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1 Introdu
tion

At very high resolution the use of dense and highly frequent observations be
ome 
ru
ial in assimilation

systems. In the proposed variational approa
h the retrieval of temperature and humidity pro�les from radar

derived surfa
e rain rate is performed �rstly, employing two linearized parameterizations of large-s
ale 
on-

densation and 
onve
tion originally developed for the ECMWF model. The obtained pro�les are then used

as �pseudo� observations into the nudging s
heme of the high resolution COSMO model.

The aim of this work is to test if the developed framework outperforms the 
urrently running latent heat

nudging (LHN hereafter) s
heme whi
h was spe
i�
ally designed for the assimilation of radar rain rates.

One of the main reason for investing in this type of s
heme is the rapidly de
rease of the positive impa
t

of radar data when using the LHN as progressing into the fore
ast as do
umented in Stephan et al. [8℄. As

suggested in this paper, a possible 
ause for this la
k of persisten
e is the weak 
oupling between the LHN

temperature adjustments and the model dynami
. The LHN e�e
tively a
ts only res
aling the temperature

pro�les with an adjustment in the humidity �eld whi
h is not 
onsistent with the 
loud s
heme predi
tion.

1D-Var algorithm is built instead on a physi
ally based operator whi
h reprodu
es all of the pro
esses that

take pla
e in the 
loud and then should be able to verti
ally re-distribute in a 
oherent way the heat released

by the rain formation pro
ess.

To assess the quality of this approa
h full model integrations with and without the assimilation of the re-

trieved pro�les are �nally used to quantify the impa
t of rain rate assimilation in improving the fore
asted

pre
ipitation events.

2 1D-Var theory

In variational data assimilation, the goal is to �nd the optimal model state, the analysis, x

a

, that simultane-

ously minimizes the distan
e to the observations, y

0

, and a ba
kground model state, x

b

, usually 
oming from

a previous short-range fore
ast. When the ba
kground and observation errors are un
orrelated and have a

Gaussian distribution, then the maximum likelihood estimator of the state ve
tor, x, is the minimum of the

following 
ost fun
tion
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1

2

(x� x

b
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where H is the operator simulating the observed data from the model variable x, R is the observation error

matrix whi
h in
ludes measurement errors and representativeness errors, in
luding errors in H, and B is the

ba
kground error 
ovarian
e matrix of the state x

b

. The supers
ripts �1 and T denote inverse and transpose

matri
es, respe
tively.

Under the hypothesis of linearity for the observation operator (i.e. H(x) = H(x

b

) +H(x� x

b

)) the optimal

analysed state 
an then be found by solving rJ(x) = 0 where

rJ(x) = B

�1

(x� x

b

) +H

T

R

�1

(H(x)� y) (2)

whi
h leads to the expression for the analysis

x
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b
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; K is the Kalman gain matrix, and A is the analysis

error 
ovarian
e matrix.

If the analysis is performed independently for ea
h atmospheri
 
olumn at the lo
ation of the observed quan-

tities, the variational te
hnique is said to be one dimensional (1D-Var) and the dimension of x redu
es to the

number of model levels times the number of 
ontrol variables, thereby simplifying the minimization pro
ess.

In this study the model state x 
ontains verti
al pro�les of temperature and spe
i�
 humidity and surfa
e
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pressure (i.e. x

b

= (T; q; P

s

)) derived from the regional non-hydrostati
 fore
ast model COSMO. The obser-

vation ve
tor y 
ontains the surfa
e rain rate estimation from the radar network and is therefore a s
alar.

H is the diagnosti
 moist pro
ess model whi
h 
onverts temperature and humidity in
rements into rain rate

in
rements. Tangent-linear and adjoint versions of H are available in order to avoid the ex
essive 
omputa-

tional 
ost of a minimization based on �nite-di�eren
e Ja
obians.

