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Abstract

Reducing arithmetic precision in a numerical weather prediction model, and thus reducing the number of bytes
required to store a floating point number, can be advantageous for an application such as COSMO both in
terms of runtime and memory consumption. But, since the COSMO model has been written and applied only
using double precision floating point numbers, reducing arithmetic precision requires careful consideration. In
this article, we present the modifications necessary to the COSMO model to reduce the arithmetic precision
of floating point numbers to single precision. Using concrete examples from the current code that did not
work in single precision, we illustrate critical algorithmic patterns that should receive special attention from
developers in order not to rely on double precision in the future. We present results from detailed tests as
well as a standard verification of the newly developed model version. Results indicate that the new version
exhibits the same forecast skill as the reference version, both in single and double precision mode. In single
precision, the runtime drops to ~ 60% and memory consumption is reduced considerably, as compared to the
double precision mode.

1. Introduction

Numerical Weather Prediction (NWP) models consume immense amounts of computer resources and, as a
consequence, electrical energy. Model development and application is thus constrained by both monetary and
technical limits. Considering the ever-increasing demand for computer resources, fueled by current trends
such as cloud-resolving modeling or ensemble predictions, techniques to make models faster and more energy
efficient are highly welcome.

One approach which promises a significant speedup is running models with reduced arithmetic precision.
Current computer hardware typically supports floating point computations in single precision (SP) and double
precision (DP). While it is still customary to use DP for NWP, reducing arithmetic precision to SP has
several advantages. First and foremost, less information has to be moved to the floating point unit of the
microprocessor in order to perform a computation. Second, microprocessors are typically capable of performing
more floating point operations per second (FLOPS) in reduced precision. Third, the memory consumption of
an application can be significantly reduced. Often, reducing the arithmetic precision of an application can be
achieved with relatively little changes to the code, as compared to other approaches such as code optimization
or porting to more efficient hardware such as GPUs. The latter often requires substantial code modifications
or even partial rewrites. Several other weather and climate models are already capable of running in SP [5, 3]
or are in the process of being adapted to SP [2].

In this article, we present the steps which are required to adapt the COSMO model to run in SP. In the
new code version, the working precision (WP) of the model can be chosen using a single switch. By means of
extensive validation, we show that our adapted code in DP can replace the previous code, and that it’s skill
in SP should be sufficient for many applications. We confirm and build upon findings of preliminary work,
which showed that not only the dynamical core [4], but the whole model can be run in SP (Despraz and
Fuhrer, pers. comm.) without significant loss in forecast quality, and with only few changes to the code.

2. Background

2.1. Floating Point Numbers and Precision

Floating point numbers (FPNs) on computers are stored in binary form. They consist of three parts: the sign
(plus/minus), the exponent (order of magnitude), and the mantissa (significant digits). On most common
hardware architectures, the representation of FPNs follows a standard [1] on most current microprocessors.
This standard defines how FPNs are stored in binary form and how operations between two FPNs have to
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FIGURE 1: Binary representation of DP and SP floats on computers using the example of 1.1.
Each square corresponds to one bit, grey standing for 0 and green for 1. The number of bits of all
three components of FPNs is indicated. They add up to 64 and 32 bits for DP and SP, respectively.
In DP (top), 1.1 is accurate to 16 decimal digits behind the decimal point, but only to 7 decimal
digits in SP (center). If 1.1 in SP is assigned to a DP variable (bottom), only the first 23 bits of
the mantissa carry information (red border). All bits outside this area are 0, which reduces the
accuracy to 7 decimal digits behind the decimal point. Source: http: // www. binaryconvert. com

be implemented. The magnitude and precision ranges of FPNs in DP and SP are listed in Table 1. How
FPNs are stored in binary form is illustrated in Figure 1, using the number 1.1 as an example. The top and
center panels show how the example FPN is stored in binary form in DP and SP, respectively. If converted
from binary to decimal form, the number of significant decimal digits after the floating point is 16 and 7,
respectively, determined by the size in bits of the mantissa. The digits beyond (marked red) may seem to be
random, but they are not. They are the deterministic product of the conversion from binary to decimal. This
is illustrated in the bottom panel, where 1.1 in SP resolution is shown in DP. The difference between the
FPNs resulting from the conversion (i.e. 1.1_double-REAL(1.1_single,double)) stems from the bits which
are 1 (green) in the top, but 0 (grey) in the bottom panel.

precision ‘ total size max min  digits precision
single 32 bit 103 10738 7.2 10~7
double 64 bit  103%8 10730  16.0 1016

TABLE 1: Magnitude and precision ranges of SP and DP FPNs according to the IEEE 754 standard.
The maximum and minimum magnitudes are determined by the size of the exponent, the number
of digits by the mantissa. The precision of FPNs on the order of 1.0 is determined by the number
of digits.
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2.2. Precision in Fortran

In Fortran, FPNs are represented by the basic type real. Typically reals are SP by default, although this may
depend on the specific compiler used. To ensure a program runs in a certain precision, the kind of every real
variable as well as of every FPN in the program has to be declared explicitly, which determines the number
of bytes used to store a real. It is set with an integer parameter. Often, it directly corresponds to the size
a FPN in bytes, i.e. 4 and 8 for SP and DP, respectively. As this is platform-dependent, however, intrinsic
routines are provided to obtain the correct values. The kind parameter used in COSMO is called ireals®.
How it is used to set the precision of variables, of FPNs, as well as in type conversions is illustrated with the
following line of code. A real variable is defined and initialized to the sum of a FPN and an integer variable.

