests that errors inthe onvetive parameterization need a speial treatment (like any outliers in general). We attempted to usepreditors like CAPE and the vertial lapse rate to spot those large onvetive model errors,but those attemptsfailed dramatially (not shown). We also realized that, given the omplexity of the onvetion phenomenon,a purely stohasti approah looks unsuitable to model onvetive model errors.A physial model is needed.Besides, onvetion is a fast and strong phenomenon so that the onvetive model errors we an measure arethe outome of onvetion, not its soure. And it is a �onvetive soure� that we would like to isolate, study,and model in this study (and then perturb in an ensemble foreast).To verify the onjeture that it the invisible �onvetive soure� that needs to be perturbed, we introduedtiny and onstant-in-spae-and-time model-error perturbations at all model levels and looked at the resultingforeast perturbation in a 15-min gm foreast. We imposed model-error perturbations with the magnitude
5 · 10−5 K per time step in T and 10−4 m/s in U, V . The resulting foreast-error perturbation of temperatureat the model level 30 is shown in Fig.5(right). The respetive model-error �eld is shown in Fig.5(left). It isseen that both �elds look quite similar, whih means that realisti onvetion-related foreast errors an beobtained by just �any� perturbation of temperature and other �elds. This an be ompared with �ndings byFlak et al. [5℄, who introdued temperature model-error perturbations of magnitude 0.1 K with the spatiallength sale of 6∆x (where ∆x is the horizontal mesh size) every 15 minutes during the model integration ata single model level at the model hybrid height oordinate 261.6 m.

Figure 5: Model errors, K/min, (left) and foreast perturbation, K (right).
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1. Working Group on Data Assimilation 234.3.2 Conlusions on onvetionThe above results indiate that errors in parameterized onvetion annot be treated using the �true-model� approah (whih we pursue in this study) for the following reasons.1. Evaluating model errors as di�erenes between gm and fgm short-time tendenies implies, in ase ofonvetion, that di�erenes in the outomes of onvetion are atually measured.However, initiation of onvetion plumes is a sporadi proess �modulated� by a hypothetial �onve-tive soure� (like CAPE). And it is this soure whose unertainty needs to be modeled, not the outome.Objetively sensing the unertainty in this �onvetive soure� is not possible with our approah and,maybe, impossible in priniple.2. A deterministi onvetive parameterization (urrently in use in the standard on�guration of COSMOadopted in this researh) attempts to represent the ontribution of subgrid onvetive elements to thegrid-sale �elds. However, with the g mesh as small as 1�2 km, the number of those onvetiveelements (modeled by fgm) in a g ell is not large enough for their ombined e�et to be onsideredas deterministi Shutts and Pallarès [15℄. It is inherently random with high variane. And this highvariability is the major ontributor to the gm-minus-fgm di�erene we an measure � beause thedeterministi gm tendeny produed by the onvetive sheme is inevitably almost always far fromthe highly random upsaled fgm tendeny. But this random di�erene is, atually, not the error, it isthe unertainty related to the manifestation of the stohasti nature of onvetion and should not beregarded as model error. This kind of error requires a stohasti onvetive parameterization shemelike Plant and Craig [11℄), whose development, estimation, and alibration is beyond the sope of thisresearh.So, in this work, we do not treat model errors due to parameterized onvetion. The onvetive parameteri-zation is swithed o� both in gm and fgm, and predominantly non-onvetive ases are studied.4.3.3 Non-onvetive model errorsFirst, we show the temperature model-error �eld (ε) at a high enough model level 21 (about 7 km aboveground)suh that there is, likely, no onvetion there, see Fig.6. The ε �eld looks here like a Gaussian random�eld (in ontrast to the above onvetion-ontaminated model-error �elds).

Figure 6: Non-onvetive model error at level 21, temperature, K/minNext, Fig.(7) displays the temperature model-error within the planetary boundary layer (level 43 about 500m above ground). The �eld looks like a random �eld with very ompliated struture, with multiple sales,and, likely, with multiple omponents. Building a stohasti model for suh �eld is a very hallenging task.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 244.3.4 Physial tendeny as a preditor for model errorWe start with looking at the physial tendeny as a potential preditor for model errors. Figure 8 shows themeridional-wind (V ) model-error �eld (left) along with the physial-tendeny �eld P (right) at the modellevel 31 (about 3 km above ground). It is learly visible that if P is large, then ε is also, usually, large, sothat the physial tendeny is indeed a useful indiator of the magnitude of model error. However, there areseveral areas where the model-error �eld ε is large while the physial-tendeny �eld P is small. This impliesthat physial tendeny is, atually, of limited use as a model-error preditor.To get a deeper understanding of the relationship between the model error and the physial tendeny, weestimated the onditional probability density of ε given the absolute value of P, i.e. p(ε | abs(P)). In theestimator, 2 perent of largest |ε| and |P| ≡ abs(P) were taken down with the intention to �lter out gridpoints with onvetion. Values of |P| were then grouped in 10 equipopulated bins for whih histograms of εwere plotted. As an example, the histogram of ε for the 4-th bin of |P| (temperature, level 30) is displayed inFig.9.Remarkably, this onditional distribution is seen to be not too far from Gaussian. More qualitatively, itskurtosis is 4.0 (the Gaussian kurtosis is 3).For other variables and levels, kurtosis remained, mainly, between3 and 4,thus indiating that Gaussianity is, perhaps, a reasonable hypothesis for the probability distributionof non-onvetive model errors given the physial tendeny, ε | abs(P).Next, having estimated p(ε | abs(P)), we used it to examine the onditional variane of non-onvetive modelerrors: Var (ε | abs(P)). We omputed satterplots of ε2 vs. P2 and then smoothed them using a kernel smootherwith the Epanehnikov kernel and an empirially seleted bandwidth. The resulting dependenies are exem-

Figure 7: Non-onvetive model error at level 43, temperature, K/min

Figure 8: Model error (left) and physial tendeny (right), meridional wind, ms−1min−1COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 25pli�ed in Fig.10 for temperature at the model level 28 (about 4 km above ground), where the x-axis is P
2 andthe y-axis is ε2.The resulting onditional variane urves were somewhat noisy even after smoothing but two their salientfeatures were standing out. First, there always was a signi�antly non-zero o�set (the value of Eε2 for P =

0), whih an be interpreted as the variane of the additive (physial-tendeny independent) model-erroromponent.Seond, the model-error variane, by and large, grew with the inreasing physial tendeny. Thegrowth was, in a �rst approximation, linear, thus suggesting that it an be interpreted as the multipliative(physial-tendeny dependent) model-error variane. As a result, the following additive-multipliativemodel-error model is our �rst (and preliminary) �nding:
ε(s) = α(s) + µ(s) · P(s), (9)where α(s) is the additive model-error omponent and µ(s) is the random multiplier �eld.To a �rst approximation, α(s) and µ(s) an be assumed to be Gaussian random �elds with their horizontal,vertial, temporal, and multivariate struture to be identi�ed.Finally, in Table 1 we show the relationship between the magnitudes of the additive and multipliative model-error omponents. One an see that the magnitudes of the additive error omponents were somewhat largerthan the magnitudes of the multipliative error omponents. Only in the boundary layer (where turbulenedominates the physial tendeny), the multipliative errors were omparable to additive errors or even larger(not shown).The di�erene between the values for U and for V is, perhaps, due to insu�ient statistis.

Figure 9: Histogram of ε for the 4th bin of P. Temperature, level 30.

Figure 10: Conditional variane Var (ε | abs(P)) for non-onvetive model errors. Temperature, level 28.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 26Table 1: Vertially averaged ratio of multipliative to additive error st.dev.
T U V

s.d. (mult)
s.d. (add) 0.5 0.5 0.85 ConlusionsApproah and preliminary stage results of a model-error objetive estimation and modeling study are pre-sented. The approah is based on the omparison of model's instantaneous tendenies with those of a higher-resolution �true model�. The �true-model� tendenies are upsaled (oarse-grained) to the resolution of themodel-in-question and subtrated from the (total) tendenies of the latter, yielding a proxy to the model-error�elds. The goal of the study is a multivariate spatiotemporal stohasti model-error model. The model-errormodel is to be identi�ed and estimated from a sample of the proxy model-error �elds.The model in question (the oarse-grid model) is COSMO with the horizontal resolution 2.2 km and 50levels in the vertial.The high-resolution (�true�) model is COSMO with the horizontal resolution 0.55 km,the same vertial grid, and a number of di�erenes in the setup of the physial parameterizations. Prelim-inary results show that, �rst, errors in onvetive parameterization annot and should not be takled withthe oarse-graining approah. Seond, we found that non-onvetive model errors have both additive andmultipliative omponents. The additive model-error omponent is independent of the physial tendeny andapproximately Gaussian. The multipliative model-error omponent is proportional to the physial tendeny,with the multiplier being, again, approximately Gaussian. Third, the spatial struture of the non-onvetivemodel-error �eld is too omplex to be modeled with a reasonably simple model-error model, espeially in thelower troposphere and in the planetary boundary layer. This suggests that proess-level model-error treatmentis to be attempted.Next steps (whih are underway) are the following. Tehnially, (i) an even higher-resolution true model(fgm) is to be used, (ii) a more areful treatment of stati �elds (inluding orography), soil �elds, and allinitial �elds in the two models is to be employed (so that their oarse-grid-resolved omponents be thesame for the two models).Coneptually, (i) the starting point of the tendeny-foreasts is to be omputedusing the true model (fgm) instead of the model (gm) � to better represent the role of subgrid salesin the formation of model errors,(ii) errors due to di�erent physial parameterizations are to be treatedseparately whenever possible, (iii) a spatial (horizontal and vertial), spatiotemporal, and multivariate (mutualdependenies between temperature, winds, et.) aspets are to be addressed in the model-error stohastimodeling.Referenes[1℄ J. Berner, S.-Y. Ha, J. Haker, A. Fournier, and C. Snyder. Model unertainty in a mesosale ensemblepredition system: Stohasti versus multiphysis representations. Mon. Wea. Rev., 139(6):1972�1995,2011.[2℄ R. Buizza, M. Miller, and T. Palmer. Stohasti representation of model unertainties in the ECMWFensemble predition system. Quart. J. Roy. Meteor. So., 125(560):2887�2908, 1999.[3℄ H. Christensen, I. Moroz, and T. Palmer. Stohasti and perturbed parameter representations of modelunertainty in onvetion parameterization. J. Atmos. Si., 72(6):2525�2544, 2015.[4℄ H. Christensen, S.-J. Lok, I. Moroz, and T. Palmer. Introduing independent patterns into the stohas-COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



1. Working Group on Data Assimilation 27tially perturbed parametrization tendenies (SPPT) sheme. Quart. J. Roy. Meteor. So., 143(706):2168�2181, 2017.[5℄ D. L. Flak, S. L. Gray, R. S. Plant, H. W. Lean, and G. C. Craig. Convetive-sale perturbation growthaross the spetrum of onvetive regimes. Monthly Weather Review, 146(1):387�405, 2018.[6℄ P. Houtekamer, H. L. Mithell, and X. Deng. Model error representation in an operational ensembleKalman �lter. Mon. Wea. Rev., 137(7):2126�2143, 2009.[7℄ K. Kober and G. C. Craig. Physially based stohasti perturbations (PSP) in the boundary layer torepresent unertainty in onvetive initiation. Journal of the Atmospheri Sienes, 73(7):2893�2911,2016.[8℄ M. Leutbeher, S.-J. Lok, P. Ollinaho, S. T. Lang, G. Balsamo, P. Behtold, M. Bonavita, H. M.Christensen, M. Diamantakis, E. Dutra, et al. Stohasti representations of model unertainties atECMWF: State of the art and future vision. Quarterly Journal of the Royal Meteorologial Soiety, 143(707):2315�2339, 2017.[9℄ P. Ollinaho, S.-J. Lok, M. Leutbeher, P. Behtold, A. Beljaars, A. Bozzo, R. M. Forbes, T. Haiden,R. J. Hogan, and I. Sandu. Towards proess-level representation of model unertainties: Stohastiallyperturbed parametrisations in the ECMWF ensemble. Quart. J. Roy. Meteor. So., 143(702):408�422,2017.[10℄ D. Orrell, L. Smith, J. Barkmeijer, and T. Palmer. Model error in weather foreasting. Nonlin. Pro.Geophys., 8(6):357�371, 2001.[11℄ R. Plant and G. C. Craig. A stohasti parameterization for deep onvetion based on equilibriumstatistis. Journal of the Atmospheri Sienes, 65(1):87�105, 2008.[12℄ R. D. Rihtmyer and K. W. Morton. Di�erene methods for initial-value problems. Wiley, 1967.[13℄ G. Shutts. A kineti energy baksatter algorithm for use in ensemble predition systems. Quart. J.Roy. Meteor. So., 131(612):3079�3102, 2005.[14℄ G. Shutts. A stohasti onvetive baksatter sheme for use in ensemble predition systems. Quart. J.Roy. Meteor. So., 141(692):2602�2616, 2015.[15℄ G. Shutts and A. C. Pallarès. Assessing parametrization unertainty assoiated with horizontal resolutionin numerial weather predition models. Phil. Trans. R. So. A, 372(2018):20130284, 2014.[16℄ G. Shutts and T. Palmer. Convetive foring �utuations in a loud-resolving model: Relevane to thestohasti parameterization problem. Journal of Climate, 20(2):187�202, 2007.[17℄ M. Tsyrulnikov and D. Gayfulin. A limited-area spatio-temporal stohasti pattern generator for simu-lation of unertainties in ensemble appliations. Meteorol. Zeitshrift, 26(5):549�566, 2017.[18℄ M. Tsyrulnikov and V. Gorin. Are atmospheri-model tendeny errors pereivable from routine obser-vations? COSMO Newsletter No. 13, pages 3�18, 2013.[19℄ M. D. Tsyrulnikov. Stohasti modelling of model errors: A simulation study. Quart. J. Roy. Meteor.So., 131(613):3345�3371, 2005.
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Implementation of the new cloud-radiation scheme in COSMOPavel Khain1, Harel Muskatel1 and Ulrih Blahak2