The moist physi
s parameterizations used in this work are an adapted version of 
odes initially developed at

ECMWF for the assimilation of global-s
ale satellite rainy mi
rowave radian
es [1℄ and of radar rain rates

over the U.S.A. [5, 6℄. They 
onsist of two linearized parameterization of large-s
ale 
ondensation [10℄ and


onve
tion [4℄ whose sensitivity to input perturbations is more linear than that of [9℄ parameterization. This

ensures a smoother behaviour of the minimization and avoids ex
essive in
rements that may 
ause 
onver-

gen
e problems [1℄. The simulated surfa
e rain rate therefore 
omprises both 
onve
tive (RR


onv

) and large

s
ale (RR

strat

) 
ontributions.

Large-s
ale pre
ipitation, RR

strat

, is diagnosed from the grid-mean amount of 
loud 
ondensate, q




, as:

RR
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= q
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where q


rit




(set to 0.5 kg kg

�1

) is the 
riti
al value of the in-
loud water 
ontent at whi
h pre
ipitation

generation starts and 


0

is the 
onversion fa
tor (equal to 4.167�10

�4

s

�1

).

Finally, the 1D-Var minimization 
ore �nds the solution x

a

through the minimization of J(x).

3 Experiments setup

To formulate the pro
edure in a 
omputationally light way and to be sure that some hypotheses underlaying

the variational assimilation are veri�ed, some topi
s are examined in details.

Firstly the 1D-Var algorithm is not en
losed in the COSMO 
ode. This means that to make use of it the

assimilation 
y
le needs to be doubled. Fields from a �rst COSMO nudging 
y
le are extra
ted every 15

minutes to feed the 1D-Var s
heme with verti
al pro�les to start minimization. Then retrieved pro�les in

output are nudged by repeating the �rst assimilation 
y
le. The major problem asso
iated to this o�-line

appli
ation is that the retrieval of the analysed pro�les of humidity and temperature are not updated during

the 12 hours of the assimilation 
y
le. To over
ome this di�
ulty and, hen
e, to mitigate the e�e
t due to

the use of old pro�les, the assimilation 
y
le is divided into 4 interval de�ning a framework similar to the one

of the Rapid Update Cy
le (Figure 1).

Figure 1: 1D-Var+nudging framework.

The se
ond point of interest regards the data thinning.

The use of data with very high spatial and temporal resolution should guarantee improvements in the initial


ondition knowledge. Nevertheless, Liu and Rabier [3℄ showed how high density observations with 
orrelated

errors 
an produ
e a degradation of the analysis be
ause of the potential spreading of error in 
orrelated

neighboring pixels. The most intuitive and 
ommonly used thinning method is to redu
e the amount of sele
ted

observations in prede�ned areas or at spe
i�ed intervals [2℄. Moreover, in our spe
i�
 
ase the amount of data,


oming from the italian network managed by the National Civil Prote
tion Department, over the sele
ted
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domain is very large (57491 points every 15 minutes). The use of all the available observations generates AOFs

so big to 
ause the killing of fore
ast runs by the system be
ause of memory problems. As a �rst attempt,

one observation every 5 grid points in both dire
tions was taken, but, due to the poor results in fore
asted

pre
ipitation �elds the thinning pro
edure proposed by Lopez [7℄ has been 
hosen. As a result, only those

points for whi
h �rst guess and observed rain rates are greater than zero are used in the 1D-Var s
heme.

Figure 2: Regular data thinning (left) and suggested Lopez thinning (right) of pre
ipitation �eld.

It is evident from Figure 2 how this two thinning methods are di�erent in terms of number of points and

stru
tures in input to the 1D-Var minimization s
heme.

The third topi
 is the bias 
orre
tion.

The variational approa
h works in a statisti
ally optimal way if observations and model errors are unbiased.

Physi
s implemented in the forward operator, whi
h is a simpli�ed version of the 
loud s
heme implemented

in the ECMWF fore
ast model, is di�erent from the a
tual one implemented into the COSMO model. This

means that, given a set of temperature and humidity pro�les, pre
ipitation �elds generated by the 
loud model

diverge from those produ
ed by the COSMO model. The di�eren
es between the linearized 
loud model and

COSMO have been 
ompared by means of their diagnosed surfa
e rain rate. In parti
ular strong rain rates

are not produ
ed and the mean rainfall �eld is weak and di�use (Figure 3) even taking note of the fa
t

pre
ipitation is not determined only by the �physi
al� balan
e of the total water 
ontained in a 1D 
olumn

but it also depends on dynami
al driven pro
esses.