REAL (KIND=ireals) :: var = 3.5_ireals + REAL(intvar,ireals)

If the '_ireals’ following a FPN (3.5 in this case) is omitted, it is typically defined in SP by default. This
introduces arbitrary inaccuracies of relative order of magnitude O (10_7) as illustrated in Figure 1.

2.3. Epsilons

Epsilons are small numbers used for various numerical purposes in a code. They are used to account for
inaccuracies resulting from the limited ability of computers to represent FPNs. Furthermore, they are used
as tolerances in both numerical and physical contexts. Three examples of popular applications of epsilons are
the following.

1. In divisions to avoid division by zero (DBZ), e.g. x = y / MAX(z,eps)®.
2. In comparisons of FPNs, e.g. IF (ABS(a-b) < eps) equal = .TRUE.).

3. In iterations as abort criteria, e.g.
IF (MAXVAL(ABS(p_new(:,:,:)-p_old(:,:,:))) < eps_abort) EXIT.

Two basic kinds of epsilons can be distinguished. On the one hand, there are those epsilons the magnitude
of which is only determined by the precision. On the other hand, many epsilons additionally have some
meaning in an algorithm or physical context, which puts additional constraints on the magnitude. These two
basic kinds will henceforth be referred to as precision-limited and algorithmic epsilons. Note that algorithmic
epsilons are precision-limited, too, as, after all, all FPNs are. This means that the subsequently described
limitations apply to them as well, but precision-limited will refer exclusively to those epsilons upon which no
further limitations of algorithmic or physical nature are imposed.

Precision-limited epsilons can be further classified according to the factor which determines their minimal
magnitude. To which group a specific epsilon belongs depends on it’s context of use. Either the limiting factor
is the minimal order of magnitude (range-limited) or the maximal number of decimal digits (digit-limited)
that can be resolved, i.e. the exponent or mantissa, respectively. Range-limited epsilons are used to avoid
floating point exceptions (FPEs) in operations where zero is not allowed as an operand, such as divisions or
logarithms. Digit-limited epsilons, on the other hand, are used to account for inaccuracies in comparisons of
FPNs.

The epsilon in the first of the three examples above is range-limited, and that in the second is digit-limited.
Both are precision-limited epsilons. That in the third example is also digit-limited, but probably has some
additional algorithmic constraints. However the distinction between precision-limited and algorithmic epsilons
is not always straight-forward, and the context has to be taken into account in all but the most obvious cases.
The epsilon in example two, for instance, might need to be bigger in certain algorithms with unusually large
error growth, which would make it algorithmic. Also, using the minimal representable positive number larger
than zero in the first example, may lead to erroneous results later on in the computation if the algorithm
has not been designed carefully (for example by limiting the maximum result of the division to a physically
reasonable value). However, it is most important to make this distinction in obvious cases where it is easy to
draw the line, such as if the epsilon carries a physical unit.

Range-limited epsilons can theoretically be as small as 10737 and 1073%7 in SP and DP, respectively. However
the magnitude of the dividend must be taken into account to avoid arithmetic overflow, e.g. if it is on the

31t is currently planned to unify the constant used to denote the WP across the COSMO, ICON, and
3DVAR codes. Tt is likely that in the future ireals will be renamed to wp which has the advantage of brevity.
“Note that this is only valid if z is strictly positive.
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order of 107 the epsilon must be at least of magnitude 1072° and 1073%. As these values are still minuscule
in a NWP model such as COSMO, it is sufficient to simply chose a value a couple of orders of magnitudes
(e.g. 10%) above the absolute minimum without further considerations, even in SP.

Digit-limited epsilons, on the other hand, must have a minimal magnitude — relative to 1.0 — of 10~7 and
107'% in SP and DP, respectively. Taking into account the order of magnitude of the involved numbers is
much more important than in the range-limited case, especially in SP, since 1077 is not far from physical
significance in many cases, for example for trace gas concentrations. Simply increasing the epsilon by some
orders of magnitude to account for the magnitude of the other involved numbers is thus not a good solution.
Rather the relative character of digit-limited epsilons should be accounted for in the way they are used in the
formula, i.e. by not inserting them by addition (a < b + eps), but by multiplication (a < (1.0 + eps)*b).
This much more robust implementation ensures that the epsilon does not vanish when large numbers are
involved. Note that such a relative-epsilon implementation is more difficult when trying to determine the
equality of two FPNs, e.g. ABS(a-b) < eps. Making the epsilon relative in this case would result for instance
in ABS(a-b) < ABS(a)*eps, which is already quite complicated.

2.4. Numerical Errors

Numerical error growth can be minimized if certain formulas are written in a numerically robust form. What
should be avoided wherever possible are subtractions of very similar numbers, as well as raising numbers to
high powers. This is usually not a major concern in DP. In SP, however, error growth from such subtractions
can be substantial, and high powers may even provoke arithmetic under- or overflow, leading to model crashes.

A good example to illustrate precision loss in subtractions of similar numbers is the computation of a small
difference between two temperatures, e.g. 274.00000 - 273.15000 = 0.85000777. In this case, three signif-
icant digits are immediately lost, as indicated by the three trailing digits in the result, which are subject to
rounding error. An epsilon inserted by addition (which, unfortunately, is the usual practice) in such a formula
in SP must be at least of absolute magnitude 1075 in order not to completely vanish. This has to be considered
when using epsilons in such cases by either increasing their magnitude or inserting them by multiplication.
This is a common problem with temperature and pressure, which can easily be avoided if deviations from
some reference are used instead of absolute values.