1Israel Meteorologial Servie
2Deutsher Wetterdienst

1 IntrodutionInoming solar radiation is a primary driving soure of atmospheri weather and limate proesses. For realistiweather simulation, an NWP model has to inlude an appropriate parametrization of the radiative transferthrough the atmosphere. The divergene of solar and thermal radiative �uxes in the atmosphere, whihinterat strongly with gases, aerosols and the simulated loud �eld and its inherent properties, ontributesonsiderably to the diabati foring in the prognosti model equations. At the earth's surfae radiative �uxesonstitute the major foring for the thermodynami state of the soil and the interation with the atmospherevia turbulent �uxes of heat and moisture. In COSMO, the radiative transfer sheme is based on the solution ofthe δ-two-stream version of the radiative transfer equation inorporating the e�ets of sattering, absorption,and emission by loud droplets and ie rystals, gases (water vapor, ozone, arbon dioxide, air moleules)and aerosols in eah one of the eight spetral intervals [15, 3℄. Optial properties are omputed from relevantprognosti and/or diagnosti model variables like spei� humidity, loud water- and ie ontent and loudfration. Some layer properties, like ozone, arbon dioxide and aerosols are spei�ed as limatologial values.In partiular, the spatially variable aerosol distribution is derived from a limatology provided by Tanre [17℄(namelist parameter itype_aerosol=1). The atual layer mean values of optially relevant substanes areonverted to radiative properties like optial depth τ , single sattering albedo ω and asymetry parameter
g and forward-sattered fration through the use of empirial relations desribed in [15℄. As part of theCOSMO priority projet "Testing and Tuning of the Revised Cloud Radiation Coupling" T 2(RC)2, thealulation of the optial properties at the model layers was signi�antly revised, and an additional version ofa radiative solver was implemented. From a tehnial point of view, the new parametrizations an be ativatedvia ompilation with the "DCLOUDRAD" preproessor �ag. The hanges an be divided into three topis:radiative solver, lear sky optial properties, and loudy part optial properties.2 Implementation of the new shemeRadiative solverRadiation transfer shemes are one of the most omputational expensive omponents in numerial weatherpredition (NWP) models. In COSMO model, with only eight spetral intervals, a full radiation alulationosts as muh as eight times the ost of the entire COSMO model run. Most of NWP models ompromiseon the spatial and/or temporal resolution of the radiation sheme. In the operational setup of COSMO-2.8km, with a full spatial resolution and with a temporal resolution of 15 minutes, the omputational ost ofradiation is only 3% of the entire model. This ompromise an lead to loal biases in net downward radiationand surfae temperatures. In an attempt to both redue errors and to derease the run-time we implementeda di�erent approah whih is to derease the spetral resolution by a wise sampling tehnique, a methodknown as Monte Carlo Spetral Integration (MCSI) [13℄ was implemented (namelist parameter itype_msi).doi:10.5676/dwd_pub/nwv/osmo-nl_19_05COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3a. Working Group on Physial Aspets: Upper Air 29Many radiative transfer shemes inluding COSMO sheme [15℄, use the k-distribution method for the gases-radiation interation alulations [4℄. In this method the spetrum is transferred from wavelength spae toumulative probability spae. This spae is divided to intervals whih are alled g-points. In COSMO foreah gas and for eah spetral interval there are between two to eight g-points. In the operational mode ofCOSMO the Fast Exponential Sum Fitting Tehnique (FESFT) is used to fully alulate all of the mentionedg-points. In MCSI only one g-point is alulated in eah time step aording to its probability. In COSMO weused a softer version of MCSI where a g-point is seleted in eah of the spetral intervals whih inreases theomputational os but does neglet either of the spetral intervals in every time step. Of ourse that if theuser hooses to use MCSI the radiation sheme should be alled more frequently. We found out the using theMCSI with full temporal resolution (alling the radiation sheme every time step) in COSMO-2.8km setupan inrease runtime by 33% with only slight redution of global radiation and 2-meter temperature biasesompared to FESFT. But using MCSI with a 100 seonds temporal resolution (every 5 time steps) an givethe same bene�ts but with only 4% inrease in runtime.Clear sky optial propertiesTwo new options of an aerosol limatology were introdued (namelist parameter itype_aerosol). The �rst,Tegen [18℄ (itype_aerosol=2), is a 2-dimensional monthly map of optial thiknesses for 5 aerosol lasses.In COSMO it is interpolated in time, and 3-dimensional optial properties are alulated assuming a prede-�ned exponentially deaying vertial pro�le. The seond, Kinne [10℄ (itype_aerosol=3), is a 2-dimensionallimatology whih is onsidered to better desribe real aerosol loading [12℄.In addition, two new options to use time- and spae-interpolated (via the int2lm software) 3-dimensionalaerosol �elds of external prognosti foreast models have been implemented. The �rst (itype_aerosol=4) anproess CAMS-ECMWF [1, 11℄ 3-dimensional aerosol mixing ratio �elds, whih inlude sea salt, mineral dust,blak arbon, organi matter and sulphate and whih are sub-divided to eleven traers, beause sea salt anddust have three size bins while blak arbon and organi matter have both hydrophobi and hydrophili types.The seond new option (itype_aerosol=5) an proess ICON-ART [14℄ 3-dimensional aerosol mixing ratio�elds; urrently the operational ICON-ART only inludes mineral dust, but it might be expanded to otherspeies in the future.Cloudy part optial propertiesFirst, in addition to loud water and ie, the optial e�et of prognosti snow, graupel and rain water ontentswas (optionally) inluded (namelist parameter lrad_inl_qrqsqg). The optial properties of solid partiles inlouds (spei� extintion oe�ient β, single sattering albedo ω, asymmetry fator g and delta-transmissionfuntion δ) have been formulated as funtion of e�etive radius Re and aspet ratio Ar (assuming hexagonalneedles as desribed in [5℄) for the 8 COSMO spetral bands, using the spetrosopi sattering funtion datafor single needles used previously in [5℄, [6℄ and [7℄. Based on these data, for eah realization of a Monte-Carlo-Ensemble over 7000 di�erent Gamma-type ie partile size distributions the parameters Re following[5℄, Ar following [7℄, β, ω, g and δ have been omputed. New and rather aurate �ts of type rationalfuntions were developed for β and ω as funtion of Re, and g and δ as funtion of Ar ([7℄). In ontrast toprevious literature, our new �ts span a very large parameter range for Re from 2.5 to 300mirons and behaveasymptotially �reasonably well� for larger sizes. This range is su�ient for the �ts to be applied to the snow-and graupel hydrometeors in any model. Optial thikness τ is obtained by multiplying the respetive β foreah hydrometeor type by the respetive spei� mass ontent and summation. Usage of the new �ts an beativated by namelist parameter iradpar_loud=4, and small modi�ations an be hosen by the namelistswithes lrad_ie_smooth_surfaes and lrad_ie_fd_is_gsquared.The optial properties of water partiles in louds have been formulated as funtion of partiles' water ontentand e�etive radius for the 8 COSMO spetral bands, using [8℄ up to 60 miron with an own asymptotiallyorret extrapolation towards larger sizes up to mm diameters (namelist parameter iradpar_loud=4).COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3a. Working Group on Physial Aspets: Upper Air 30For the large partiles (snow, graupel and rain) a geometrial-optis large-size approximation based on semi-transparent spheres for the optial properties was (optionally) implemented (namelist parameter lrad_use_largesizeapprox).Several new options for alulation of water ontents, e�etive radii and aspet ratios (both are funtions ofnumber onentration and mass onentration) for various hydrometeors were implemented. That inludes:� Estimating NCa - the number onentration of 3-dimensional hydrophili aerosol �elds using Tegen[18℄ or CAMS-ECMWF [1, 11℄ input data.� Estimating weff - the subgrid loal updraft veloity, using turbulent kineti energy, radiative oolingand optionally onvetive veloity sale after Deardor� [2℄ (namelist parameter linl_wstar_in_we�).� Utilization of NCa and weff to alulate NCCN , the number onentration of nuleated loud dropletsfor omputing Re of loud water, using the Segal-Khain method [16℄ (namelist parameters iloud_num_type_rad and iloud_num_type_gsp). iloud_num_type_rad a�ets the radiation indiret aerosolse�et on louds and iloud_num_type_gsp a�ets the auto-onversion rate in the 1-momment mi-rophysial sheme.� Number onentrations of other speies (rain, loud ie, snow and graupel) are either estimated on-sistently to assumptions on partile size distributions in the 1-moment loud mirophysis sheme, orare prognosti for grid sale louds in ase of the 2-moment sheme.� "Stratiform" subgrid-sale loud droplets and ie water ontents (LWCsgs and IWCsgs, respetively)are estimated as funtions of temperature and humidity. The shallow onvetion LWCsgs is esti-mated by one of the 3 following methods: as funtion of temperature and humidity, similarly tostratiform louds; as equal to the LWC of COSMO shallow onvetion sheme (namelist parameterluse_q_on_sgs); and as fration of the theoretial adiabati water ontent [9℄ (namelist parameterluse_q_adiab_for_re�_sgs). The overall LWCsgs is estimated by the default COSMO method asweighted average of the "stratiform" and "onvetive" parts, using the orresponding loud frations.The grid sale water ontents of loud water and ie, snow, graupel and rain are prognosti variables.� E�etive radii and aspet ratios for loud droplets and loud ie, as well as snow, graupel and rainare estimated as funtion of the orresponding water ontents and number onentrations. For sit-uations dominated by subgrid-sale shallow onvetion, the e�etive radius of subgrid-sale louddroplets an be, alternatively, estimated using the "adiabati" parametrization [9℄ (namelist parameterluse_q_adiab_for_re�_sgs).The list of parameters of the new loud-radiation oupling sheme is presented in Table 1 in the Appendix.The Table inludes the meaning of eah parameter, its type, default value, available range and reommendedvalue.3 Case StudyPreliminary tests of the new loud-radiation oupling sheme (implemented in COSMO 5.5) were performedover the eastern Mediterranean (COSMO-IL domain 26-36N, 25-39E) with grid spaing of 2.8 km. The weatherevent was hosen to be on 16/02/2018. During that day the eastern Mediterranean was in the warm setor ofa deep upper air trough approahing from the west (see sattelite image in Figure 1). The SW winds auseddesert dust advetion into the region. The COSMO runs (driven by IFS data) were initialized on 16/2/201800 UTC and produed foreasts up to 16/2/2018 12 UTC.
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3a. Working Group on Physial Aspets: Upper Air 31

Figure 1: IR 10.8 MeteoSat satellite image for 16/2/2018 at 12 UTC.
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3a. Working Group on Physial Aspets: Upper Air 32Eight COSMO runs have been performed, with namelist parameter variations as summarized in Figure 2. Thereferene experiment (Ref) inludes the default loud-radiation sheme (iradpar_loud=1) and Tanre aerosollimatology (itype_aerosol=1). Exp.1 is similar to Ref, with Tegen aerosol limatology (itype_aerosol=2).Exp.2 is similar to Exp. 1 with Segal-Khain estimation of loud-droplet number onentration (iloud_num_type_rad=2 and iloud_num_type_gsp=2). Exp. 3 is similar to Exp.2 with onsideration of Deardor�onvetive veloity sale in alulation of the loal subgrid-sale updraft (linl_wstar_in_we�=TRUE),andwith tuned hydrometeor number onentrations (lredue_qnx_vs_qx=TRUE). Exp.4 is similar to Exp.3 withsubgrid sale droplets and ie e�etive radius alulation using water ontents and number onentrations(luse_re�_ini_x_as_re�x_sgs=FALSE), and with tuned water ontent redution (luse_tqqiqs=TRUE).Exp.5 is similar to Exp.4 with an estimation of shallow Cu droplets e�etive radius using the "adiabati"parametrization (luse_q_adiab_for_re�_sgs=TRUE), and their water ontent using the shallow onve-tion parametrization (luse_q_on_sgs=TRUE). Exp.6 is similar to Exp.5 with revised asymmetry funtionof ie partiles (lrad_ie_smooth_surfaes= FALSE and lrad_ie_fd_is_gsquared= TRUE). Exp.7 is simi-lar to Exp. 6 with MCSI parameterization of spetral bands sampling in the radiation solver (itype_msi=1)ompensated by more frequent alls to the radiation sheme (every 3 minutes instead of 15).

Figure 2: Summary of the eight COSMO experiments.The sensitivity results of the COSMO runs are presented in 3 as funtion of the foreast range. The upperleft panel presents the averaged global radiation over the loudy grid points (loud over > 0.1). For eahexperiment the global radiation of the Ref run is subtrated, showing the sensitivity e�et of the urrentexperiment. The upper right panel presents similar results for the averaged 2 meter tempearture. Similarly,the lower panels present the sensitivity results for the lear sky regions (loud over < 0.1), highlighting thediret e�ets of aerosols and the MCSI parameterization.
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Figure 3: Sensitivity results of the COSMO runs as funtion of the foreast range. The upper left panelpresents the averaged over the loudy grid points (loud over > 0.1) global radiation. For eah experimentthe global radiation of the Ref run is subtrated, showing the sensitivity e�et of the urrent experiment. Theupper right panel presents similar results for the averaged 2 meter tempearture. Similarly, the lower panelspresent the sensitivity results for the lear sky regions (loud over < 0.1).One an see (Exp. 1) that the use of Tegen aerosol instead of Tanre strongly inreases the global radiation(up to 120 W/m2) and the 2 meter temperature up to 0.5 K. Exp. 2 shows that in the loudy areas thenew optial properties and Segal-Khain nuleation, and � most importantly � onsideration of rain, snow andgraupel partiles in radiation, dereases the enhanement to about 50 W/m2. Exp. 3 shows that in the loudyareas revision of the loal updraft for Segal-Khain nuleation and tuning the number onentration dereasesthe enhanement further to about 35 W/m2. Exp. 4 shows that in the loudy areas revision of SGS e�etiveradius alulations and imposing upper limits to the total water ontents brings the enhanement bak toabout 50 W/m2. Experiments 5,6 and 7 show smaller sensitivity on average. Generally, one an see that thenew loud-radiation oupling sheme a�ets the global radiation by 30-120 W/m2 whih orresponds to a 2meter temperature variation range of about 1 K. Important to note is, that these results are preliminary andre�et the model sensitivity at a single day over a spei�ed region only. Also, the results inlude averaging overlarge areas, whih suggests muh higher sensitivities loally. We should also note that this is the �rst attemptto test the ode within the 5.5 framework. Eah of the new sheme omponents was massively tested withinthe 5.1 framework. In the appendix we provide the "reommended" namelist based on the studies during thelast 4-years, whih were disussed and published in various presentations and papers, as an be viewed on
T 2(RC)2 web page (http://www.osmo-model.org/ontent/tasks/priorityProjets/t2r2/default.htm).
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3a. Working Group on Physial Aspets: Upper Air 344 SummaryIn this short artile we inform the COSMO ommunity about the reent implementation of a revised loud-radiation oupling sheme into COSMO 5.5. O�ially this ode will be distributed with the �nal versionof COSMO - COSMO-6. The new sheme inludes an optional modi�ation to the radiation solver (MCSIparametrization). It further inludes implementation of new aerosol limatologies and prognosti aerosol�elds whih modify the lear sky optial properties. Moreover, the indiret e�et of aerosols on numberonentrations, e�etive radiuses and water ontents in grid and subgrid sale louds is signi�antly revised.The optial properties of solid and water hydrometeors for the di�erent spetral intervals were revised aswell. Preliminary tests show a signi�ant e�et of the new loud-radiation oupling sheme on radiation and2 meter temperature.AknowledgmentsBesides the authors, the new loud-radiation oupling ode inludes important ontributions from SimonGruber (KIT), Alexey Poliukov (MSU), Natalia Chubarova (MSU), Marina Shatunova (Roshydromet), Ul-rih Shaettler (DWD), Daniel Rieger (DWD), Martin Kohler (DWD), Alon Shtivelman (IMS), Yoav Levi(IMS), Xavier Lapillonne (MeteoSwiss), Oliver Fuhrer (MeteoSwiss), Gdaly Rivin (Roshydromet), AlexanderKirsanov (Roshydromet),Matthias Rashendorfer (DWD), Ralph Beker (DWD), Stefan Kinne (MPI-Met Hamburg), Daniel Luthi(DWD), Alessio Bozzo (ECMWF), Alexander Khain (HUJI), Bodo Ritter (DWD), Dmitrii Mironov (DWD)and Bernard Vogel (KIT). The COSMO priority projet T 2(RC)2 was led by Harel Muskatel (IMS).Referenes[1℄ Benedetti, A., J.-J. Morrette, O. Bouher, A. Dethof, R. J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L.Jones, J. W. Kaiser, et al., 2009: Aerosol analysis and foreast in the European Centre for MediumRangeWeather Foreasts Integrated Foreast System. Part 2: Data assimilation, J. Geophys. Res.-Atmospheres,114(D13), D13205, doi:10.1020/2008JD011115.[2℄ Deardor�, J. W.: 1970, `Convetive Veloity and Temperature Sales for the Unstable Planetary Bound-ary Layer and for Rayleigh Convetion', J. Atmos. Si. 27, 1211�1213.[3℄ Doms, G., J. Forstner, E. Heise, H.-J. Herzog, D. Mironov, M. Rashendorfer, T. Reinhardt, B. Ritter,R. Shrodin, J.-P. Shulz and G. Vogel, 2011: A desription of the Nonhydrostati Regional COSMOModel. Part II: Physial Parameterization. Deutsher Wetterdienst, 161 pp.[4℄ Fu, Q., and Liou, K. N. (1992), A threeparameter approximation for radiative transfer in nonhomo-geneous atmospheres: Appliation to the O3 9.6m band, J. Geophys. Res., 97(D12), 13051� 13058,doi:10.1029/92JD00999.[5℄ Fu Q., 1996, An Aurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for ClimateModels, J. Clim., 9, 2058-2082[6℄ Fu Q., P. Yang and W. B. Sun, 1998, An Aurate Parameterization of the Infrared Radiative Propertiesof Cirrus Clouds for Climate Models, J. Clim., 11, 2223-2237[7℄ Fu Q., 2007, A New Parameterization of an Asymmetry Fator of Cirrus Clouds for Climate Models, J.Atm. Si., 64, 4140-4150[8℄ Hu, Y.X. and K. Stamnes, 1993: An Aurate Parameterization of the Radiative Properties of Wa-ter Clouds Suitable for Use in Climate Models. J. Climate, 6, 728�742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3a. Working Group on Physial Aspets: Upper Air 35[9℄ Khain, P., R. Heiblum, U. Blahak, Y. Levi, H. Muskatel, E. Vadislavsky, O. Altaratz, I. Koren, G.Dagan, J. Shpund, and A. Khain, 2019: Parameterization of Vertial Pro�les of Governing MirophysialParameters of Shallow Cumulus Cloud Ensembles Using LES with Bin Mirophysis. J. Atmos. Si., 76,533�560, https://doi.org/10.1175/JAS-D-18-0046.1[10℄ Kinne, S., D. O'Donnel, P. Stier, S. Kloster, K. Zhang, H. Shmidt, S. Rast, M. Giorgetta, T. F. Ek,and B. Stevens (2013), MAC-v1: A new global aerosol limatology for limate studies, J. Adv. Model.Earth Syst., 5, 704740, doi:10.1002/jame.20035.[11℄ Morrette, J.-J., O. Bouher, L. Jones, D. Salmond, P. Behtold, A. Beljaars, A. Benedetti, A. Boner,J. W. Kaiser, M. Razinger, et al., 2009: Aerosol analysis and foreast in the European Centre for Medi-umRange Weather Foreasts Integrated Foreast System. Part 1: Forward modelling, J. Geophys. Res.-Atmospheres, 114(D6), D06206, doi:10.1029/2008JD011235.[12℄ Mueller R., C. Träger-Chatterjee, Brief Auray Assessment of Aerosol Climatologies for the Retrievalof Solar Surfae Radiation, Atmosphere 2014, 5, 959-972; doi:10.3390/atmos5040959[13℄ Pinus, R., and Stevens, B. (2009), Monte Carlo Spetral Integration: a Consistent Approxi-mation for Radiative Transfer in Large Eddy Simulations, J. Adv. Model. Earth Syst., 1, 1,doi:10.3894/JAMES.2009.1.1.[14℄ Rieger, D., Bangert, M., Bisho�-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Shröter, J., Vogel,H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON�ART 1.0 � a new online-oupled model system from theglobal to regional sale, Geosi. Model Dev., 8, 1659-1676, https://doi.org/10.5194/gmd-8-1659-2015,2015.[15℄ Ritter, B. and J. Geleyn, 1992: A Comprehensive Radiation Sheme for Numerial Weather Pre-dition Models with Potential Appliations in Climate Simulations. Mon. Wea. Rev., 120, 303�325,https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2[16℄ Segal, Y., and Khain, A. (2006), Dependene of droplet onentration on aerosol onditions in di�erentloud types: Appliation to droplet onentration parameterization of aerosol onditions, J. Geophys.Res., 111, D15204, doi:10.1029/2005JD006561.[17℄ Tanre, D., J.-F. Geleyn, and J. Slingo, 1984. First results of the introdution of an advaned aerosol-radiation interation in the ECMWF low resolution global model. In Pro. of the Meetings of Expertson Aerosols and their Climati E�ets, Williamsburg, VA, pp. 133177. WMO and IAMAP.[18℄ Tegen, I., P. Hoorig, M. Chin, I. Fung, D. Jaob, and J. Penner (1997), Contribution of di�erent aerosolspeies to the global aerosol extintion optial thikness: Estimates from model results, J. Geophys. Res.,102, 23,895 23,915.AppendixThe list of parameters of the new loud-radiation oupling sheme is presented in Table 1. The Table inludesthe meaning of eah parameter, its type, default value, available range and reommended value.Parameter Meaning Type Def Range Reomiradpar_loud Calulation of optial properties for solidand water partiles. 1-old, 4-new. 2,3 arepossible but not reommended INT 1 1,4 4
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3a. Working Group on Physial Aspets: Upper Air 36lrad_ie_smooth_surfaes E�etive if iradpar_loud=4. If T assumesmooth surfaes for solid speies (fd>0),otherwise assume rough surfaes (fd loseto 0) LOG T T/F Frad_ie_fd_is_gsquared E�etive if iradpar_loud=4 andlrad_ie_smooth_surfaes=T. If Tompute forward sattered fration as
f = g2 (RG92 method), otherwise om-pute f = 1/(2ω) + fd with fd = fct(AR)aording to the new �ts. Conerns onlythe solar frequeny bands