Figure 3: Mean surfa
e rain rate for COSMO (left) and 
loud (right) model 
al
ulated during the 12 hours

assimilation 
y
le starting at 00 UTC of the 29

th

of July 2010.

At �rst the bias 
orre
tion was determined from the distribution of observed and simulated mean rainfall �elds

and it was applied to those observed pre
ipitation rates for whi
h there was an overestimation/underestimation


ompared to 
loud model values. In this way the 
orre
tion fa
tor was evaluated a posteriori only for 
ase

studies. But, due to the di�
ulty in dedu
ing this 
orre
tion fa
tor in a straightforward way not only for 
ase

studies, the idea was to 
hange some parameters (su
h as 
onve
tive 
loud 
over, auto
onversion times
ale

of large 
loud 
ondensate to pre
ipitation and auto
onversion rate of 
onve
tive 
loud water to 
onve
tive

pre
ipitation) trying to diminishing the spread e�e
t observed in Figure 3 and to generate stronger rain rates.

Mean rainfall �elds following from di�erent parameterizations are shown in Figure 4.
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Figure 4: Mean rainfall �elds obtained with the standard (left) and 
onve
tive (right) parameterization.

Data are from the 12 hours assimilation 
y
le starting at 00 UTC of the 26

th

of September 2012

3 Case studies and results veri�
ation

To test the proposed methodology some 
ase studies were 
hosen with two prerequisites to be ful�lled:

� presen
e of 
onve
tive stru
tures (short-lived and small-s
ale stru
tures) in order to take advantage

from 1 km resolution observations;

� high resolution COSMO model failure in fore
asted pre
ipitation in the operational 
on�guration.

These requirements are demanding and limit the resear
h of 
ases mainly in the summer season with a sharp

restri
tion of the whole possible dataset.

For all of the three 
ase studies presented, simulation runs 
onsist of an assimilation and a fore
ast 
y
le both

12 hours long. A �rst veri�
ation is made by 
omparing qualitatively a

umulated pre
ipitation �elds from

the assimilation and the fore
ast 
y
le. The impa
t is assessed against the operational run, used as a 
ontrol

run, in whi
h only 
onventional observations are assimilated through nudging s
heme, and a run with LHN.

Then out
omes are veri�ed quantitatively by means of the areal mean of a

umulated pre
ipitation over a

sele
ted domain. The area of veri�
ation, shaded in blue in Figure 5, is 
entered over the Northern Italy.

Considered values are:

� 12 h a

umulated pre
ipitation in the assimilation 
y
le;

� hourly a

umulated pre
ipitation in the fore
ast 
y
le up to 12 hours.

Figure 5: Sele
ted domain used for the veri�
ation of results.

The �rst 
ase study o

urred during the Hymex Spe
ial Observation Period (SOP). The goal of the experiment

is to resolve the underestimation of fore
asted pre
ipitation over Liguria and on the Apennines between Tus-


any and Emilia-Romagna region. For this instan
e, the two di�erent 
on�gurations of the 1D-Var are tested.

A

umulated rainfall �elds at the end of the assimilation 
y
le (Figure 6) display small modi�
ations due to

the 
hange in parameterization parameters. Over the Alps the pre
ipitation is a bit more widespread with an

intensi�
ation of the 
onve
tive 
ore when radar observed pro�les are assimilated. Over the Liguria region,
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Figure 6: A

umulated rainfall �elds over the assimilation 
y
le starting at 00 UTC of the 26

th

of September

2012 obtained with the standard (left) and 
onve
tive (right) 1D-Var 
on�guration

an attenuation of pre
ipitation 
an be re
ognized over the west stru
tures, while there is an intensi�
ation in

the east dire
tion with the splitting in two parts of the 
onve
tive nu
leus.

Hen
e all of the runs are 
ompared by means of a

umulated pre
ipitation �elds.