3. Changes to the Code

The COSMO model has been developed for and tested in DP. Therefore, there are many places in the code
where something goes wrong in SP that works perfectly fine in DP. This has required us to conduct a variety of
changes to the code to run COSMO in SP. These modifications can be broadly grouped into three categories.

e Obtain a pure DP code by adding all missing ireals declarations.

e Conduct various local changes.

— Add epsilons to divisions to prevent FPEs by DBZ.
— Adapt epsilons which might vanish in SP to be precision-dependent.

— Optimize formulas that might cause numeric overflow or other problems.

e Implement mixed precision (MP) form of radiation.

3.1. Ireals declarations

The real kind parameter ireals in COSMO, which determines the WP, is set to DP by default. However, a
large number of ireals declarations are missing in the current code, which introduces many SP reals into
the model, thereby lowering the precision. The first step is therefore to add all these missing declarations in
order to obtain a code running in pure DP. Because of the large number of missing declarations (see Table
2), we have written a script which automatically finds and declares all undeclared real variables and FPNs.

The consequence of the additional ireals declaration is that the model results of the new code differ from those
of the old code (numerically, not meteorologically). This difference is due to the removal of the inaccuracies
introduced by the undeclared reals, which corresponds to a perturbation of relative order of magnitude
(@] (10_7). Validation of this pure DP code by means of comparing results against simulations with random
perturbations of similar magnitude is provided in Section 4.1.1. It is worth noting that these changes are the
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only ones we have introduced which cause different model results in DP. All other code changes are neutral
in DP and only have a significant effect in SP.

nf nff*  nold del del% del%*
src_* 60 43 6276 4299  68.5 81.9
data_* | 27 4 791 1141 144.3  967.0
rest 44 25 3026 682  22.5 26.6
total | 133 72 10093 6122  60.7 76.2

nf total number of files del number of _ireals added (delta)
nf* number of changed files del% relative delta (all files)
nold initial number of _ireals del%* relative delta (only changed files)

TABLE 2: Statistics of occurrences of ireals declarations before and after our modifications. The
source files are sorted into three groups. Overall,we have added roughly 60% additional declarations.

3.2. Local Modifications

A number of local modifications are necessary to run COSMO in SP. They are listed in detail in Table 3.
Those which are critical for the model not to crash in SP are emphasized.

3.2.1. Critical Epsilons

Epsilons are either range- or digit-limited, as established in Section 2.3. To account for this, we have introduced
the two precision-dependent parameters repsilon and rprecision. They are defined in data_ parameters.f90 as
shown below. Their magnitudes in SP/DP are 1073°/1073% and 1077/107'6, respectively.

The values chosen for epsilons in COSMO are typically between repsilon and rprecision in SP, for instance
107'% or 10™%. Thus they are big enough for range-limited cases, but might vanish in digit-limited contexts.
Therefore, in range-limited cases, i.e. mostly in divisions, problems occurred in places where there had not
been an epsilon previously, and we have had to add epsilons, predominantly in divisions where the divisor
vanishes in SP. In digit-limited cases, on the other hand, an epsilon was usually already present in places where
problems in SP occured, but with a too small magnitude. Thus, we have usually had to identify the respective
epsilon parameter and limit is's magnitude to rprecision in SP using the MAX() function. Additionally, in
some places, instead of a parameter a hard-coded epsilon has been used, e.g. 1073° usually in divisions. We
have replaced those by epsilon parameters. The chosen magnitude of these hard-coded epsilons has usually
not been critical in SP, except for one case where 107 °° was used.

In most cases, epsilon-related problems in SP manifested themselves in model crashes or deadlocks, i.e. were
rather easy to recognize and track down. In one case where an epsilon vanished in SP, however, the implications
were much more subtle, namely only impacted the model physics, and the problem was accordingly much
more difficult to identify and resolve. This case is described in detail in Section 4.2.1.

data_ parameters.f90

161  REAL (KIND=ireals), PARAMETER :: &
162 repsilon = 1.0E8_ireals*TINY(1.0_ireals), &
163 !

164 ! Very small number near zero.

165 ! To be used mainly to avoid division by zero, e.g.

166 ! eps_div = repsilon ; © =y / MAX(z,eps_div) ! for z >= 0.
167 ! Note that the factor 1.0E-8 has been chosen rather

168 ! arbitrarily to get some distance to zero to account

169 ! for the magnitude of the dividend, which might be 1.0E5
170 ! in case of pressure, for instance.

171 !

172
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File

Modifications

data_obs_lib_cosmo

limit epsy to rprecision in SP

data_ soil

new epsilons:

o eps_div - avoid DBZ

o eps_soil - threshold for computations

o eps_temp - check if temperature below zero

data_turbulence

replace epsi by eps=repsilon

near surface

remove zepsi, use repsilon instead

numeric__utilities

o remove local epsilons (zeps)
o introduce module-wide variable eps_div instead

numeric_ utilities  rk

o remove zeps
o new epsilons eps_div and eps_adv

organize data

add definition of epsy

pp_ utilities

o rename eps to eps_conv
o reformulation m2s**4/m3s**3 —m2s*(m2s/m3s) **3

Src__ gscp

o replace zeps by repsilon where used as small number
o reformulation m2s**4/m3s**3 —m2s* (m2s/m3s) **3