LOG F T/F F
lrad_inl_qrqsqg inlude/exlude QR, QS and QG in radia-tive transfer alulations LOG F T/F Tlrad_use_largesizeapprox E�etive for iradpar_loud = 4: if F new�ts for all optial properties of solid speiesare used without lipping. If T only for theextintion the large-size approximation isapplied starting from Re�=150 mirons LOG T T/F T
itype_aerosol Type of aerosol map. Climatology: 1-Tanre, 2-Tegen, 3-Kinne. Prognosti datafrom int2lm: 4-CAMS, 5-ART INT 1 1-5 4iloud_num_type_rad Derivation of loud number onentrationfor radiation. 1: use loud_num_radtuning parameter. 2: derive fromTegen/CAMS aerosol data using Segal-Khain parametrization (e�etive foritype_aerosol=2,4 only)

INT 1 1,2 2
iloud_num_type_gsp Derivation of loud number onentra-tion for 1-moment mirophysis. 1: useloud_num tuning parameter. 2: derivefrom Tegen/CAMS aerosol data usingSegal-Khain parametrization (e�etive foritype_aerosol=2,4 only)

INT 1 1,2 2
linl_wstar_in_we� E�etive in ase ofiloud_num_type_rad/gsp=2 (Segal-Khain). If T, the e�. w for loud nuleationis enfored to be >= w∗ (onv. vel. salein PBL), but only below the PBL heightor below the upper bound of the lowest"onvetive loud layer�, whihever ishigher. F � otherwise

LOG F T/F T
loud_num_rad Tuning parameter for loud number on-entration for radiation (1/m3)

REAL 2E8 [0.1-10℄E8 2E8loud_num Tuning parameter for loud number on-entration for 1-moment mirophysis
(1/m3)

REAL 5E8 [0.1-10℄E8 5E8
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3a. Working Group on Physial Aspets: Upper Air 37zref_loud_num_rad Height of lower layer (above MSL in m)above whih the loud number onentra-tion is exponentially redued with height REAL 2000 500-3000 2000dz_oe_loud_num_rad 1/e derease height in m of exponentialderease of loud number onentrationabove zref_loud_num_rad REAL 2000 500-3000 2000lredue_qnx_vs_qx T: redue qnx vs qx for radiation. In thisase the 9 tuning parameters below are a-tivated. F: otherwise LOG F T/F Trho_nhigh_rad For q<=rho_nhigh_rad, qn is not re-dued as funtion of q [kg/m3]

REAL 0.5 E-4 [0.1-20℄E-4 0.5 E-4rho_nlow_rad For rho_nhigh_rad < q <rho_nlow_rad qn is linearly reduedas funtion of q [kg/m3℄ REAL 2.0 E-4 [0.1-20℄E-4 2.0 E-4nfat_low_rad For q>=rho_nlow_rad, the lin-ear redution bottoms out at the n-fat_low_rad'th fration of qn REAL 0.1 [0...1℄ 0.1rhoi_nihigh_rad For qi <= rhoi_nihigh_rad, ni(T) is notredued as funtion of qi [kg/m3℄ REAL 0.5 E-5 [0.1-20℄E-5 0.5 E-5rhoi_nilow_rad For rhoi_nihigh_rad < qi <rhoi_nilow_rad, ni(T) is linearly re-dued as funtion of qi [kg/m3℄ REAL 2.0 E-5 [0.1-20℄E-5 2.0 E-5nifat_low_rad For qi >= rhoi_nilow_rad, the lin-ear redution bottoms out at the ni-fat_low_rad'th fration of ni(T) REAL 0.1 [0...1℄ 0.1rhos_n0shigh_rad For qs <= rhos_n0shigh_rad, n0s is notredued as funtion of qs [kg/m3℄ REAL 1.0 E-5 [0.1-20℄E-5 1.0 E-5rhos_n0slow_rad For rhos_n0high_rad < qs <rhos_n0low_rad, n0s is linearly reduedtowards n0s_low_rad [kg/m3℄ REAL 5.0 E-5 [0.1-20℄E-5 5.0 E-5n0s_low_rad For qs>=rhos_n0slow_rad, n0s attainsthis onst. value [m−3℄ REAL 8 E5 [1-50℄E5 8 E5luse_re�_ini_x_as_re�x_sgs Use tuning parameters re�_ini_,re�_ini_i for SGS e�. radius LOG T T/F Fre�_ini_ E�etive radius for SGSloud droplets (m). Only ifluse_re�_ini_x_as_re�x_sgs=T REAL 5 E-6 [3-15℄E-6 5 E-6re�_ini_i E�etive radius for SGS loud ie (m).Only if luse_re�_ini_x_as_re�x_sgs=T REAL 10 E-6 [5-30℄E-6 10 E-6
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3a. Working Group on Physial Aspets: Upper Air 38radq_fat, radqi_fat,radqs_fat, radqg_fat Portion of GS and SGS q, qi, qs, qg (re-spetively) "seen" by the radiation. Shouldbe <1 beause of subgrid-sale variability.Inrease leads to higher optial thikness REAL 0.5 [0.5-1℄ 0.5qvsatfat_sgsl_rad Saling fator for q and qi of SGS louds:loal supersaturation whih is assumed tohave been depleted by SGS loud forma-tion [-℄. Inrease leads to higher optialthikness REAL 0.01 [0.005-0.02℄ 0.01
luse_tqtqitqs limit TQC, TQI, TQS to some integralmaximum. Adjust q, qi, qs aordingly(for radiation). T leads to lower optialthikness LOG F T/F T
luse_q_adiab_for_re�_sgs Use "adiabati" parametrization for SGSshallow onvetion e�etive radius LOG F T/F Tluse_q_on_sgs E�etive if luse_q_adiab_for_re�_sgs=T.F: use "adiabati" parametrization forSGS shallow onvetion LWC. T: use LWCfrom shallow onvetion parametrization(if lonv=T) LOG F T/F T
alpha1_adiab_rad Linear deviation with height (aboveloud base) of SGS shallow on-vetion e�etive radius from theadiabati value alpha1_adiab_rad-alpha2_adiab_rad*(z-zb). [-℄ REAL 0.95 [0.7-1℄ 0.95
alpha2_adiab_rad Linear deviation with height (aboveloud base) of SGS shallow on-vetion e�etive radius from theadiabati value alpha1_adiab_rad-alpha2_adiab_rad*(z-zb). [1/m℄ REAL 1.2 E-4 [1-2℄E-4 1.2 E-4
beta_adiab_rad Ratio of loud-average number onentra-tion (of SGS shallow onvetion) with re-spet to the loud ore value (obtainedfrom Segal-Khain) REAL 0.38 [0.2-1℄ 0.38gamma_adiab_rad Linear deviation with height (abovere�=12miron level) of SGS shallow onv.q from the "pseudo-adiabati" value.[1/km℄ REAL 0.45 [0.2-0.7℄ 0.45
itype_msi 1: Monte Carlo Spetral Integration in theradiation solver. Reommended togetherwith ninrad=5. 0-Default from RG92 INT 0 0,1 0
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3a. Working Group on Physial Aspets: Upper Air 39Table 1: List of parameters of the new loud-radiation oupling sheme. The parametersare separated to groups aording the orresponding parametrization: Optial propertiesderivation; E�et of large hydrometeors on radiation; Aerosols e�et in lear sky and ondroplets number onentration in louds; Redution of hydrometeors number onentrationsfor large water ontents; Method of e�etive radius alulation; Tuning water ontents "seen"by radiation; "Adiabati" parametrization for liquid water ontent and e�etive radius inshallow umulus; New method for radiation solver. The Table inludes the meaning of eahparameter, its type, default value, available range and reommended value.
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3b. Working Group on Physial Aspets: Soil and Surfae 40
Impacts on model performance score from CALMO and CALMO-MAXVoudouri A.1 *, Carmona I.2, Avgoustoglou E.1, Levi Y.2,Bettems J.M.3and E.Buhignani41.Helleni National Meteorologial Servie 2.Israel Meteorologial Servie 3.MeteoSwiss 4.ItalianAerospae Researh Center (CIRA)

∗orresponding author e-mail: antigoni.voudouri�hnms.gr
1 IntrodutionThe priority projet CALMO of COSMO (years 2013-2016) indued an objetive multivariate alibrationmethod aiming on substituting expert tuning. Expert tuning is a proedure by whih free or poorly on�nedparameters existing in the parameterization shemes of RCM and NWP models are mainly tuned using expertknowledge (Duan et al., 2006; Skamarok, 2004;Bayler et al., 2000).This proedure, performed for spei�parameterization shemes addressed by model developers, usually underestimates parameter interations,follows a non-objetive proedure, and is di�ult to repliate without a diret involvement of the modeldevelopers.Several studies, over the last years, have been onduted towards substituting expert tuning by objetive andautomati methodologies to alibrate unon�ned model parameters existing in both NWP and RCM model(Bellprat et al., 2012a and 2012b, Gong et al.,2015, Duan et al., 2016, Gong et al., 2016, Voudouri et al.,2017, 2018).At the framework of CALMO, the implementation of the alibration method that has been developed byBellprat et al. (2012a) and implemented for a regional limate model has been applied on COSMO-NWPmodelusing a horizontal resolution of 0.0625o and then tested for a horizontal resolution of 0.02o (approximately2km) over a mainly ontinental domain overing the Alpine Ar.In the priority projet CALMO-MAX (years 2017�in progress) additional tests on the advantages ofthealibration method for COSMO model, using a �ner resolution of 0.01o are studied. The steps followed,namely model setup, parameter seletion as well as basi di�erenes between the two priority projets arebrie�y desribed in Setion 2. Results from CALMO to be onsidered in CALMO-MAX are presented inSetion 3. A summary and onlusions are given in Setion 4.2 Data and Methodology2.1 Model setupThe ode used is the refatored version of the COSMO model (Lapillonne and Fuhrer,2014) based on theo�ial version 5.00 of the model, apable of running on GPU-based hardware arhitetures, operationallyused by MeteoSwiss. In CALMO, simulations were performed with COSMO model over the whole year 2013and operated with horizontal resolution of 0.02o (approximately 2km) for a domain inluding the wider areaof Switzerland and Northern Italy (Fig. 1), while in CALMO-MAX a �ner resolution of 0.01° (about 1 km) isused. The vertial extension reahes 23.5 km ( 30hPa) with 60 model levels for CALMO and 80 for CALMO-MAX. Initial and boundary �elds for all tests are derived from the MeteoSwiss operational foreasting arhivesystem at 0.02o horizontal resolution ( 2km).doi:10.5676/dwd_pub/nwv/osmo-nl_19_06COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3b. Working Group on Physial Aspets: Soil and Surfae 41In addition, the history of the soil, not used in the on�guration of CALMO, is onsidered in the CALMO-MAX simulations (hindast mode). Finally, for CALMO-MAX, the soil has been initialized by a 3 yearsspin-up using TERRA Standalone (TSA).