Figure 7: A

umulated rainfall �elds at the end of the assimilation 
y
le for rain gauges and radar (top

left), for 
ontrol run (top right), for LHN run (bottom left) and for 1D-Var+nudging run (bottom right).

In the upper left panel of Figure 7 a

umulated pre
ipitation measured by rain gauges (diamonds) is displayed

over the same �eld retrieved by the radar network (shaded area). These are observations that are used for

the qualitative veri�
ation of output �elds. Control run (upper right side) 
orre
tly predi
ts the pattern of

pre
ipitation �eld even if there is an overestimation over the Tyrrhenian sea (orange 
ir
le), and an under-

estimation over Apennines (red 
ir
les). LHN run (lower left panel) improves results de
reasing pre
ipitation

over the sea, but does not reprodu
e highest rain rates over the Apennines. 1D-Var+nudging run (lower right

panel), instead, predi
ts in a wrong way the rainfall �elds with a general underestimation. The overestimation
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over the Alps 
annot be veri�ed due to the la
k of rain gauges and the probable blindness of radar in that

region.

The 
omparison of a

umulated rainfall over the fore
ast 
y
le does not show great di�eren
es among the

3 runs (Figure 8). All of the runs miss the pre
ipitation over Liguria and over Apennines between Tus
any

and Emilia-Romagna where an improvement of the fore
asted �elds are expe
ted (pink 
ir
les). Instead, runs

with the assimilation of radar observations better predi
t pre
ipitation over Northeastern Italy where there

was an overestimation in the 
ontrol run.

Figure 8: A

umulated rainfall �elds at the end of fore
ast 
y
le for rain gauges and radar (top left), for


ontrol run (top right), for LHN run (bottom left) and for 1D-Var+nudging run (bottom right).

In the areal mean pre
ipitation graph (Figure 9) all of the model runs start with a very low mean pre
ip-

itation with respe
t to the observed one (blue line). The two di�erent 1D-Var parameterizations (standard


on�guration in yellow, 
onve
tive one in red) give quite the same results and have a positive trend towards

observations. In the assimilation 
y
le (on the left) LHN (pink line) improves with respe
t to the 
ontrol run.

In the fore
ast 
y
le, 
ontrol and LHN runs are slightly di�erent and in the �rst three hours they are both

better than 1D-Var+nudging run. 1D-var seems to go better between the 4

th

and the 5

th

hour. Behind this

time all runs are slightly di�erent. Observation information is substantially lost. At the end of fore
ast period,

pre
ipitation is 
learly underestimated.

The se
ond 
ase study starts at the 00 UTC of 21

th

of July 2012. Rainfall patterns both during assimilation and

fore
ast are quite the same. The greatest di�eren
e is in the amount of pre
ipitation. During the assimilation


y
le (Figure 10) the 
ontrol run overestimates all of the �eld, the overestimate of LHN is lo
alized only over

Northeastern Italy while, as settled before, 1D-Var presents a general underestimation. In the fore
ast (Figure

11) all of the runs miss the pre
ipitation in the areas eviden
ed by red 
ir
les. Control and LHN runs display

a very strong 
onve
tive 
ore not observed (pink 
ir
le), while over the same area 1D-Var+nudging run is


ompletely dry. Surprisingly 1D-Var+nudging run gives more intense pre
ipitation with respe
t to the other

integrations.

The 
hart of Figure 12 shows very low pre
ipitation values. In this 
ase the best estimates are from 1D-

Var+nudging run, while for the other runs there is a 
ommon overestimation. In the �rst hours the fore
ast

runs are too wet with respe
t to the observations and they have a similar trend whi
h does not �t the observed

one.
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Figure 9: Areal mean pre
ipitation in fun
tion of time for the assimilation (left) and fore
ast (right) 
y
le

for the di�erent runs against observation (blue line) for the 26

th

of September 2012 
ase study.

Figure 10: A

umulated rainfall �elds at the end of the assimilation 
y
le for rain gauges and radar (top

left), for 
ontrol run (top right), for LHN run (bottom left) and for 1D-Var+nudging run (bottom right).