src_lheat nudge

replace epsilon/epsy by epsy from data_obs_lib_ cosmo.f90

src_obs_cdfin_print

use epsy from data_ obs_lib_ cosmo.f90

src_obs_cdfin_ util

use epsy from data_ obs_lib_ cosmo.f90

src_obs_rad

add ireals to REAL()

src_ output replace EPS by repsilon
src_setup add output RUNNING IN DOUBLE/SINGLE PRECISION
src_soil replace zepsi by eps_soil from data_ soil.f90 or by repsilon

src_soil multlay

replace zepsi by eps_* from data_ soil

turbulence tran

replace epsi by eps (both from data_ turbulence.f90)

utilities

o replace hard-coded 1E-50 by repsilon
o overload check_field_NaNs() for SP/DP

TABLE 3: Detailed overview over conducted all changes, except those related to ireals
declarations and the mixed precision (MP) radiation. Critical modifications are emphasized.
These are necessary for the code to compile and run in SP, whereas the others can be
considered code cleanup. Note that a number of epsilons added to divisions to avoid DBZ
are not listed explicitly in this table.

data_ parameters.f90

172 rprecision =
173

174

175

176

178

179

180

181

182 L
183 !

184 !

185 L
186 !

187 -
188 !

189 !

10.0_ireals** (-PRECISION(1.0_ireals))

!
! Precision of 1.0 in additions/subtractions.
! To be used for instance to check equality of reals, e.g.
! eps_fpn = rprecision ; IF (4BS(a-b) < eps_fpn) equal=.true.,
177 ! or to increase the magnitude of an epsilon only <n SP, e.g.
! epsilon = HAX(1.0E-8_ireals,rpreciston) when 1E-8 is too small
! but the wvalue should stay the same in DP.
!
!

Adpprozimate magnitudes:

| repsilon [ rprecision

e o S,
Sp | 1.0E-30 | 1.0E-7
R, N,

DP | 1.0E-300 | 1.0E-16
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3.2.2. Non-Critical Epsilons

Many of the epsilon-related changes listed in Table 3 are not strictly necessary to run COSMO in SP, but we
have taken the opportunity to do some code cleanup, as the use of epsilons in the model is far from consistent,
which is no surprise considering the large number of different people that have contributed it. Whereas in
some parts of the code, such as the assimilation, centrally defined epsilons used by multiple source modules
already exist, in other parts epsilons are defined very locally, i.e. on the subroutine level. In some cases the
same epsilon parameter has been defined many times per file. This might be appropriate in special cases, such
as utility routines, which should be as self-contained as possible. In most cases, however, one single definition
of an epsilon per file is a much better and cleaner solution.

Soil Model

In the soil model (src_ s0il.f90, src_soil_multlay.f90) the same epsilon zepsi has been used for various pur-
poses. We have replaced zepsi by the three new variables eps_soil, eps_div, and eps_temp Their definitions
and descriptions are shown in the following code excerpt.

data_ s0il.f90

249  REAL (KIND=ireals), PARAMETER :: &

250

251 ! dvoid division by zero, e.g. © =y / NiX(z,eps_div).

2562 eps_div = repsilon , &

2563

254 ! Threshold for warious computations in soil model (former zepsi).

255 eps_soil = 1.0E-6_ireals , &

256

257 ! Small value to check if temperatures have exceeded a fized threshold

2568 ! such as the freezing point. In double precision (16 decimal digits)

2569 ! a value as small value such as 1.0E-6 can be used. In single

260 ! precision (6-7 decimal digits), however, the value has to be larger

261 ! in order not to vanish. The current formulation is save for

262 ! temperatures up to 500K.

263 eps_temp = MAX(1.0E-6_ireals,500.0_ireals*EPSILON(1.0_ireals))
Assimilation

In the assimilation, there is one general-purpose epsilon variable called epsy, which is centrally defined in
data_obs_lib_ cosmo.f90 and used in the files listed below.

data_obs_lib_cosmo.f90

87  REAL (KIND=ireals) , PARAMETER :: &

88 epsy = 1.0E-8_ireals ,&! commonly used very small value > 0
e organize assimilation e src_obs_cdfin_gps e src_obs_proc_aof
e src_correl cutoff e src_obs_cdfin_mult e src_obs_proc_cdf
e src_gather info e src_obs_cdfin_org e src_obs_ processing
e src_lheat nudge e src_obs_cdfin_print e src_obs_proc_util
e src_mult local e src_obs_cdfin_sing e src_obs_use_org
e src_mult_spread e src_obs_cdfin_util e src_sfcana
e src_nudging e src_obs_cdfout feedobs e src_sing local
e src_obs_cdfin_blk e src_obs_print_vof e src_sing spread
e src_obs_cdfin_comhead e src_obs_proc_air
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As the vast number of files suggests, epsy is used in a large variety of contexts, both precision-limited and
algorithmic, and even physical. It’s magnitude of 107 is a well thought-out compromise between all those
use cases. While this works well in DP, we have run into problems in SP. For example, in one place, epsy is
used in an abort criterion of an iteration. As it is digit-limited in this context, the minimal relative magnitude
required is 107 7. Because epsy is smaller (10~®), it vanishes and the loop never terminates. We have fixed
this by limiting epsy to rprecision in SP in-place.

src__gather _info.f90

4168 ELSEIF ( MAX( zwtsitl,zwtslt2 ) &

4169 >= MAX( zwtsOtl,zwtsOt2 )+MAX(epsy,rprecision)) THEN
4172 ELSEIF (( MAX( zwtslitl,zwtslt2 ) &