Figure 1: Topography of the simulation area2.2. Data and seleted parametersThe unon�ned parameters existing in COSMO model are related to sub-grid sale turbulene, surfae layerparameterization, grid-sale louds, preipitation, moist and shallow onvetion, radiation, soil sheme et.(Doms et al., 2011, Gebhardt et al., 2011). Thus, sensitivity experiments using twelve parameters assoiatedwith turbulene (tur_len, tkhmin, tkmmin), surfae layer parameterization (rat_sea, rlam_heat, rsmin),grid-sale preipitation (v0snow), moist and shallow onvetion (entr_s), radiation (rad_fa, u1) and thesoil sheme (_soil) have been performed and the most sensitive ones have been seleted. Figure 2 illustratesthe sensitivity of minimum 2m temperature with respet to 7 (left panel) and 5 parameters (right panel)respetively. The red polygon refers to the zero sensitivity �axis� while sensitivities lose to zero are depitedwith blue bullets. In left panel of �gure 2, negative sensitivities, well below the red polygon are depitedwith orange bullets while positive sensitivities well above the red polygon are depited with green bullets.In right panel of �gure 2, all negative and positive sensitivities are depited with green bullets. The dashedpolygon line that onnets the dots denotes optially the overall sensitivity for the onsidered meteorologialvariable espeially to the degree that it is onvex/onave and mainly in referene to the zero sensitivity redpolygon. In CALMO, the six model parameters seleted were: asymptoti turbulene length sale, tur_len[m℄; minimal di�usion oe�ients for heat, tkhmin[m2/s℄; salar resistane for the latent and sensible heat�uxes in the laminar surfae layer, rlam_heat [no units℄; the surfae-area index of the evaporating frationof grid points over land, _soil[no units℄; the fator in the terminal veloity for snow, v0snow[no units℄; andthe mean entrainment rate of boundary layer humidity into the shallow onvetion louds, entr_s [m-1℄.In CALMO-MAX �ve parameters were seleted: tkhmin, rlam_heat, v0snow(already used in CALMO), andadditionally the fration of loud water/ie onsidered for radiation, radfa[no units℄ and the parameter foromputing the amount of loud over in saturated onditions, u1[no units℄.The parameters are alibrated against daily minimum and maximum 2m temperature values (Tmax and Tminrespetively) as well as 24h aumulated preipitation (pre). For temperature, available measurements of dailyCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3b. Working Group on Physial Aspets: Soil and Surfae 42mean surfae air temperature seleted at the station network of MeteoSwiss were used. More spei�ally theinterpolated values of all available 2m-temperature maximum and minimum observations over Switzerland toa 2km-grid are provided by Frei (2014).For preipitation observations over Switzerland, the gridded MeteoSwiss radar omposites were used, orretedby rain gauges and interpolated to the model grid. Over Northern Italy, observations interpolated to the modelgrid were used only where the grid points in the viinity of the stations get a value. In addition to Tmin,Tmax and pre, radio soundings data and the assoiated model pro�les at grid points near the soundingsloations were used. Sunshine duration and 2m dew point temperature are also onsidered in CALMO-MAXwith observational data provided by MeteoSwiss.

Figure 2: Spider graphs of minimum 2m temperature sensitivity with respet to 7 (left panel) and 5 param-eters (right panel)2.3. MethodologyThe alibration methodology is presented in detail in Voudouri et al. 2017 and 2018. It relies on a Meta-Model(MM) that approximates the parameter spae, using a multi-variate quadrati regression in an n-dimensionalmodel (Neelin et al., 2010 and 2010a). The spei� MM is based on the assumption that hanges of thesimulated model quantity, due to a parameter perturbation, are smooth and thus an be approximated by a2nd order polynomial regression.As a quadrati �t is determined by only three points, this assumption allows �tting the MM by performing alow number of simulations, namely 2N+0.5N(N-1)+1, for N parameters, whih is ruial for omputationallyexpensive NWP and RCM models.The use of a quadrati regression further inhibits over-�tting and allowsfor analytial solutions of the parameter spae. One the MM has been onstruted, it an be used as asurrogate to perform a large number of simulations, testing several parameter values in order to �nd theoptimalombination of values.In CALMO, the MM adapted for COSMO-CLM by Bellprat et al., 2012a, has been onsolidated and extendedby adding the option not to average Tmax/Tmin over regions, the predition of multiple vertial pro�le har-ateristis, and the possibility of supporting new geographial regions. The quality sore to aount for modelperformane was a RMSE-type performane sore initially tested in CALMO preliminary phase.Suessively,an advaned performane sore was introdued based on the COSMO Index (COSI) developed by Damrath(2009). The COSI sore ombines the RMSE-type for ontinuous variables and the ETS (Equitable Thresh-old Sore) for ategorial �elds. The COSI sore in CALMO-MAX is updated to inlude sunshine duration,mean, maximum and minimum dew point temperature, while for preipitation ETS is replaed with the FSS(Fration Skill Sore).COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



3b. Working Group on Physial Aspets: Soil and Surfae 433 ResultsDuring the preliminary phase of CALMO, it has been shown (Voudouri et al., 2017 and 2018) that theMM developed for limate models (Bellprat 2012a, 2012b) an be adapted to COSMO-NWP. Therefore, theobjetive methodology an be transferred from RCM to NWP. During the seond phase of CALMO, anoptimal set of six parameters over the entire year has been extrated, as well as monthly optimal valuesillustrating model parameters sensitivity on di�erent weather types. Figure 3 shows the 24 hour aumulatedpreipitation (pre), Tmax and Tmin values provided by MM against COSMO simulation results during theyear 2013. The related orrelation values are 79.9%, 80.6% and 78.2% respetively.

Figure 3: 24h aumulated preipitation (upper panel), Tmax (left panel), Tmin (right panel) Meta-Modelpredition for the tested parameter ombination, vs. COSMO simulation results during the year 2013. X axispresents the simulated �eld minus the referene simulation. Y axis presents the Meta-Model �eld minus thereferene simulation.Monthly and yearly improvement of the model performane assoiated with daily minimum and maximum2m temperature, as well as 24h aumulated preipitation when using the set of optimum parameter values,against the values reommended in the default model setup have been investigated. More spei�ally theannual yle of the performane sore using the optimum set of six parameters is presented in Figure 4. Theannual yle of the improved performane sore when the optimum parameter sets is used is presented in theblue dotted line in Figure 4, while the red line stands for the improvement of the sore over the entire year,when the optimum set of parameters is used replaing the default ones.The monthly variability of the performane sore with respet to the overall improvement (over the entire year)indiates that the model performane is sensitive to di�erent weather patterns. This feature is pronounedduring winter (and spei�ally for February) with the overall improvement reahing up to 12%. The e�etsof alibration methodology on yearly and monthly performane sore, using �ner model resolution, is nowinvestigated at the framework of CALMO-MAX
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3b. Working Group on Physial Aspets: Soil and Surfae 44

Figure 4: yle of the performane sore improvement using the optimum set for six parameters used inCALMO
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3b. Working Group on Physial Aspets: Soil and Surfae 454 ConlusionsThe methodology used in CALMO and CALMO-MAX priority projets showed that the alibration of theunon�ned model parameters using the MM is feasible. Model performane an be improved on monthlyand yearly basis. However, the methodology remains omputationally expensive. Towards this diretion, itwill be examined within CALMO-MAX whether the omputational ost ould be redued by e.g. applyingCALMO methodology on10-20 days set, representing most of the synopti situation, instead of an entire year.One the omputational ost is redued, the developed methodology ould be used by eah COSMO member,to de�ne an optimal parameter set over the target area of interest, for re-alibration after major modelhanges (e.g. higher horizontal and / or vertial resolution), for an unbiased assessment of di�erent modules(e.g.parameterization shemes), as well as for optimal perturbation of parameters when run in ensemble mode.Aknowledgments The present work is part of CALMO priority projet of COSMO. CSCS is aknowledgedfor providing the omputer resoures.Referenes[1℄ Albergel, C., de Rosnay, P., G. Balsamo, G., Isaksen, L., Munoz-Sabater, J., 2012: Soil Moisture Analysesat ECMWF: Evaluation Using Global Ground-Based In Situ Observations. J. Hydrometeor, 13, 1442-1460.[2℄ Aligo, E. A., Gallus, W. A. and Segal, M., 2007: Summer Rainfall Foreast Spread in an EnsembleInitialized with Di�erent Soil Moisture Analyses. Wea. Foreasting, 22, 299-314.
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Spatial verification techniques applied to high resolution models for an

intense precipitation summer event in GreecePresented in the: 14th International Conferene on Meteorology,Climatology and Atmospheri PhysisOtober 15-17, 2018 Alexandroupolis, GreeeBououvala D.1*, Gofa F1., Samos I11 Helleni National Meteorologial Servie, Hellinikon GR-16777, Athens, Greee
1 IntrodutionTraditional preipitation veri�ation metris based on point-to-point omparison without providing informa-tion regarding spatial distribution are insu�ient to evaluate preipitation foreasts, espeially from highresolution mesosale models. For example, when a small sale feature (also de�ned as an objet) is orretlyforeast but slightly displaed in time and spae, the foreast will be penalized both for a miss and a falsealarm (double penalty), espeially for high resolution datasets (Ebert 2008).Spatial veri�ation methods that allow for some tolerane to reasonably small errors in spae and time tend toresolve this problem (Cassola et al. 2015). The two main ategories are: neighbourhood (or fuzzy) veri�ationmethods (Ebert 2008) based on a sale-dependent veri�ation approah where the requirement for exatmathes between foreasts and observations is relaxed and objet oriented tehniques whih deal on withhow well the foreast aptures the overall struture of meteorologial features by identifying and omparingpreipitation features in the foreast and observations (Ebert and MBride 2000).The aim of this study is to evaluate the relative model performane of the operational Numerial WeatherPredition (NWP) systems of the Helleni National Meteorologial Servie (HNMS) (with di�erent horizontalresolutions) for a rare summer preipitation event that a�eted almost the entire area of Greee by applyingspatial veri�ation methods.2 Data and MethodologyAn unusually strong preipitation event that ourred on the 16-17th of July 2017 was seleted as a test ase.The event, whih was a ombination of both dynami and onvetive ativity was aompanied by relativelylow temperatures for the season and a�eted a large part of the ountry, ausing hailstorms, �ooding, propertydamage and unfortunately loss of human life. The event was preeded by a series of relatively warm dayswith 850hPa temperatures around 15-20°C. On 17/04 00UTC, a trough entered over Russia overing all ofEastern Europe moved southwards toward Greee, resulting in old air masses (-15°C) at 500hPa (Fig 1a)moving slowly E-NE. The trough was aompanied by a low pressure system at the surfae, whih movedfrom west to east (Fig 1b). Initially, onvetive preipitation was observed over northern and western Greeewhih extended to the entral and eastern parts of the ountry by the afternoon. This was aompanied bylightning (Fig 1) and hail at several loations on the mainland.2.1 DataSpatial veri�ation tehniques require data de�ned ontinuously over a ommon spatial domain overingthe area of interest. 3-hourly umulative HSAF (EUMETSAT Satellite Appliation Faility on Support todoi:10.5676/dwd_pub/nwv/osmo-nl_19_07COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



5. Working Group on Veri�ation and Case Studies 47Operational Hydrology and Water Management) gridded observations and foreasts from: a) the global saleECMWF (IFS) model with a horizontal resolution of 9km and b) the loal model COSMO-GR (Gofa et al.2008) with horizontal resolutions of 7, 4 and 1km were used.The data were regridded (interpolated or extrapolated) to a ommon grid spaing of 0.06° (4km) in order tofailitate omparison. This grid spaing is also onsistent with the spatial frequeny of observations. Despitethe smoothing e�et assoiated with upsaling, the high resolution model on�guration preserves details ofthe preipitation struture while also featuring larger magnitude departures from the observations at someloations. This an possibly be attributed to the oarser resolution of the initial observed preipitation �eld.2.2 MethodologyNeighborhood veri�ation (or fuzzy) tehniques evaluate foreast performane using more elasti onditionsregarding the exat spatio-temporal math between observed and foreast �elds. It is based on the prinipleof expanding the area of omparison to inlude data points nearby (�neighbors�), employing a spatial window,or "neighborhood", surrounding the foreast and/or observed points. A relaxing �lter an be applied to both�elds, and the penalty for di�erenes between modeled and observed values is relaxed. The properties ofthe relaxed �elds (mean values, maximum values, number of grid points exeeding a threshold) an then beompared using traditional statistial methods.The size of this window starts at the smallest possible sale (neighborhood of one grid box) and is graduallyinreased in order to provide insight into the sales at whih the model has the most skill. The methodshows how foreast skill varies with neighborhood size and an be used to determine the smallest neighbor-hood size that provides a su�iently skillful foreast. A more detailed review of neighborhood approahesis available in Ebert (2008). There is a variety of methods that fall within this ategory, di�erentiated bytheir treatment of the points within eah window, depending on the neighborhood method used. In order todetermine if a foreast is �useful� or �good enough�, deision models are applied suh as: Upsaling, MinimumCoverage, Anywhere in the Window and Pratially Perfet Hindast. Traditional dihotomous sores arethen alulated.The Frations Skill Sore (FSS) is a deision model based on the omparison of frequeny of foreast andobserved events. In this study, the VAST (VERSUS Additional Statistial Tehniques) software pakage,whih was developed by the COSMO onsortium and o�ers a number of neighborhood veri�ation tools, wasemployed (Gofa at al. 2018). SAL (whih stands for Struture, Amplitude and Loation) is an objet-basedmethod developed by Wernli et al. (2008, 2009) to measure the quality of a foreast by identifying objetsin both foreast and observed �elds at a given time and provide information on objet shape and loationdi�erenes between the two �elds. The sore onsists of three omponents whih orrespond to a global �eldmeasure of: Struture (S), Amplitude (A) and Loation (L). The S parameter ompares the volume of the

Figure 1: (left): 17/04 00UTC 500hPa (soure: University of Wyoming), 1b. (enter): Surfae Analysis(soure: UK Met O�e), 1. (right) Lightning ativity at 10UTC (http://el.blitzortung.org) with dots indi-ating the loation of lightning strikes where the olor refers to the age of the strike (20 min intervals).COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



5. Working Group on Veri�ation and Case Studies 48normalized preipitation objets of the two �elds. Positive S values indiate that modeled preipitation objetsare too large or too �at (more stratiform preipitation), while a negative value indiates that objets are toosharp and too small (more onvetive type preipitation).The A parameter represents the normalized di�erene of the domain-averaged preipitation �elds and isindependent of strutural features. Positive (Negative) values of the A parameter indiate overestimation(underestimation) of total domain preipitation. The range of the S and A parameters is [-2, 2℄. The Lomponent ombines information about the distane of predited and foreast mass enters (L1) and thenormalized distane between the preipitation objets (L2). L ranges from 0 to 2. A perfet foreast isharaterized by zero values for all three SAL omponents. The S and L (spei�ally the L2 omponent)parameters require the identi�ation of objets in observed and foreast �elds. An objet is de�ned when itexeeds a �xed or statistially de�ned threshold value. Wernli et al. (2009). Consequently, if no features arefound in either or both foreast and observed �elds, the SAL values annot be de�ned. The SAL parametersare alulated with a SpatialVx based software pakage (Gilleland 2017).
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ECMWF-IFS COSMOGR-7 COSMOGR-4 COSMOGR-1

Figure 2: Neigborhood method plots for lead time 16/07 00 UTC derived for the various model setups.From top to bottom: FSS (Frations Skill Sore), ETS (Equitable Thread Sore), Bias, POD (Probability ofDetetion) and FAR (False Alarm Rate)
COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



5. Working Group on Veri�ation and Case Studies 503 ResultsA seletion of the evaluation plots for July 17th applying neighborhood methods to the various models andresolutions is presented in Fig 2. (time lead 1600 UTC). The sores are plotted as intensity-sale diagrams,where the intensity threshold and spatial sale averaging inrease along the x and y axes respetively, andthe olor shade gives an indiation of the value of the sore (also plotted expliitly). By evaluating the olorintensity (darkness), sales and thresholds at whih a partiular model system performs best, it is possibleto evaluate model performane without fousing on the absolute value of eah olored window. The foreastskill (as represented by the FSS sore) does not di�er signi�antly between models, but it does inrease aswindow size (<15km) and preipitation thresholds (<3mm/3h) derease. For high preipitation thresholds,on the other hand, foreast skill dereases.ETS (Equitable Thread Sore) index diagrams (Pratially perfet Hindast deision method) show that theforeast quality is better for window sizes <50km and thresholds 0.1-0.2mm. The indies for COSMO-GR1and COSMO-GR4 are slightly better than those of ECMWF-IFS. However, signi�ant di�erenes appear inthe Bias sore (upsaling method) as ECMWF-IFS has the tendeny to overestimate both the low thresholds(0.1-3mm) and high thresholds (>10mm/3h) while underestimating the remaining thresholds. The COSMOmodel generally overestimates rainfall for windows up to 27km for all thresholds, exept for COSMO-GR7whih underestimates only the high thresholds. The POD (Probability of Detetion) and FAR (False AlarmRate) (alulated using the Anywhere in the Window method) show that ECMWF-IFS had more suessfulhits (dark red) but also more false alarms (dark blue). SAL parameters for the 24h aumulated preipitaionfor July 17th are estimated for the 1600 UTC model run with di�erent �xed thresholds (from lower to higher)(Fig 3).The positive S parameter indiates that �atter objets (more stratiform preipitation) are alulated bythe models for higher thresholds, while sharper objets (more onvetive) are produed at lower thresholds.COSMO7 predits �atter objets versus sharper objets by COSMO1. The L parameter is onstant and lowerfor ECMWF-IFS, while higher values are alulated for COSMO4. COSMO7 S values tend to be lower forhigher preipitation thresholds. The A parameter, whih is independent of objets and depends on the entire�eld, is positive, whih means that for all models, espeially for COSMO7, 24h preipitation is overestimated.