For the last 
ase study only quantitative results are presented due to the small di�eren
es in fore
asted

patterns (Figure 13). From the quantitative point of view, in the assimilation 
y
le what 
an be re
ognized

is that LHN and 
ontrol runs have the same trend of observations even if the overestimation of the LHN is

greater than the one of the 
ontrol run. The 1D-Var+nudging run performs better in the �rst 9 hours and

then maintains its tenden
y by underestimating pre
ipitation over the last hours. In the fore
ast 
y
le, as

expe
ted, the run starting from the 1D-Var+nudging analysis starts dryer than the others, whi
h are too wet.

All of the three fore
asts lose the peak in the observed pre
ipitation at 18 UTC. However, as seen before and

as a 
ommon result, 
an be observed that in the fore
ast 
y
le the in�uen
e of assimilated observations is


ompletely loss after few hours. Moreover, tenden
ies of fore
asted pre
ipitation are not able to follow the

great 
hanges in the observations.

From these 
ase studies, it was expe
ted that assimilation of 1D-Var derived pro�les should trigger some

instability and should produ
e greater amount of pre
ipitation mainly be
ause only points where �rst guess

and observations are greater than zero. Due to the small 
hanges in the fore
asted rainfall �elds, and due to a
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Figure 11: A

umulated rainfall �elds at the end of fore
ast 
y
le for rain gauges and radar (top left), for


ontrol run (top right), for LHN run (bottom left) and for 1D-Var+nudging run (bottom right).

Figure 12: Areal mean pre
ipitation in fun
tion of time for the assimilation (left) and fore
ast (right) 
y
le

for the di�erent runs against observation (blue line) for the 21

th

of July 2012 
ase study.

general drying e�e
t asso
iated to the assimilation of 1D-Var retrieved pro�les, a ba
kward analysis starting

from the 1D-Var algorithm was performed.

First investigation is made examining all of the pro�les that 
ome out from the 1D-Var s
heme. Statisti
ally

the 70% of inputs 
onverges providing temperature and humidity pro�les to be nudged in COSMO. For the

rest of the pro�les the minimization of the 
ost fun
tion fails and points are dis
arded. A more detailed

analysis is made over this sample. A dire
t 
omparison between observed radar rain rates and 1D-Var derived

rain rates (Figure 14) shows how the minimization fails for the most part of points for whi
h pre
ipitation

is moderate/heavy. Hen
e the information 
oming from points whi
h should mainly 
ontribute in produ
ing

rainfall is 
ompletely lost. The 
hange of 1D-Var 
on�guration is 
apable to in
rease the number of points

asso
iated to higher pre
ipitation, but the strongest 
onve
tive 
ore stru
tures are to a large extent la
king.
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Figure 13: Areal mean pre
ipitation in fun
tion of time for the assimilation (left) and fore
ast (right) 
y
le

for the di�erent runs against observation (blue line) for the 6

th

of July 2012 
ase study.

(a) (b) (
)

Figure 14: (a) Observed radar rain rate for the 26

th

of September 2012; (b) Output from 1D-Var s
heme

for the standard 
on�guraztion; (
) Output from 1D-Var s
heme for the 
onve
tive 
on�guration.

4 Summary and Outlook

In latest years di�erent attempts were made in order to understand how and how mu
h the assimilation of

radar data through the 1D-Var+nudging te
hnique a�e
ts the pre
ipitation fore
ast.

Produ
ts were veri�ed subje
tively and obje
tively examining 12 hours a

umulated pre
ipitation. Despite


hanges, results show that LHN s
heme outperforms the proposed methodology. These unsatisfa
tory results

are mainly due to two di�erent reasons:

� the moist physi
s implemented in the 1D-Var di�ers from the one of the COSMO model;

� the use of a linearized moist physi
s that has been designed at 
oarse resolutions is not appropriate to

represent intense pre
ipitation events by very high resolution models.

These 
on
lusions imply that this methodology is not suitable for the assimilation with the COSMO model

of high density rain rate estimates based on radar data.
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