4173 >= MAX( zwtsOtl,zwtsOt2 )-MAX(epsy,rprecision)) &
4174 .AND. (zwtslt2 > zwtsOt2+epsy)) THEN

There are, however, many similar places in the code where epsy is not used in a robust way and might
thus potentially cause problems. Globally limiting epsy to rprecision in SP is not a solution, because epsy
is also used in physical contexts. Therefore, increasing it’s magnitude in SP would have undesired impacts
on the model physics. The many different contexts in which epsy is used, along with it’s vast number of
occurrences, suggest it might be advisable to replace it by several purpose-specific epsilons, analogous to our
epsilon implementation in the soil model. However, such a clean implementation which would be robust in
SP has not been done yet. We have only limited epsy to rprecision in-place in some critical cases, such as
the one shown above, as a preliminary solution.

3.2.3. Optimized Formulas

We have conducted some reformulations of critical formulas to increase their accuracy and stability in SP,
i.e. to avoid large error growth and model crashes. In addition, we have tested two reformulations for the
numerical error they introduce in SP.

Critical Reformulations

There is one formula in the code which consitently caused the model to crash in SP in it’s previous formulation
(commented out in the code below). It occurs once in pp_ utilities.f90 and twice in src_ gsep.f90.

pp_ utilities.f90

3094 ! zn0s = 13.50_ireals * m2s*%j / m3s**3
3095 znOs = 13.50_ireals * m2s*(m2s/m3s)**3

The values of m2s and m3s are on the order of 10~% and 10~ 1°, respectively, plus/minus 2 orders of magnitude,
i.e. both are already very small numbers before they are raised to higher powers. However as they are, they
become minuscule, and m3s**3 might even vanish in SP when it becomes < 1073%, which causes FPEs due
to DBZ. A simple reordering of the terms of the formula resolves the problem. In the new formulation the
dividend and the divisor are both moderately small instead of minuscule numbers, as is the result of the
division, and the third power does not cause any more issues.

Potential Precision Loss

Two potentially critical formulations in src¢_ radiation.f90 have been identified in previous work (Despraz and
Fuhrer, pers. comm.). Both can be formulated in a different way, which might improve numerical accuracy.
The first formula involves a sine and cosine of a variable. In the original code, the cosine is not computed
directly from the operand, but from the sine, which saves an extra cosine array. However, computing it directly
from the operand, without the intermediate sine, might be numerically more precise.
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[sincos] err1 = v1-vr (abs)

[sincos] err2 = v2-vr (abs)

[sincos] err3 = v2-v1 (abs)
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FIGURE 2: Numerical error in SP
(left) and cos, = cos (z) (center), as well as the difference between them (right). The difference

compared to cos, = cos(x) in DP of cos, =

corresponds to the gain in precision when substituting cos, =
top panels show the absolute error, the bottom panels the relative error.

src_radiation.f90

20

1 — sin (z)® by cos. = cos (z). The

SQRT(1._ireals-zsinphi*#2)

SIN (rlattot(i,js))
C0S (rlattot(i,js))

1006 zsinphi =

1007 zcosphi =

1008 ELSE

1009 zsinphi = SIN(rlat(i,j) )
1010 zcosphi = COS(rlat(i,j) )
1011 ENDIF

1012 I! zcosphi =

2140 DO i =1, ie_tot
2141 zsinphi (i) =
2142 zcosphi (i) =
2143 ENDDO

SIN (degrad*(90.0_ireals-ABS(pollat)))
C0S (degrad*(90.0_ireals-ABS(pollat)))

The second formula involves two formulations of the form (1 — a”), which can be reformulated to (1 — a) (1 + a).
Eliminating the square might be favorable in terms of numerical precision.

src_radiation.f90

5959
5960
5961
5962

1!

!

palf(j1,42) =

ztau*(1.0_ireals-(zrho**2)) &

*(1.0_2reals/(1.0_ireals-(zrho*+2)*(ztau*+2)))

palf(j1,j2) =

ztau* (zrho-1.0_ireals) *(zrho+1.0_ireals) &

/((zrho*ztau-1.0_ireals)*(zrho*ztau+1.0_ireals))

To assess the gain in precision in SP of the supposedly better formulations, we have computed the error of
both formulations in SP relative to the better supposedly formulation in DP for all possible values. The errors
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FIGURE 3: As in Figure 2, but for 1 — a? (left) and (1 +a) (1 — a)(center) in SP relative to
(1 +a) (1 —a)in DP. In this case, both formulations are totally equivalent with respect to precision.

in SP relative to DP, as well as their difference, are shown in Figures 2 and 3. The left and center panels show
the error in SP of the old and new formulations, respectively. The difference between them in the right panels
corresponds to the gain of using the supposedly better formulation. In case of the first formula, this gain is
significant, which is why we have replaced the old formulation in the code. In case of the second formula, on
the other hand, there is no gain, i.e. both formulations perform equally well in SP.

3.3. Mixed Precision Radiation

The only part of the code where substantial modifications are necessary to run it in SP is the radiation, which
in it’s current form has to run partly in DP regardless of the model’s WP. It should be noted that we have
not proven the algorithms in the radiation code to strictly require DP but rather have simply not succeeded
in finding the critical modifications required to enable SP also for the radiation code.