Figure 3: Left:S (Struture), Center: L(Loation) parameters with threshold, Right: A (Amplitude) param-eter for ECMWF-IFS, COSMOGR-7, COSMOGR-3 and COSMOGR-1.
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5. Working Group on Veri�ation and Case Studies 514 ConlusionsThe aim of this study was to ompare the metris of two spatial veri�ation methods applied to the aseof an intense summer preipitation event. Neighborhood veri�ation results showed that for high rainfallrate thresholds and large spatial windows, the foreast skill and quality dereased for all models used inthe study. Di�erenes between the COSMO and ECMWF-IFS models at di�erent sales and thresholds aremainly evident in Bias and ETS sores, with the latter model tending to overestimate preipitation for lowthresholds and onsequently produing more false alarms. Appliation of the SAL objet-based method to24h preipitation foreasts showed that �ner resolution models led to predition of sharper objets, that allmodels overestimate domain preipitation while loation errors are more variable with threshold for �nerresolution models. These results on�rm that, when ombined with traditional veri�ation tehniques, spatialveri�ation methods enable more detailed and more omplete assessment of model performane.Referenes[1℄ Cassola F, Ferrari F, Mazzino A (2015) Numerial simulations of Mediterranean heavy preipitationevents with the WRF model: analysis of the sensitivity to resolution and mirophysis parameterizationshemes. Atmos. Res. 164�165, 210�225.[2℄ Ebert E (2008) Fuzzy veri�ation of high resolution gridded foreasts: A review and proposed framework.Meteorol. Appl. 15, 51-64.[3℄ Ebert E, MBride JL (2000) Veri�ation of preipitation in weather systems: Determination of systematierrors. J. Hydrol. 239, 179-202.[4℄ Gilleland E (2017) R pakage Version 0.6-1.https://ran.r-projet.org /pakage =SpatialVx[5℄ Gofa F, Pytharoulis I, Andreadis T, Papageorgiou I, Fragkouli P, Louka P, Avgoustoglou E, Tyrli V(2008) Evaluation of the operational numerial weather foreasts of the Helleni National MeteorologialServie. Pro. 9th COMECAP Conferene of Meteorology, Thessaloniki, Greee, 51-58.[6℄ Wernli H, Hofmann C, Zimmer M (2009) Spatial Foreast Veri�ation Methods Interomparison Projet:Appliation of the SAL Tehnique. Wea. Foreasting. 24, 1472�1484.[7℄ Wernli H, Paulat M, Hagen, Frei C (2008) SAL-A novel quality measure for the veri�ation of quantitativepreipitation foreasts. Mon. Wea. Rev. 136, 4470�4487.
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A user oriented verification methodology for wind forecastMaria Stefania TesiniARPAE, HydroMeteoClimateServie of Emilia-Romagna region, Bologna, Italy

1 IntrodutionThe 10-m wind is a weather parameter haraterized by strong dependene on orographi and topographidetails and high temporal variability. Therefore the veri�ation of wind foreast requires a methodology takinginto aount these features.On top, any veri�ation method should be tailored for the spei� purpose de�ned by the user of that foreast,being the developer of the model, the foreaster in the operational room or the stakeholder for a pratialappliation.One of the main uses of wind foreast at Arpae-SIMC is to issue warnings when wind speed exeeds somethreshold. For example, strong easterly winds an determine the possible ourrene of sea storms over theItalian oast of the Adriati Sea (see �gure 1), but also less intense winds an ause problems to the tourist'sativity on the beah.

Figure 1: Wind observations in the north Adriati Sea oastVeri�ation should therefore address several user-related aspets, in partiular it should quantify:� the ability of the model to predit wind speed above (or below) ritial thresholds, inluding falsealarms or misses,� the foreast skill in terms of wind diretion,� the dependene of foreast error on wind diretion� the interplay between wind-speed and wind-diretion inauraiesIn addition, another very important aspet to onsider is the ommuniation of the results to the end user,whih should be as lear and onise as possible.doi:10.5676/dwd_pub/nwv/osmo-nl_19_08COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



5. Working Group on Veri�ation and Case Studies 532 The Performane-RoseIn order to meet the needs of our end-user we have studied a methodology of veri�ation that seeks totake into aount wind speed and diretion at the same time, but that it is also e�etive in ommuniatingresults. For this purpose we developed a novel summary-plot of the sores derived from the ontingenytable, denominated "Performane Rose". In a wind-rose plot, the observed and foreast wind frequeny isrepresented subdivided into the usual 8 setors. In additions to this, eah spoke is broken down into olor-oded bands that show information about errors in wind speed and diretion. Moreover usual sores suh asthe Probability of Detetion, the Threat Sore and the Suess Ratio are plotted for eah setors (i.e. for eahdiretion) as symbols on the appropriate sale (from 0 to 1 for all of them) in the radial axes.First of all, for eah station 10m-wind observations (hourly or 3/6-hourly) and orresponding data preditedby model are ategorized in otants for wind diretion (N, NE, E, SE, S, SW, W, NW) and in lasses forwind speed, aording to table 1.LIGHT ws < 10 Knots ws < 5.1 m/sLIGHT-MODERATE 10 ≤ ws < 20 Knots 5.1 ≤ ws < 10.3 m/sMODERATE 20 ≤ ws < 30 Knots 10.3 ≤ ws < 15.4 m/sSTRONG ws ≥ 30 Knots ws ≥ 15.4 m/sTable 1: Wind speed lassesFor eah spei� wind speed lass (e.g. "Light-Moderate") a "Performane-Rose" diagram is produed, asshowed in �gure 2.

Figure 2: The Performane-Rose diagramLike in a usual wind rose, the frequeny of winds of the spei� wind lass blowing from partiular diretionsover a spei�ed period is represented:� Blue line is the observed frequeny of the spei� speed-lass� Red line is the foreast frequeny of the spei� speed-lassThe number of events an be read on the radial sale (frequeny axis), inreasing outwards from the enter.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



5. Working Group on Veri�ation and Case Studies 54Using setors of di�erent olours we desribed how model predits the referene speed lass in eah diretion,being the diretion orret . For example:Green means speed lass is orretly foreastCyan means speed is underestimated of 1 lass ( e.g. the foreast is �Moderate� but the observationis �Strong�)Yellow means speed is overestimated of 1 lass ( e.g. the foreast is �Moderate� but the observationis �Light-Moderate�)The number of events of eah setor an be dedued using the radial sale of the frequeny axis.In addition, the gray half-setors represent the number of foreast in eah diretion that are "nearly" orretin diretion, being the intensity orret :Half setor on the left means foreast is shifted of 1 otant lok-wise (e.g. if the fst is NE, theobs in N)Half setor on the right means foreast is shifted ounterlok-wise (e.g. if the fst is NE, obs isE)In this partiular ase, the number of events an be dedued using the reverse radial sale of the frequenyaxis (starting from the outermost irle).A quantitative assessment of the goodness of the foreasts is made using some sores evaluated form theelements in a ontingeny table (see �gure 3) that shows the frequeny of "yes" and "no" foreasts andourrenes:
POD =

hits

hits + misses
(Probability of Detetion)

TS =
hits

hits + misses + false alarms
(Threat Sore)

SR = (1 − FAR) =
hits

hits + false alarms
(Suess Ratio)

FAR =
false alarms

hits + false alarms
(False Alarm Ratio)

BIAS =
hits + false alarms

hits + misses
(Bias Sore)

Figure 3: Contingeny table for dihotomous (yes/no) foreastsFor our purposes, we have de�ned two types of "yes"/"no" events and for eah of them a spei� ontingenytable has been onstruted:1. "Class & Diretion": the "yes" event is de�ned by speed lass and diretion orretly foreast atthe same time, while other entries of the ontingeny table are de�ned as in the table in �gure 42. Class & Diretion ±1: the "yes" event is de�ned by speed lass orretly foreast, but diretionis onsidered orret even if di�ers by one otant. Aording to the table in �gure 5 we de�ned only"false alarm" and "miss" events, sine orret negatives have been removed from onsideration.This de�nition of "extended diretion", even if not ompletely proper, is meant to address the user'srequest to know whether the soure of error depends on either wind speed or wind diretion, if omparedwith sores based on the exat orrespondene of diretion and speed.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 4: Contingeny table for event de�ned as "speed lass anddiretion orretly foreast at the same time"
Figure 5: Contingeny table for event de�ned as "speed lass orretlyforeast, but diretion is orret even if di�ers by one otant"In the Performane Rose, the sores related to the two event de�nitions are plotted as symbols of di�erentolors (blak for the event "Class & Diretion" and magenta for event "Class & Dir ±1").Their value an be read on the radial sale (sore axis) and, as in a arhery target, the perfet sore 1 isrepresented in the innermost ring.The Frequeny Bias is not expliitly alulated but it an be dedued for the "Class & Diretion" event bythe relative position of observed frequeny line (in blue) and foreast frequeny line (in red):� Red line outer means overestimation of the number of events� Blue line outer means underestimation of the number of events3 Examples of appliation of the Performane-Rose diagramsThe Performane-Rose is designed primarily to help foreasters understand the behaviour of models, parti-ularly on some oastal stations, where for geographial reasons it is essential to identify errors in the foreastof wind intensity as a funtion of diretion.For example, in �gure 6 are plotted the Performane-Rose diagrams for the veri�ation of 10m wind preditedby COSMO-I7 00 UTC run for the station "Chioggia" loated in the north Adriati sea near Venie.The statistis refer to 1 year (JAN-DEC 2016 ) of hourly data from 1 to 24 hours of foreast (DAY 1) andorresponding observations. Looking to the plots, following the possible interests of foreasters as �nal users,some onsiderations an be done:When the wind is predited in the "Light" lass the errors on diretion are signi�ant as suggested bythe dimension of the gray setors and the better sores for the "Class & Dir ±1" event with respet to"Class & Dir". The errors in diretion derease as the wind is predited in higher lasses (very smalldi�erenes in the sores for "Moderate" or "Strong" winds).Underestimation of the intensity ,with orret diretion predited, is more evident for "Light" and"Light-moderate" lasses (see yan setors). In ase of "Moderate" winds predited the number ofases of underestimation is very small, while the number of overestimated events is signi�ant (seeyellow setors).This information is important for the foreasters as they an be on�dent about the low risk of missingritial events.Unfortunately the performane-rose relative to "Strong" wind shows that the sores relative to thistype of event are very low. In addition to ases of overestimations, the most frequent error is the om-plete missing of the event (predited in lower wind lasses with very di�erent diretion and thereforenot visible in the Performane-Rose diagram).COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 6: Performane-Roses for the veri�ation of 10-m wind hourly data predited by COSMO-I7 00 UTCrun for the station "Chioggia" in the period January-Deember 2016. Eah single plot refers to a spei� speedlass: "Light" (top-left), "Light-Moderate" (top-right), "Moderate" (bottom-left), "Strong" (bottom-righ).If instead we onsider the ase in whih models developers are the end user of our veri�ation, it an beinteresting to ompare if some errors in the wind foreast of a partiular model are also found in othermodels, onsidering the same station and period. For this purpose, in the framework of WG5 Common plotsativities during the year 2018 the prodution and analysis of Performane-Rose diagrams for several modelswas started.Data of 10m wind foreast from COSMO-5M (Arpae-Italy), COSMO-PL (IMGW), COSMO-GR4 (HNMS),ICON-EU (DWD),COSMO-DE/D2 (DWD) were used to produe Performane-Rose diagrams for four di�er-ent periods (JJA2017,SON2017,DJF2017-18,MAM2018) on a set of seleted stations belonging to CommonArea 1 (see �gure 7).Sine the goal of the Performane-Rose diagram is to provide the end user with e�etive feedbak on themodel's foreasts, trying to answer the question of a spei� user, it was deided to ompare the variousmodels by identifying some targeted issues, depending on the harateristis of the wind �eld on individualstation.For example, wind veri�ation of both COSMO-5M and COSMO-I2 (2.8 Km resolution) performed in Emilia-Romagna region (Italy) pointed out a a general underestimation of the foreast intensity in mountain stations.To see if this behaviour was also ommon to other models, the station "Svratouh", loated at 740 metera.s.l., was hosen and Performae-Roses representing the performane of the �rst 24 hours of foreast of thefour di�erent models during the period June 2017 - May 2018 were produed.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 7: Seleted stations in Common Area 1. The olors of the symbols represent the height of the stationsin meter a.s.l.In �gure 8 the Peformane-Roses of COSMO-5M for the four di�erent wind-speed lass are represented, whilein �gures 9-11 only the two lower wind-speed lasses of COSMO-PL , COSMO-GR and ICON-EU are plotted,sine there are no foreast in the "Moderate" and "Strong" lasses.With referene to �gures 8-11 some onsiderations an be done: In general, yan setors indiate that theforeast is orret only in diretion while the intensity is underestimated , i.e. the observed wind intensity isone speed-lass higher.The COSMO models onsidered exhibit this type of behaviour in the two lover speed-lass and partiularlyin the diretion "South" for the "Light-Moderate" lass, indiating that the orresponding wind observationswere in the "Moderate" lass. In fat, if you look to the plot referring to the "Moderate" lass of COSMO-5M (see �gure 8) the number of observations (blue line) is higher than the number of the foreast (redline). For other models foreast events are zero (not shown). ICON-EU graphs show less yan setors, i.e. lessunderestimation, but also less green setors and therefore less orret foreasts in both intensity and diretion.The presene of grey setors indiates that the intensities have been orretly predited while it is the diretionthat is missed, as for example an be seen from the underestimation of the number of events in the "South"diretion that seems partly ompensated by the ourrenes in the "South-East" diretion (grey setor).
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Figure 8: Performane-Roses for the veri�ation of 10-m wind hourly data predited by COSMO-5M 00 UTCrun for the station "Svratouh" in the period June 2017-May 2018. Eah single plot refers to a spei� speedlass: "Light" (top-left), "Light-Moderate" (top-right), "Moderate" (bottom-left), "Strong" (bottom-righ).