The subroutine structure of src_ radiation.f90 is shown in Figure 4. The subroutines always running in DP
are highlighted in yellow, those that are critical in orange. Figure 5 shows the dataflux between the main
radiation subroutines, as well as that between them and the radiation data module, again with the critical
and the DP subroutines highlighted. The dataflux by argument arrays at the interface of the WP and the
DP part of the code (i.e. the calls to fesft() and opt_th/so()) is organized in such a way that the precision
conversion of the IN-arrays is handled by the calling, and that of the OUT- and INOUT-arrays by the called
subroutines®.

The critical subroutines that only work in DP are the inversion routines inv_th/so(), along with their sub-
subroutines coe_th/so(). Although fesft() works fine in SP, we have included it in the DP-part of the
radiation because inv_th/so() are called so often by fesft(). If the conversion to DP and back were done
on each of these calls, the model would be slowed down considerably. The second pair of subroutines called
by fesft() are opt_th/so(). We have chosen to run them in WP despite their calling subroutine being
run in DP, although this requires conversion of all argument arrays to WP and back on all calls. These
conversions, however, do not effect the runtime as those on calls to inv_th/so() would, and the gain in terms
of code simplicity is substantial. All arrays from data_radiation.f90, except for cobi, coali, cobti, coai,
planck, solant, zketypa, and zteref, are only used in opt_th/so()®. Running opt_th/so() makes any DP

®Note that conversion is only done if necessary, i.e. if the model is run in SP. If the WP is DP, direct
assignment is sufficient and the conversion is omitted.
8They are also used in init_radiation(), but this subroutine is always run in WP anyway.
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FILE src_radiation.f90
I—MODULE src_radiation
|: SUBROUTINE init_radiation
SUBROUTINE organize_radiation

L SUBROUTINE fesft

double
precision

critical

— SUBROUTINE opt_th
L— SUBROUTINE opt_so

- SUBROUTINE aerdis
L SUBROUTINE calc_rad_corrections

FIGURE 4: Structure of the source file src_ radiation.f90. The subroutines are nested according to
how they call each other, the called subroutines indented with respect to the caller. The orange
box encloses the subroutines that are critical with respect to precision, i.e. need to be run in DP
regardless of the WP. The DP part has been expanded to what is enclosed by the yellow box due
to performance considerations.

—> working precision Imorg —> subroutine arguments
—> double precision - = =>» module include
RADIATION opEEooooogbcoooa0n
h 4 2

——_-
- -
Phe *,’
2 ’
’

organize_radiation - - data_radiation

. II ¥
'l l’ T "*’ T T
I L DOUBLE PRECISION " J’ :
1 N ¢ v \r\'r // - .
' \) fosf redl :
' / estt -""‘\) N
b.)W( 3 -X\X A) \ Opt_th
%k only cobi, coali, etc.

FIGURE 5: Data flux between the subroutines of the MP radiation. The DP part is enclosed by
the yellow box, and the critical subroutines that only work in DP are emphasized by orange stripes.
Solid arrows show data flux as array arguments, and dashed arrows show data exchange through
the shared data module. Data flux happens in WP along blue arrows and in DP along red arrows.
The precision transformation of INOUT- and OUT-arrays is handled by the called routine, wherease
the handling of IN-arrays is left to the caller. Module data is only used by WP-subroutines, with
the exception of the arrays cobi, coali, cobti, coai, planck, solant, zketypa, and zteref. The
precision transformation of these arrays is handled by the DP subroutines that use them.

declarations of arrays in data_ radiation.f90 unnecessary and thus restricts the changes to src_ radiation.f90.
The three exceptions are handled by the DP subroutines using them.
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FIGURE 6: Results of the perturbation sensitivity experiments for temperature (top), pressure
deviation (center), and specific humidity (bottom). The left panels show the absolute fields of OR,
those in the center the deviations PR-OR, and those on the right DP-ORon the lowermost model
level after 72h. The deviations PR-OR are comparable in magnitude to those of DP-OR.

4. Experiments and Results

To asses the performance of the new code, we have chosen a two-step approach. First, we conduct sensitivity
experiments to test it from a numerical point of view. Second, we test it’s performance against observations.

4.1. Sensitivity Experiments (COSMO-T7)

To validate the new code from a numerical standpoint, we have conducted two major sets of sensitivity
experiments. In a first step, we validate it in DP by simulating the effect of the additional ireals declarations.
In a second step, we assess its performance in SP. The aim of these sensitivity experiments is to get a general
feeling for the magnitude of the deviations between various code versions in a realistic setup, without aiming
for meteorological representativeness. We use data from a period from last summer (June 17-19 2013). The
model setup corresponds to MeteoSwiss operational COSMO-7 setup with a lead time of 72h.

4.1.1. Perturbation Ezxperiments

The new code in DP, subsequently referred to as pP, will replace the original code (OR). Therefore, it is of
high importance to make sure it yields results of equal quality. There are apparent differences between the
results of the new and the original code. Considering the code changes we have carried out, those differences
should be dominated by the effect of the correct type declaration of previously erroneously typed FPNs
documented in Section 3.1. These may be seen as a random perturbation of relative magnitude O (1077). To
assess the impact of such perturbations on the model physics, we have developed a new code (PR) based on
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FIGURE 7: Results of the SP sensitivity experiments. Shown is temperature on the lowermost
model level. Shown are the absolute field of or (left), the deviations DP-OR (center), SP-OR
(right). The lead times are 12h (top), 24h (middle), and 72h (bottom). The error growth is faster in
SP than in DP with respect to OR, but the difference between DP-OR and SP-OR is already much
smaller after 24h, and is gone after 72h, when they are of comparable magnitude.

the reference code, where all prognostic fields are randomly perturbed at every time step by a factor on the
order of 1077, We run our test case with the three code versions OR, bP, and PR and compare the differences
after 72h. Figure 6 shows the results of these experiments for temperature (top), pressure deviation (center),
and specific humidity (bottom). Shown are the absolute fields of oRr (left) as well as the differences PR-OR
(center) and DP-OR (right) on the lowermost model level after 72h. The difference plots show perturbations
of comparable magnitude for all three variables. These results confirms that the observed differences between
DP and OR are mainly the result of the additional type declarations.