Figure 9: Performane-Roses for the veri�ation of 10-m wind hourly data predited by COSMO-PL 00UTC run for the station "Svratouh" in the period June 2017-May 2018. Eah single plot refers to a spei�speed lass: "Light" (top-left), "Light-Moderate" (top-right).
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Figure 10: Performane-Roses for the veri�ation of 10-m wind hourly data predited by COSMO-GR 00UTC run for the station "Svratouh" in the period June 2017-May 2018. Eah single plot refers to a spei�speed lass: "Light" (top-left), "Light-Moderate" (top-right).

Figure 11: Performane-Roses for the veri�ation of 10-m wind hourly data predited by ICON-EU 00 UTCrun for the station "Svratouh" in the period June 2017-May 2018. Eah single plot refers to a spei� speedlass: "Light" (top-left), "Light-Moderate" (top-right).
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5. Working Group on Veri�ation and Case Studies 605 ConlusionOne of the most triky aspets of veri�ation is to provide end-users with an e�etive feedbak on model fore-ast, both in terms of ontents and ommuniation. The idea of the �Performane Rose� diagram addressespreisely this issue, trying to answer the questions of a spei� users.Sine a lot of information is summarized in the Performane-Rose diagram, it is neessary to fous from timeto time on spei� aspets, depending on the user's needs.
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Performances of COSMO-based ensemble systems for cases of

High-Impact Weather over ItalyG. Pinini (1), A. Montani (2), T. Paagnella (1), M.S. Tesini (1), C. Marsigli (3)(1) Arpae-SIMC, (2) ECMWF, (3) DWD
IntrodutionThe predition of weather events related to strong winds, heavy rain and snowfall is still nowadays a serioushallenge, espeially when high spatio-temporal details are required. Despite Numerial Weather Predition(NWP) modelling has made great progress in reent deades, thanks to the inreases in model resolution,better understanding of atmospheri dynamial proesses and advantages in data assimilation tehniques,the above-mentioned atmospheri events, usually referred to as �High-Impat Weather� (HIW), an havehorizontal dimension too small to be expliitly resolved. HIWs provide the most dramati examples of howthe atmospheri a�ets people daily lives, sine they may ause both human and eonomi osts. Therefore,there is a need of better ways to predit this type of phenomena, also aounting for their inherent degree ofnon-preditability.The ensemble foreasting provide a representation of model unertainty, due to the imperfet knowledge ofatmospheri initial onditions and the approximate model formulation. Instead of running just one foreastwith an unknown error, an ensemble of slightly di�erent foreasts are run, in order to integrate the deter-ministi foreast with an estimate of the �foreast of foreast skill�. Probabilisti foreasts provide a moreomplete, reliable and aurate view of what might happen in the future, ideally providing information onthe relative frequeny of an event ouring. Therefore, they bring de�nite bene�ts for deision-makers. Theestimation of unertainty is even more ruial when loal e�ets ome into play and a high spatio-temporaldetail is required as in the ase of preipitation, where NWP limitations beome more evident.The aim of this work is to assess the added value of the enhaned horizontal resolution in the probabilistipredition of surfae �elds. In partiular, the performane of three di�erent ensemble predition systems wereompared: ECMWF ENS (51 members, 18 km horizontal resolution), COSMO-LEPS (16 members in 2016,20 members now; 7 km horizontal resolution) and COSMO-2I-EPS (10 members in 2016, 20 members now;2.2 km horizontal resolution). While the �rst two ensemble systems are operational, COSMO-2I-EPS is stillin a pre-operational phase. The interomparison window overs two limited periods, whih range from 20 to27 June 2016 and from 15 Otober to 15 November 2018. As for the surfae variables, 2-metre temperatureand preipitation are veri�ed against the non-onventional station network provided by the National CivilProtetion Department.The ensemble spread and the root mean square error of 2-metre temperature are omputed, while RankedProbability Sore and Perentage of Outliers are onsidered for preipitation. The best sores are mainlyobtained by the COSMO-based ensemble systems with higher horizontal resolution and lower ensemble size;in partiular COSMO-2I-EPS often ahieves the most satisfatory performanes. Although the results arebased over two relative short periods due to limited data availability and further investigations is needed, theadded value of high resolution in mesosale ensemble systems seems to play a ruial role in the probabilistipredition of atmospheri �eds at all levels. In partiular, the more detailed desription of mesosale andorographi-related proesses in COSMO-ensembles provides an added value for the predition of loalisedHigh-Impat Weather events.doi:10.5676/dwd_pub/nwv/osmo-nl_19_09COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



7. Preditability and Ensemble Methods 62Global and limited-area ensemble predition systems and desription of the ex-perimentsA summary of the tehnial harateristis of the three ensembles used in the veri�ation is shown in thetable (Fig. 1).

Figure 1: The table shows the tehnial harateristis of ECMWF ENS, COSMO-LEPS and COSMO-2I-EPS in 2016; now COSMO-LEPS has 20 members as well as COSMO-2I-EPSThe interomparison between the three ensemble systems is performed starting at 00 UTC and with a foreastrange of 48 hours, beause COSMO-2I-EPS runs one a day at 00 UTC and the foreast stops on the seondday. The veri�ation domain was seleted in suh a way as to inlude the entire Italian territory, more preiselythe domain having the following geographi oordinate as borders (Fig. 2)� latitude: 35oN - 48oN� longitude: 6oE - 19oEThe station networks, used in the evaluation proedure, are:� the Northern-Italy non-GTS 3 (loal) network : it refers to about 1000 stations, over most NorthernItaly and shared by the regional weather servies operating in the area. These stations provide hourlydata;� network from National Civil Protetion Department (DPCN-Dipartimento Protezione Civile Nazionale):this network is omposed of about 5524 stations over the national territory. Also these stations providehourly data.3Global Teleommuniations Systems

Figure 2: The domain, entered over Italy, onsidered for the veri�ation of the three ensemble systems. Thepoints are the 5524 stations of National Civil Proteion Department used for the veri�ation of preipitation.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



7. Preditability and Ensemble Methods 63These station networks were used for the veri�ation of 2-metre temperature and preipitation respetively.DPCN stations have been subdivided, in three groups depending on the loation altitude. For the subdivisionit was deided to adopt the WMO (World Meteorologiaal Organization) diretives on the subjet, as follows:� lowland station (under 200 m of altitude) 2311 DPCN observatories belong to this ategory;� hill stations (between 200 m and 599 m of altitude) 1690 observatories belong to this ategory;� mountain stations (above 600 m of altitude) 1523 observatories belong to this ategory.The evaluation of the performane of the model onsists in the omparison of gridded model output againstpoint observations. A number of statistial sores evaluate di�erent aspets of model performane while theforeast "error" is simply de�ned as the di�erene between the foreast value and the observation. In a"standard" deterministi approah, the unertainty assoiated with the foreast value is not estimated. AnEPS aims at quanti�ng this unertainty using a set of perturbed Initial Conditions (ICs) and/or perturbedmodel formulations. Veri�ation methods applied to ensemble foreasts have two main objetives:� to assess the harateristis of the ensemble distribution;� to verify the probability foreast.Sine all perturbed ICs should be equally possible be true and all perturbed physis or varying physis shemesor alternative models be equally plausible, the performane of any ensemble member should, in priniple, beequivalent to that of another member on average. If this is not the ase, that is indiative of problems withthe hoie of ensembling the tehnique employed. For example, either the IC perturbations are too largeor alternative models, physis shemes or perturbations are not equally plausible. In the veri�ation theevaluation method of the nearest grid point will be used: sine observations seldom our at the preiseloations represented by the grid points of one partiular model, it is neessary to ompare the foreast valuesin the grid points with those of the nearest observations (ECMWF Foreast User Guide). In the experimentalveri�ation of the three ensemble systems will be used the following sores:The Root Mean Square Error (RMSE) provides the square root of the average square error of theforeasts, whih has the same units as the foreasts and observations. Here, the foreast orresponds tothe ensemble mean value and an 'error' represents the di�erene between the ensemble mean Y and theobservation x. The equation for the RMSE is:
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n=1 f(n) is for the ensemble mean and f is for the ensemble foreast. In general, an idealensemble foreast will be expeted to have the same size of ensemble spread as their RMSE at the same leadtime in order to represent full foreast unertainty [11℄ [2℄; but most of the ensemble systems are underdispersed(lower spread) for longer lead times due to an imperfet model system (or physial parameterizations) andother fators. Anyway over a large number of ensemble foreasts, the statistial properties of the true value
XTRUE of any quantity X are idential to the statistial properties of a member Xj of the ensemble; inpartiular:
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7. Preditability and Ensemble Methods 64The Ranked Probability Sore (RPS) is an extension of the RMSE to the probabilisti world and to themulti-ategory events; it ranges between 0 and 1.
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2where� J is the number of foreast ategories� oj = 1 if the event ours in ategory j, oj = 0 if the event does not our in ategory j� fj is the probability of ourrene in ategory jThis sore is used to assess multi-ategory foreast, where J is the number of foreast ategories (for example,rainfall bins). The RPS penalizes foreasts less severely when their probabilities are lose to the true outomeand more severely when their probabilities are further from the atual outome. The lower the RPS, the betterthe ensemble system.The Perentage of Outliers of a probabilisti foreast system is de�ned as the probability of the analysis(or observation) lying outside the foreast range [1℄. Therefore this an be seen as the perentage of times the�truth� falls out of the range spanned by the foreast values. Here, it is omputed as the fration of points ofthe domain where the observed value lies outside the minimum or maximum foreast value.Performane of the ensemble systemsFirst veri�ation period: from 20t to 29th June 2016To begin the performane of the three ensemble systems is veri�ed against the two-metre temperature. Asalready mentioned before, for this veri�ation it was deided to onsider the observational dataset omingfrom the regional networks of the weather servies on Central-Northern Italy. In this way, data oming fromonly one part of the Peninsula were onsidered. Infat, the temperature data from the national ivil protetionnetwork ould have been used, but these data are from time to time of low-quality in Central and SouthernItaly and their use would have provided wrong evaluation on the model skill. The period under investigation isfrom 20th June 2016 at 00 UTC to 29th June 2016 at 00 UTC, infat, although the last runs examined are thoseat 00 UTC on 27th June 2016, a 48-hour foreast range must always be onsidered. The performane of thethree ensemble systems is evaluated by alulating the spread and the RMSE of the ensemble, the veri�ationmethod used is the nearest grid point. The table 1 summarizes the harateristis of the veri�ation.
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Veri�ation featuresvariable: 2-metre temperature;period: from 20/06/2016 00UTC to 29/06/2016 00UTC (9 days);region: Central-Northern Italy;method: nearest grid point;obs: non-GTS loal �duiary network, no obs error;fst ranges: 0-48h (veri�ation every 6h);systems: ECMWF EPS, COSMO-LEPS, COSMO-2I-EPS;sores: spread, RMSE;Table 1: 2-metre temperature veri�ation features
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7. Preditability and Ensemble Methods 66The results are reported in (Fig. 3) and an be summarised as follows:

Figure 3: The �gure shows the spreads (ontinuous lines) and the RMSE (dotted lines) values obtained forthe 48 hours of the foreast range every 6 hours. The ECMWF EPS sores appear in red, COSMO-LEPS inblue and COSMO-2I-EPS in green. The foreast range (in hours) is shown in the absissa, in the ordinatethe value of spread and RMSE (in oC). All details are indiated in the legend at the top left.� the spread values are similar for all the three ensemble systems;� the spread values are smaller with respet to the RMSE ones, showing a tendeny of all ensembles tobe underdispersive;� with the exeption of the shortest time range, COSMO-based models always show slightly higher (andtherefore better) spread values than ECMWF EPS;� RMSE values show a marked diurnal yle, with maxima during the entral hours of the day and theminimums in the night. This daytime yle is very pronouned for ECMWF EPS and for COSMO-LEPS, less for COSMO-2I-EPS;� the RMSE of COSMO-2I-EPS is the lowest of the three ensemble systems on the entire foreast range.Therefore, from this 2-metre temperature veri�ation, COSMO-based models get exellent results, espeiallyCOSMO-2I-EPS.The performane of ECMWF ENS, COSMO-LEPS, COSMO-2I-EPS is veri�ed also against the 6-hourlypreipitation. For this veri�ation work it was deided to use the preipitation data reorded by the raingauges of National Civil Protetion Department network. In this way, the results obtained are representativeof what happened on the entire national territory between the 20th June 2016 at 00 UTC and the 29th June2016 at 00 UTC. The method of the nearest grid point was used for the alulation of Ranked ProbabilitySore and perentage of outliers. In table 2 are reported all the details of the veri�ation.In the Fig.4, the results obtained for the RPS an be onsulted.Considering all DPCN staions, regardless of the altitude (top left graph), it is worth pointing out:� the diurnal yle of preipitation is very marked. Sine it is almost exlusively afternoon onvetivepreipitation, the highest, and therefore the worst, RPS are just in the afternoon time slots: foreastrange 12-18 h, 36-42 h;� however, the RPS of COSMO-2I-EPS, and generally the RPS of COSMO ensemble systems, is betterthan ECMWF ENS one over the whole foreast range.In this ase the RPS points out to the added value of COSMO-2I-EPS.The station of DPCN has been subdivided, aording to their altitude, in three groups: plain, hill andmountain. Therefore, the purpose of this further study is to evaluate RPS variations aording to the stationaltitude and see how this a�ets the results. Looking at the plots it an be onluded that:COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



7. Preditability and Ensemble Methods 67Veri�ation featuresvariable: 6-hourly total preipitation ;period: from 20/06/2016 00UTC to 29/06/2016 00UTC (9 days);region: Italy;method: nearest grid point;obs: DPCN network, no obs error;fst ranges: 0-48h (veri�ation every 6h);systems: ECMWF EPS, COSMO-LEPS, COSMO-2I-EPS;sores: RPS, outliers;thresholds: 1mm, 5mm, 10mm, 15mm, 25mm, 50mm in 6 hoursTable 2: 6-hourly total preipitation veri�ation features