4.1.2. Single Precision Experiments

To assess the quality of the simulations with the new code in SP (sP), we run our test case with OR, DP, and
sp and compare the fields after 12h, 24h, and 72h. The results are shown in Figures 7 and 8 for temperature
and pressure deviation, respectively, after 12h (top), 24h (center), and 72h (bottom). After 12h, the deviations
of sP from both DP (not shown) and OR are clearly larger than DP-OR. After 72h, however, the deviations
between all model versions are of similar magnitude. No systematic biases are observed. We can conclude that
perturbations due to numerical truncation errors seem to be slightly larger in sp, but physical error growth
rapidly dominates. We have not found any indications that sP does not perform as well as DP in any of the
experiments or variables analyzed.

4.2. Verification (COSMO-2)

The test which a NWP model eventually has to pass is verification against observations. From a numerical
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FIGURE 9: Verification against observations (black line) of or (blue), DP (red), and sP (green,
orange, purple) line). Shown is the mean 2m temperature for forecast day 5. The model forecoasts
differ from the observations, but not at all from each other.

point of view, this test is far less restrictive than the sensitivity experiments presented in the previous section,
as it allows for much larger deviations from the reference simulation. The verification runs are much more
meteorologically representative, though, as a larger number of different situations occur during two months
than during 72h, especially as both summer and winter are tested. Therefore it is much more likely for
bugs in SP to show up in these runs than in those with the previous setup. The verification is done in the
COSMO-2 setup. Simulations with lead time +120h are started every 24h during one month in both summer
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FIGURE 10: Verification against observations (black) of the code with the winter bug in DP
(green) and SP (red, orange, purple). Shown are mean dew point temperature (top) and absolute
temperature (bottom) for forecast day 5. The two periods where sp differs significantly from ppP
are emphasized by red circles. These differences have been caused by a bug in the soil model related
to the melting of snow.

(August 2012) and winter (December 2012) and the results statistically compared to ground observations (up
to +120h) and soundings (up to +72h).

The results of the sP and DP simulations are indistinguishable in most of the graphical products generated
by the standard verification package. As an example, Figure 9 shows a time series of temperature on forecast
day five. The forecasts (colored) are clearly distinguishable from the observations (black), however not from
each other. We can conclude from the results that all code version (OR, DP, sP) perform equally well and
are meteorologically not distinguishable.

4.2.1. The Winter Bug

In contrast to the final version, the first working sP code yielded ambivalent verification results. In summer,
the performance of sP was comparable to that of the other codes. In winter, however, it was clearly inferior.
Time series of absolute and dew point temperature showed significant deviations of sp from DP and OR, as
shown in Figure 10 with the respective periods emphasized. Plots of the fields during these periods revealed
strong temperature anomalies which quickly grew to large size by advection, with the source regions fixed
in space, as shown in Figure 11 (top) for temperature at +96h (left) and +120h (right). On first sight the
anomalies seemed to be spatially related to topography in some way. Investigation of various fields, however,
eventually hinted towards differences in snow cover, as the source regions of the anomalies corresponded to
the margins of snow covered regions. This led us to inspect the soil model code. We eventually identified the
bug in sre_ soil_multlay.f90. It had been caused by an epsilon used to check whether a temperature has a
certain minimal distance to the freezing point. We have replaced the epsilon variable zepsi by eps_temp in
the critical places, as illustrated by the following code excerpt. The magnitude we have chosen for eps_temp
is save up to temperatures of 500K.
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FIGURE 11: Difference in temperature between SP and DP with (top) and without (bottom) the
winter bug after 96h (left) and 120h (right). (Top) The anomalies start to grow in specific places
such as NW of Switzerland roughly parallel to the Jura mountains and along the Danube river
valley, and from there grow by NE-ward advections. (Bottom) With the winter bug patch, the large
deviations have disappeared, and only small, noisy signals over the alpine region remain.

src_soil_multlay.f90

427 REAL (KIND=ireals ), PARAMETER :: &

428 ! zepst = 1.0E-6_ireals , § ! security constant

429 eps_temp = MAX(1.0E-6_ireals,500.0_ireals*EPSILON(1.0_ireals))
3560 ! IF(t_so(%,j,kso,nnew).LT. (t0_melt-zepsi)) THEN

3561 IF(t_so(i,j,kso,nnew) .LT. (tO_melt-eps_temp)) THEN

3562 zaa = g*zpsis(i,j)/1lh_f

This is a digit-limited case, i.e., the minimal relative epsilon in SP is 10~ 7. The epsilon of magnitude 10~°
thus seems to be big enough at first sight. However, three significant digits are lost because of the order of
magnitude of the temperatures (cf. Section 2.4), which increases the minimal magnitude of the epsilon by
10®. zepsi therefore vanished in SP, introducing a hard-to-find bug. Replacing it by a new epsilon with a
sufficiently large magnitude in SP solved the problem. The temperature fields from a model run with this
patch are shown in Figure 11 (bottom). A comparison to the top panel shows that the large deviations have
vanished, and that only a noisy signal of very localized deviations spread over the Alps remains, reminiscent
of the deviations observed in the sensitivity experiments.
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4.2.2. Timings