Figure 4: The �gure shows the RPS for four di�erent observational dataset, indiated in theaption under eah image. The ensemble systems are ECMWF ENS in red, COSMO-LEPSin blue, COSMO-2I-EPS in green. The foreast range of 48 hours, in 6-hour steps, is shownin the absissa; the dimensionless values of the RPS are marked in the ordinate.� the RPS values obtained for the lowland stations are lower (therefore better) than those obtained forhill and mountain ones, in partiular the results of mountain stations are the highest;� in most ases, regardless of altitude, the RPS obtained for COSMO-2I-EPS is always lower (thereforebetter) than for COSMO-LEPS and ECMWF ENS;� in the plain stations (top-right panel), there is a good gap beetween COSMO-2I-EPS and ECMWFENS in the �rst day of foreast range. For the other stations this gap extends no longer than the�rst 18 hours, then the RPS tend to be similar for the three ensembles, exept for the preipitationCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 5: The �gure shows the perentage of outliers for four di�erent observational dataset,indiated in the aption under eah image. The ensemble systems are ECMWF ENS in red,COSMO-LEPS in blue, COSMO-2I-EPS in green. The foreast range of 48 hours, in 6-hoursteps, is shown in the absissa; the perentage of outliers is marked in the ordinate.umulated beetween the 36th and the 42nd hour of the foreast range;� in the graph for hill and mountain stations (bottom left and bottom right panel respetively), the RPSfollows a very strong daytime yle, that is de�nitely less visible on the plain: this is ould be due tothe pluviometri regime of those days, with rainfall onentrated almost always in the afternoon hoursand on the internal areas of hills and mountains.So all the observational networks, built on altitude, on�rm that the RPS of COSMO-based ensembles, butin partiular COSMO-2I-EPS, are better than the global ensemble of Reading.The perentages of outliers for the ensemble system onsidered as a funtion of the foreast range are shownin Fig. 5.Considering all DPCN staions (top left graph), it is possible to see that despite the lower ensemble size,COSMO-2I-EPS has often the lowest values, ompared to the other two ensemble systems with a lowerhorizontal resolution. So, it an be stated that in this ase too, the results obtained by COSMO-2I-EPS aresatisfatory. Looking at the other three panels of the Fig. 5 it an be stated that:� the perentage of outliers inreases aording to the station altitude: there are less outliers in the plainsthan in the mountains;� in the plain there is little di�erene between the three ensemble systems; these di�erenes inreasewith the altitude, infat the perentage of outliers obtained with the only mountain stations showsonsiderable dissimilarity beetween the ensembles;� for hill and mountain observation datasets, a diurnal yle is visible only in systems with parametrizedonvetion (ECMWF ENS, COSMO-LEPS); instead, the diurnal yle is hardly identi�able for thelowland stations;� for almost all foreast ranges COSMO-2I-EPS has the lowest perentage of outliers.Therefore also the perentages of outliers, studied aording to the altitude of DPCN stations, indiate thegood skill of COSMO-2I-EPS.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



7. Preditability and Ensemble Methods 69Seond veri�ation period: from 15th Otober to 15th November 2018In this seond period it has onsidered only the 24-hour total preipitation, the veri�ation is performed withthe rank historam.
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Figure 6: The rank histograms for COSMO-LEPS in blue and COSMO-2I-EPS in green, on the left for the�rst 24 hours of the foreast range, on the right for the seond 24 hours.The rank histogram is not a veri�ation method per se, but rather a diagnosti tool to evaluate the spreadof an ensemble. The underlying assumption is that the ensemble member foreasts are distributed so as todelineate ranges or �bins� of the predited variable suh that the probability of ourrene of the observationwithin eah bin is equal. For eah spei� foreast, the bins are determined by ranking the ensemble memberforeasts from lowest to highest. The interval between eah pair of ranked values forms a bin. If there are Nensemble members, then there will be N+1 bins. The outer bins, lowest and highest-valued, are open-ended.Rank histograms are prepared by determining whih of the ranked bins the observation falls into for eahase, and plotting a histrogram of the total ourrenes in eah bin, for the full veri�ation sample. Theassumption underlying the rank is that the probability that the observation will fall in eah bin is equal.If this is true, then over a large enough sample, the histogram should be �at or roughly so. Then one anonlude that on the average, the ensemble spread orretly represents the unertainty in the foreast. Also inthis ase the veri�ation method is the nearest grid point and the omparison is only between COSMO-LEPSand COSMO-2I-EPS, beause these systems have the same number of member (20 in 2018).The U-shape of the rank histograms (see Fig. 6) indiates the subdispersion of both ensemble systems, inpartiular COSMO-LEPS. This subdispersion is stronger in the last bin of the most intense preipitation andin partiular for COSMO-LEPS.Summary and OutlookThe present work aims to establish the performane of three ensemble systems with di�erent harateristis,but in partiular with a di�erent horizontal resolution. While ECMWF ENS and COSMO-LEPS run onan daily basis, COSMO-2I-EPS is still on a pre-operational phase, with a full operational implementationplanned towards the next months. Therefore, partiular attention has been paid to this new ensemble, espe-ially beause it provides new types of numerial modeling produts whih needs to be assessed and beausethe best performanes were expeted from it. A systemati omparison between the three ensemble systemswas undertaken during a �pilot period� from 20th to 27th June 2016. During this period, haraterised bypartiularly unstable weather situation over the Italian Peninsula, the performanes of the three systems wereompared in terms of 2-metre temperature and preipitation. The foreasts in terms of 2-metre temperatureand 6-hourly umulated preipitation were veri�ed against the Northern-Italy non-GTS network and the Na-tional Civil Protetion Department network respetively. The results for 2-metre temperature indiate theunder-dispersion issue for the di�erent ensemble systems, although it an be notied that the performaneobtained by COSMO-2I-EPS (and in general by the COSMO-based ensembles) is quite satisfatory.Rank Probability Sore and perentage of outliers were onsidered to evaluate the skill of the three ensemblesystems in terms of preipitation. In most ases, the sores indiate COSMO-2I-EPS having the best perfor-mane. In order to provide more insight on the obtained results and to assess the dependene of the soreson the altitude, it was deided to divide the stations of the National Civil Protetion Department into threeCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



7. Preditability and Ensemble Methods 71groups: plain, hill and mountain stations. With this division, it turns out that the performane of the systemstends to worsen with the altitude, also aentuating the diurnal yle. This happens beause it has rainedmore over mountain areas and during the afternoon. Anyway the sores obtained by COSMO-2I-EPS remainthe best in most ases. COSMO-2I-EPS ahive good results also in the veri�ation with rank histograms, forthe period from from 15th Otober to 15th November 2018. This work an be seen as a pilot study, there isno laim to onsider it omplete and exhaustive, but rather a starting point for further developments andinvestigations or a "modus operandi" for similar studies. In fat, the periods examined are too short to havesolid results from a statistial point of view. This would take a longer evaluation time, omparing the threeensembles for di�erent atmospheri phenomena and weather types. All the results shown in this work havebeen obtained with the veri�ation method of the nearest grid point. So a further idea for future studies maybe to use the method of boxes to alulate the probabilisti sores in other ases; it will be interesting to seeif the results will be better or worse than those obtained with the nearest grid point.Referenes[1℄ Buizza, 1997. Potential foreast skill of ensemble predition and spread and skill distributions of theECMWF Ensemble Predition Systems. Mon. Wea. Rev., 125, 99-119.[2℄ Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2005: A omparison of the ECMWF,MSC and NCEP global ensemble predition systems. Monthly Weather Review, 133, 1076-1097.[3℄ Gofa, F., Tzaferi, D. and Charantonis, T., 2010. Appliation and veri�ation of ECMWF produts.Hellenia National Meteorologial Servie (HNMS)[4℄ Ghelli, A., 2009. Observations and their importane in the veri�ation proess: View of the Joint Work-ing Group on Foreast Veri�ation Method Researh. ECMWF, Twelfth Workshop on MeteorologialOperational Systems, 2-6 November 2009[5℄ Montani, A., Capaldo, M., Cesari, D., Marsigli, C., Modigliani, U. and o-authors, 2003a. Operationallimited-area ensemble foreast based on the Lokal Modell. ECMWF Newsletter 98, 2-7. Available at:http://www.emwf.int/publiations/.[6℄ Montani, A., Marsigli, C., Nerozzi, F., Paagnella, T., Tibaldi S. and Buizza, R., 2003b. The Sover-ato �ood in Southern Italy: performane of global and limited-area ensemble foreasts. Nonlin. Pro.Geophys., 10, 261-274.[7℄ Montani, A., Cesari, D., Marsigli, C. and Paagnella, T., 2011. Seven years of ativity in �eld ofmesosale ensemble foreasting by the COSMO-LEPS system: main ahievements and open hallenges.Tellus, 63, 605-624.[8℄ Murphy, 1969. On the "Ranked Probability Sore". J. Appl. Meteor., 8, 988-989.[9℄ Shättler, Doms and Shra�, 2016. A Desription of the Nonhydrostati Regional COSMO-Model. PartVII: User Guide. (www.osmo-model.org).[10℄ Tibaldi, S., Paagnella, T., Marsigli, C., Montani, A. and Nerozzi, F., 2006. Limited area ensembleforeasting: the COSMO model. Preditability of Weather and Climate. Cambridge University Press,489-513.[11℄ Zhu, Y., 2005: Ensemble foreast: A new approah to unertainty and preditability, Advane in Atmo-spheri Sienes, 22, No. 6, 781-788.
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Influence of Perturbation Type on Results of EPS Forecasts of Surface

ElementsGrzegorz Dunie, Andrzej MazurInstitute of Meteorology and Water Management � National Researh Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland
1 IntrodutionAbstratThe results from researh on COSMO-EPS, arried out at IMWM, are presented. The operational EPS(Ensemble Predition System) set-up is based on perturbations of soil surfae-area index of the evaporatingfration of grid points over land. In the researh mode, six di�erent types of perturbation is additionallyapplied. Long-term evaluation results of di�erent methods of EPS-post-proessing is presented in the paper.As a general rule, using Arti�ial Neural Network (ANN) values of EPS mean are signi�antly loser toobservation of air temperature/dew point temperature/surfae pressure or wind speed than those omputedas deterministi foreast.IntrodutionExtensive tests onduted during the COTEKINO Priority Projet proved that small perturbations of seletedsoil parameter were su�ient to indue signi�ant hanges in the foreast of the state of atmosphere and toprovide qualitative seletion of a valid member of an ensemble(Dunie and Mazur,2014). Changes of _soil�*)had a signi�ant impat on values of air temperature, dew point temperature and relative humidity at 2m agl.,wind speed/diretion at 10m agl., and surfae spei� humidity (ibidem). Other approahes of perturbation(as presented in previous work) would result in di�erent foreast, expeting even a synergy while ombiningperturbation methods for the same run(s). The researh has been arried out for the entire year 2011. Forthe ANN training results from January to Otober have been set. Methods (approahes) have been tested onresults from November 2011. 4.

Figure 1: EPS operational on�guration (Dunie et al., 2016)doi:10.5676/dwd_pub/nwv/osmo-nl_19_104*)surfae-area index of the evaporating fration of gridpoints over landCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 73Table 1: Deterministi model(s) � soure of ICs/BCs for operational EPS ibidem)Model Grid size NxMxL Foreast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 13 7COSMO v. 5.01�* 380x405x50 78 2.8Foreasts of air temperature and dew point temperature at 2m agl., surfae pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/hart of EPS mean, spread, probabilities of thresholdexeedanes are prepared in the routine manner. Results in a raw form are subsequently stored for furtherresearh researh (e.g. skill-spread relation) and simultaneously alibrated.Arti�ial Neural Network(ANN) mean(s) in this researh have been ompared with diret results from "de-terministi" foreasts (DET). ANN in this resarh onsisted of 24 input neurons (20 members, geographialoordinates, foreast start and foreast hour; there were 5 neurons set in a single hidden layer, with hyperbolitangent aepted as the ativation funtion.The following perturbations were onsidered:a) _soil -perturbation of a parameter desribing evaporation from soil(desribed above);b) e�-oe� -perturbation of the olletion e�ieny oe�ient;) e�-_soil -perturbation of the olletion e�ieny oe�ient together with _soil;d) laf-pert-perturbation of the surfae temperature of the soil;e) laf-_soil -perturbation of soil surfae temperature in the set of initial onditions with _soil;f) laf-e� -perturbation of the soil surfae temperature (as in e) with the olletion e�ieny oe�ient(b);g) eps-all -perturbation of all the above quantities (�elds and parameters) at the same time;h) operational perturbation of _soil with a di�erent random number generator (Dunie et al., 2016),operational runs3 Results � omparison of results for di�erent methods of perturbations.
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8. Reports 74Table 2: Basi statistis for di�erent perturbation methods with ANN post-proessing, ompared with valuesfrom deterministi runs, as alulated for November, 2011 (ME � mean error, MAE � mean absolute error,RMSE-root-mean square error, MinE-minimum error, MaxE-maximum error)Means ME MAE RMSE MaxE MinEDew point_soil -0.11338 1.45981 1.99090 12.30946 -9.88111e�-oe� -0.01667 1.47110 2.00072 11.11471 -9.41829e�-_soil 0.04247 1.45814 1.98011 11.53134 -9.92467eps-all -0.00854 1.49234 2.02759 11.24309 -9.09813laf-pert -0.04460 1.46721 1.99155 10.89753 -9.27700laf-_soil 0.01080 1.51334 2.04447 10.83230 -8.87939laf-e� -0.05678 1.46489 1.99521 10.47621 -9.37223operational 0.02424 1.46355 1.98274 10.49569 -9.10767deterministi -0.40246 1.58561 2.18141 13.04700 -10.08800Air temp_soil 0.17387 1.77275 2.32496 10.93927 -15.88361e�-oe� -0.15550 1.77681 2.34730 11.16211 -16.14814e�-_soil -0.08983 1.76932 2.34525 10.54141 -16.63289eps-all 0.07055 1.77859 2.34857 10.31766 -15.89856laf-pert 0.09633 1.78876 2.34243 10.67038 -14.61441laf-_soil 0.06539 1.76116 2.31501 10.84628 -15.06645laf-e� -0.18840 1.77813 2.33403 10.50841 -15.01652operational -0.13666 1.78166 2.34402 10.80536 -15.59283deterministi 0.44751 1.90295 2.62627 11.77100 -12.86600Windspeed_soil 0.04309 1.17025 1.58737 9.72965 -9.05961e�-oe� -0.07475 1.17811 1.59937 9.64747 -9.06740e�-_soil 0.02018 1.16574 1.58048 9.74929 -9.87465eps-all 0.04844 1.16578 1.58195 9.74003 -6.55868laf-pert 0.10026 1.17006 1.58576 9.77432 -5.21126laf-_soil -0.04346 1.17756 1.60043 10.00780 -11.41867laf-e� -0.07655 1.17344 1.58327 9.63682 -7.45664operational -0.03980 1.17237 1.59618 9.70848 -10.99594deterministi -0.26905 1.30687 1.88147 12.76900 -3.03400Pressure_soil 0.00985 1.60175 2.08209 32.14813 -23.20300e�-oe� 0.06719 1.63273 2.10419 31.09039 -24.85364e�-_soil -0.13769 1.68544 2.20423 30.00128 -22.65503eps-all 0.01005 1.64700 2.14694 31.19647 -22.99243laf-pert -0.10553 1.65470 2.14979 30.91657 -23.75635laf-_soil -0.08059 1.64437 2.15423 30.03619 -23.26672laf-e� -0.12735 1.59559 2.08393 30.57135 -25.36975operational -0.01102 1.65513 2.15091 30.22253 -23.53040deterministi 1.03752 4.22822 8.11503 26.29303 -47.95404Green olor denotes best values,red � worst values
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Figure 2: Spatial distribution of air temperature at 2m: ANN (e�-_soil) mean (upper left) and skill (upperright), deterministi mean foreast (lower left) and skill (lower right).All avg. values for November 2011
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Figure 3: Spatial distribution of wind speed at 10m: ANN (e�-_soil) mean (upper left) and skill (upperright), deterministi mean foreast (lower left) and skill (lower right). All avg. values for November 2011
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Figure 4: Spatial distribution of surfae pressure: ANN (_soil) mean (upper left) and skill (upper right),deterministi mean foreast (lower left) and skill (lower right). All avg. values for November 2011

Figure 5: Spatial distribution of dew point temperature at 2m: ANN (e�-_soil) mean (upper left) and skill(upper right), deterministi mean foreast (lower left) and skill (lower right). All avg. values for November2011
COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 784 ConlusionsExept for few ases of min/max errors results of ANN postproessing gives evidently the best results interms of statisti evaluation in omparison to "deterministi" foreast. Keeping in mind arguments againstANN (ompliated pre- and post-proessing, need for big data sets and huge omputational resoures, longomputational time for training) one an say that this method, with ready-to-use dediated software withsoure odes (FORTRAN) is sophistiated yet elegant and intuitive onept.Improvement in preliminary ase study an be learly observed and foreasts are getting better and betterwith the extension of learning period, whih is a key reason to go on with ANN in an operational EPS.However, there was no e�et of synergy with ombining perturbation methods and objets. Yet, _soil aloneand with ombination with some other perturbation methods seemed to be the best as far as overall statistisis onerned (see Table 2 and Figures 2-5 ).The results in a poster form to be presented partially at ICCARUS in O�enbah, Germany, Marh 2019 andpartially at EGU General Assembly in Vienna, Austria, April 2019.Referenes[1℄ Dunie, G. and Mazur, A. (2014): COTEKINO Priority Projet � Results of Sensitivity Tests, COSMONewsletter 14, 106-113.[2℄ Dunie, G., Interewiz, W., Mazur, A. and Wyszogrodzki, A.(2016): Operational Setup of the COSMO-based, Time-lagged Ensemble Predition System at the Institute of Meteorology and Water Management� National Researh Institute. Met. Hydrol. Water Manage. (2017) vol. 5; (2): 43-51.[3℄ Mazur, A. and Dunie, G. (2017): SPRED PP ativities at IMWM-NRI. Presented at COSMO GM,Jerusalem, Israel.[4℄ Mazur, A., Dunie, G. and Interewiz, W. (2018): Introdutory ativities in PP APSU at IMWM-NRIand results of ANN post-proessing of EPS foreasts. Presented at COSMO GM, Sankt Petersburg,Russia.
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ANN post-processing of EPSAndrzej Mazur, Grzegorz DunieInstitute of Meteorology and Water Management � National Researh Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland

1 IntrodutionThe results from researh on COSMO-EPS, arried out at IMWM, are presented. The operational EPS set-up is based on perturbations of soil surfae-area index of the evaporating fration of grid points over land.Long-term evaluation results of di�erent methods of EPS-post-proessing. As a general rule, using Arti�ialNeural Network (ANN) values of EPS mean are signi�antly loser to observation of air temperature/dewpoint temperature or wind speed than those alulated as simple average or Multi-linear Mean. Extensivetests onduted during the COTEKINO Priority Projet proved that small perturbations of seleted soilparameter were su�ient to indue signi�ant hanges in the foreast of the state of atmosphere and to providequalitative seletion of a valid member of an ensemble (Dunie and Mazur, 2014). Changes of _soil*) had asigni�ant impat on values of air temperature, dew point temperature and relative humidity at 2m agl., windspeed/diretion at 10m agl., and surfae spei� humidity (ibidem). The usage of an idea of time-lagged initialand boundary onditions allowed obtaining a valid ensemble and using it e�iently in an operational mode.Further work is intended to fous on �tuning� ensemble performane and to provide quantitative quality sores.For this purpose the random number generator ombined with perturbations of initial soil surfae temperatureand the dependene of amplitude of perturbation on soil type will be implemented in the COSMO model.While the set of equally weighted time-lagged foreasts improve short-range foreasts, the further progressmay also be sought by adopting a regression approah to ompute set of weights for di�erent time-laggedensemble members. EPS runs operationally at IMWM sine January, 2016. It overs 4 runs/day, with 48hours foreasts, 20 members/4 groups (using Time-lagged Is/BCs; see Dunie G. et al. (2016); onf. Fig.1below). Amplitude of perturbation of _soil depends on type of soil (lay, sand, peat et). 5

Figure 1: EPS operational on�gurationdoi:10.5676/dwd_pub/nwv/osmo-nl_19_115*) surfae-area index of the evaporating fration of gridpoints over landCOSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 80Table 1: Deterministi model(s) � soure of ICs/BCs for operational EPS ibidem)Model Grid size NxMxL Foreast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 13 7COSMO v. 5.01�* 380x405x50 78 2.82 Some FormulasDetails of the deterministi models on�guration are as follows:Foreasts of air temperature and dew point temperature at 2m agl., surfae pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/hart of EPS mean, spread, probabilities of thresholdexeedane are prepared in the routine manner. Results are subsequently stored for further researh (e.g. skill-spread relation) Results of EPS foreasts are subsequently alibrated. Three basi methods of alibration wereexamined as shown in Fig.2 � simple arithmeti mean (SM), multilinear regression mean (MLR) and arti�ialneural network mean (ANN).

Figure 2: Ensemble alibration � Simple Mean (SM) vs. multilinear regression (MLR) mean vs. ANN mean
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8. Reports 813 Results � omparison of results for three methods of post-proessing.

Figure 3: Spatial distribution of dew point temp. at 2m: mean observations (upper left), simple mean (upperright), MLR mean (24 preditors, lower left) and ANN mean (24 input neurons, lower right). All avg. valuesfor April 2018.

Figure 4: Spatial distribution of wind speed at 10m: mean observations (upper left), simple mean (upperright), MLR mean (24 preditors, lower left) and ANN mean (24 input neurons, lower right). All avg. valuesfor April 2018.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 5: Spatial distribution of Mean Absolute Error (MAE) for dew point temp. at 2m, April 2018. Left:observations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.

Figure 6: Spatial distribution of Mean Absolute Error (MAE) for wind speed at 10m, April 2018. Left:observations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.

Figure 7: Spatial distribution of Mean Absolute Error (MAE) for air temp. at 2m, April 2018. Left: obser-vations vs. simple mean; middle: observations vs. MLR mean; right: observations vs. ANN mean.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 83Table 2: Basi statistis for di�erent post-proessing methods, as alulated for April, 2018 (ME � mean error,MAE � mean absolute error, RMSE � root-mean square error, MinE � minimum error, MaxE � maximumerror) Means ME MAE RMSE MinE MaxEDew pointSM 0.253 2.009 2.812 -12.4 15.1MLR -0.310 1.989 2.755 -12.3 14.8ANN -0.244 1.981 2.750 -11.2 14.8Air temp.SM 0.771 2.369 3.443 -14.600 18.100MLR 0.475 2.252 3.206 -14.500 16.600ANN 0.066 2.214 3.135 -13.600 15.500WindspeedSM -0.618 1.737 2.297 -13.6 13.6MLR 0.113 1.488 1.978 -7.8 13.2ANN -0.200 1.436 1.814 -6.1 13.2

Figure 8: Skill/spread relation for air temp. at 2m, April 2018.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 844 ConlusionsExept for single ase of mean error for windspeed results of ANN post-proessing gives evidently the bestresults in terms of statisti evaluation and skill-spread relation (see Fig. 7). Keeping in mind arguments againstANN (ompliated pre- and post-proessing, need for big data sets and huge omputational resoures, longomputational time for training) one an say that this method, with ready-to-use dediated software withsoure odes (FORTRAN) is sophistiated yet elegant and intuitive onept. Improvement in preliminaryase study an be learly observed and foreasts are getting better and better with the extension of learningperiod, whih is a key reason to go on with ANN in an operational EPS.Arti�ial Neural Network is linked to the DMO, to extend the learning period. In the operational mode 24preditors is set (values from twenty ensemble members + spatio-temporal oordinates). The system is set inan (quasi)operational mode (slight delay due to alulations). Results are olleted four times per day, so thestruture of ANN an be updated frequentlyThe results in a poster form were presented at 40th EWGLAM/25th SRNWPWorkshop in Salzburg, Austria,Otober 2018.Referenes[1℄ Dunie, G. and Mazur, A. (2014): COTEKINO Priority Projet � Results of Sensitivity Tests, COSMONewsletter, 14, 106-113.[2℄ Dunie, G., Interewiz, W., Mazur, A. and Wyszogrodzki, A. (2016): Operational Setup of the COSMO-based, Time-lagged Ensemble Predition System at the Institute of Meteorology and Water Management� National Researh Institute. Met. Hydrol. Water Manage. (2017) vol. 5; (2): 43-51.[3℄ Mazur, A. and Dunie, G. (2017): SPRED PP ativities at IMWM-NRI. Presented at COSMO GM,Jerusalem, Israel.[4℄ Mazur, A., Dunie, G. and Interewiz, W. (2018): Introdutory ativities in PP APSU at IMWM-NRIand results of ANN post-proessing of EPS foreasts. Presented at COSMO GM, Sankt Petersburg,Russia.
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Forecasts of Convective Phenomena Using EPS-based Computation of

Universal Tornadic IndexAndrzej MazurInstitute of Meteorology and Water Management � National Researh Institute, Warsaw, Poland 61Podlesna str., PL-01-673 Warsaw, Poland
AbstratThe results from researh on COSMO-EPS, arried out at IMWM, are presented. The operational EPS set-upis based on perturbations of soil surfae-area index of the evaporating fration of grid points over land. Usagea Universal Tornadi Index assoiated with the EPS foreasts system may be helpful in foreasting of severeonvetion phenomena. This idea was tested in ase studies and in long-term evaluation.1 IntrodutionA simple and e�ient method was proposed to produe reasonable number of valid ensemble members, takinginto onsideration prede�ned soil-related model parameters. Introdued method of obtaining ICs/BCs � time-lagged setup � is another important fator that an add a signi�ant inrement to ensemble spread. Thesefeatures were used to prepare a well-de�ned ensemble based on the perturbation of soil-related parameters, tobe utilized both in operational (foreasting) work and in diagnosti mode. A speial approah � using EPS-based foreasts for tornado foreasting � of diagnosti approah is presented here. Small perturbations ofseleted soil parameter were su�ient to indue signi�ant hanges in the foreast of the state of atmosphereand to provide qualitative seletion of a valid member of an ensemble (Dunie and Mazur, 2014). Changes of_soil�*) had a signi�ant impat on values of air temperature, dew point temperature and relative humidityat 2m agl., wind speed/diretion at 10m agl., and surfae spei� humidity (ibidem). The usage of an ideaof time-lagged initial and boundary onditions allowed obtaining a valid ensemble and using it e�iently inan operational mode. Further work is intended to fous on �tuning� ensemble performane and to providequantitative quality sores. For this purpose the random number generator ombined with perturbationsof initial soil surfae temperature and the dependene of amplitude of perturbation on soil type will beimplemented in the COSMO model.While the set of equally weighted time-lagged foreasts improve short-range foreasts, the further progress may also be sought by adopting a regression approah to ompute set ofweights for di�erent time-lagged ensemble members. EPS runs operationally at IMWM sine January, 2016.It overs 4 runs/day, with 48 hours foreasts, 20 members/4 groups (using Time-lagged ICs/BCs; see DunieG. et al. (2016); onf. Fig.1 below). Amplitude of perturbation of _soil depends on type of soil (lay, sand,peat et).

doi:10.5676/dwd_pub/nwv/osmo-nl_19_12COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 1: EPS operational on�guration (Dunie et al., 2016)
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8. Reports 87Table 1: Deterministi model(s) � soure of ICs/BCs for operational EPSModel Grid size NxMxL Foreast length(h) Resolution(km)ICON (DWD) 2949120 triangles 78 13COSMO v. 5.01 415x460x40 78 7COSMO v. 5.01*) 380x405x50 48 2.8*)time lagged ICs/BCs2 Details of the deterministi modelsDetails of the deterministi models on�guration are as follows:Foreasts of air temperature and dew point temperature at 2m agl., surfae pressure and windspeed at 10magl., as well as other �elds are available. As a result, plots/hart of EPS mean, spread, probabilities of thresholdexeedane are prepared in the routine manner. Results are subsequently stored for further researh (e.g. skill-spread relation). In this work a new index to predit severe onvetion phenomena (espeially tornadoes, butalso heavy thunderstorms, intensive preipitation episodes et.) was assessed. This index (alled UniversalTornadi Index, UTI) is in general based on a number of preditors related with a strong onvetion onditions,as follows:
UTI =

CAPE·SRH1km
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+ CAPE3km + SRH1km
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·
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·
AMR500

100whit:� CAPE being surfae based Convetive Available Potential Energy,� CAPE_3km-surfae based CAPE released below 3 km agl,� LCL -Surfae based lifting ondensation level height,� AMR_500-average mixing ratio below 500 m,both agl,� LLS -0-1 km wind shear,� DLS - 0-6 km wind shear (magnitude of vetor di�erene),� SRH_1km - 0-1 km storm relative heliity.Other onstrains applied are:- if SRH_1km<0,then SRH_1km =0;- if LCL>1500m or CAPE=0 or(onvetive preipitation amount <2mm/h),then UTI=0Detailed desription of the index and its limatology an be found in Taszarek and Kolendowiz (2013) orTaszarek et al., (2016).3 ResultsSingle ase, July 14th, 2012 (intensity peak 16:00 UTC). The event � a tornado that passed over the BoryTuholskie primeval forest � was atually a ombination of four tornadoes, with damage trak at a distaneof 60km, the total length of around 100km. Damaged was 105 buildings, tornado maximum intensity � F3(Fujita sale), 1 death, 10 injuries, felled 5 km2 of Bory Tuholskie.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 2: Left � damage trak in Bory Tuholskie forest due to tornado of 14 July 2012. Photography:Kaper Kowalski. Right: Lightning aptured by the lightning detetion network(www.blitzortung.org),0600 to 1800 UTC. Dashed line � radar-based time and position of the thunderstorm. Red line indiatetornado damage paths

Figure 3: UTI foreast, July 14th, 2012, 14:00 to 17:00 UTC. Left: 2.8km deterministi run, right: 2.8kmEPS-meanLong term evaluation � UTI EPS-based thunderstorm foreasts.Sine UTI uses many fators/indiators as preditors (espeially CAPE, storm relative heliity, onvetivepreipitation, wind shear et.) � it an be funtional in foreasting not only tornadoes, but other onvetionphenomena of severe intensity, like thunderstorms (observed with the Polish lightning detetion networkPERUN). This part was performed with the arhive data, starting from 2012. The results are shown in thefollowing �gures. Left panel present mean �ashrate, right � mean value of UTI for the period of interest.COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 89

Figure 4: Left � mean �ashrate (measurements), average values. Right � EPS-UTI foreasts, average values.Upper harts � year 2012, middle harts � year 2015, lower harts � period 2012-2015.
COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org
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Figure 5: Correlation oe�ient UTI vs. FR, onseutive values 2012-2015 (overall avg. 0.1). Best orretionattained for July 3rd, 2012, 03:00 UTC (heavy storm over entral and northern Poland).

Figure 6: Left � mean �ashrate (measurements). Right � EPS-UTI foreasts. July 3rd, 2012, 03:00 UTC4 ConlusionsA relatively simple method of foreasting extreme onvetive phenomena has been proposed. This methoduses Universal Tornadi Index as an indiator of the ourrene of a onvetive phenomenon. Sine it utilizesmany fators (CAPE, storm relative heliity, onvetive preipitation, wind shear et.) � it an be useful inforeasting not only tornadoes, but also thunderstorms or squalls. Appliation of EPS in CP sale based ontime-lagged ICs/BCs allows improving foreasts (espeially due to the removal of false alarms). The researhwas arried out using arhive data, starting from 2012. The noteworthy orrelation between signi�antlyhigher EPS-UTI values and ourrene of thunderstorms was established.Model foreasts with a spatial resolution of 2.8km and initial onditions � results of deterministi model witha resolution 7km � were used for the study. Additional �lters (preipitation amount, CAPE threshold valueet.) were used. The use of numerial foreasts of meteorologial model may be supportive of severe onvetivestorm predition. EPS-mean value of UTI is omparable with the ones alulated in a deterministi run(s),however signi�antly less amount of �noise signals� is observed. Thus, one an expet (in operational mode)derease of FAR/inrease of POD.Referenes[1℄ Albergel, C., de Rosnay, P., G. Balsamo, G., Isaksen, L., Munoz-Sabater, J., 2012: Soil Moisture Analysesat ECMWF: Evaluation Using Global Ground-Based In Situ Observations. J. Hydrometeor, 13, 1442-COSMO Newsletter No. 19: Otober 2019 www.osmo-model.org



8. Reports 911460.[2℄ Aligo, E. A., Gallus, W. A. and Segal, M., 2007: Summer Rainfall Foreast Spread in an EnsembleInitialized with Di�erent Soil Moisture Analyses. Wea. Foreasting, 22, 299-314.
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