The major benefit of running the COSMO model in SP is a significant reduction in runtime. The mean
runtime statistics with various model versions running on a Cray XE6 with AMD Magny-Cours processors
are summarized in Table 4. Switching from DP to SP reduces runtime by almost 40%. This is substantial, as
for example for an ensemble forecast the number of members could be increased by almost 70% on a given
hardware.

oR | pp | sp | sp; | spy
100.0% | 102.0% | 60.2% | 56.2% | 55.9%

TABLE 4: Mean runtimes of all sensitivity experiments relative to OR. SP; and SP; are SP with
aggressive optimization at compilation (both without strict IEEE conformance, and sP; additionally
with less accurate library functions). The runtime of the most aggressively optimized code drops
below 56%, i.e. it is almost twice as fast than the reference.

5. Discussion

5.1. Caveats

We have only tested the model configurations most important for MeteoSwiss. While this should cover the
main parts of the model, we must emphasize that testing is required before using it in SP. It is in the user’s
responsibility to make sure his configuration of choice works in SP, especially if less common parts of the
code are to be run. Critical in this respect is the assimilation due to the unresolved epsilon issue presented
in Section 3.2.2.

The synthetic satellite image package RTTOV7 does not work in SP. This is why we have written wrapper
subroutines for all RTTOV7 subroutines used in COSMO. They convert the input arguments from WP to
DP, call RTTOVT in DP, and convert back the output arguments.

5.2. Epsilon Recommendations

In this article, we have presented several epsilon-related pitfalls and some often-made mistakes in COSMO.
To help avoid such problems in the future, some of which are critical to run the model in SP, we have compiled
a few recommendation.

Use purpose-specific epsilon-parameters. Try to avoid multi-purpose epsilon parameters the magnitude
of which is a compromise between various use cases. We recommend to consider the use of at least three
distinct epsilon parameters.

e eps_div: Range-limited epsilon to avoid division by zero (DBZ).
e eps_fpn: Digit-limited epsilon for FPN comparisons.

e eps_777: Algorithmic epsilon(s) for all other purposes.

Insert digit-limited epsilons by multiplication, not by addition. Digit-limited epsilons are those the
magnitude of which, relative to other involved numbers, is the important factor. This is predominantly the
case in comparisons of FPNs. Inserting such epsilons by multiplication (a < (1.0 + eps)*b) considers this
relative nature and is much more robust than the usual insertion by addition (a < b + eps).

Define epsilon parameters neither too locally, nor to globally. Neither should they be redefined in
every subroutine in a file, nor should only a single epsilon be used throughout the whole model. A good
compromise is usually one definition per file/module, or, if there is one, in a data module, which might be
shared by multiple source modules. Do not hardcode the values of epsilons, but use the newly introduced
precision-dependent parameters repsilon and rprecision to define range- and digit-limited epsilons, respec-
tively.

Name epsilon parameters in a way that reflects their purpose. Especially algorithmic epsilons should
be marked as such in order for them not to be confused with precision-limited epsilons, e.g. eps_soil instead
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of a plain epsilon. Also clearly state the purpose of an epsilon parameter in a detailed comment next to it’s
definition.

Be aware of rounding error. Think about rounding error when writing new code and be aware of users
running the COSMO model in reduced precision. Test your code in reduced arithmetic precision (single
precision), if possible. If it runs and validates, it is highly likely to work correctly in higher precision arithmetic
(double precision).

5.3. Summary and Conclusions

In this article, we have presented the modifications necessary to run the COSMO model in single precision
(SP) instead of double precision (DP), and how this modified version of COSMO performs in both DP and
SP. Three types of modifications are necessary. In a first step, all real type declarations (ireals) currently
missing in the code are added to obtain a model running purely in DP. These are the changes which alter
the results of DP-runs of the model (in a numerical sense). In a second step, various local modifications
are introduced. These are mainly related to epsilons, i.e. additional epsilons to prevent model crashes in SP,
or working precision-dependent modifications of the magnitude of some epsilons. For the latter purpose, we
have introduced two precision-dependent parameters. Furthermore, a few formulas need to be reformulated
to a numerically more precise form. The third step towards SP is a mixed precision implementation of the
radiation, which in it’s current form does not work in SP. A substantial part of the radiation is therefore
always run in DP.

We have validated the code in two steps. First, sensitivity experiments have shown that the differences
between the new code in DP and the reference code can be explained by the addition of the missing real kind
declarations, and that, despite slightly faster error growth, the differences between the new code in both SP
and DP from the reference do not show any systematic biases and are of the same order of magnitude for
longer lead times. Second, validation against observations has shown that the forecast quality is unaffected
by the switch from DP to SP. The gain of the switch to SP is a reduction of the model runtime to roughly
60% accompanied by a significant reduction of required memory.

Running COSMO with reduced precision should be a good choice for many applications. However, we must
emphasize that our tests of the model in SP have been far from exhaustive. There might still be places in the
code where problems occur in SP that have yet to be discovered. The elaborate documentation of the changes
and problems we have presented in this article may serve as a guideline to cope with future problems with
either previously untested or new code in SP.
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