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1 Introduction

We report on the development and testing of a turbulence kinetic energy – scalar variance
(TKESV) mixing scheme, and its implementation into the COSMO model. A summary
of results obtained within the framework of the COSMO Priority Project UTCS is given,
including a brief outline of the TKESV scheme, a discussion of the scheme performance
in various clear and cloudy boundary-layer regimes as revealed by off-line single-column
tests, details of the implementation of the new scheme into COSMO, and some results from
numerical experiments with the full-fledged COSMO model. Future challenges are briefly
discussed.

In what follows, standard notation is used, where t is the time, xi are the space co-ordinates,
and ui are the velocity components (the subscript “3” refers to the vertical direction). The
angle brackets denote a (grid-box) mean quantity, and a prime denotes a fluctuation about
the mean.

2 Outline of the TKESV scheme

A turbulence kinetic energy – scalar variance mixing scheme for the COSMO model is de-
veloped. The scheme is formulated in terms of two scalars that are approximately conserved
for phase changes in the absence of precipitation. These are the total water specific humidity
qt and the liquid water potential temperature θl. The TKESV scheme carries prognostic
transport equations for the turbulence kinetic energy (TKE), 1
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determined through the algebraic diagnostic expressions obtained by neglecting the time-
rate-of-change and the triple correlations terms in the respective transport equations. Notice
that
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and 〈q′tθ′l〉 actually characterize the potential energy of fluctuating fields, i.e.
the turbulence potential energy.

A one-dimensional transport equation for the covariance of two generic scalars a and b reads
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where ǫab = (κa + κb)
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is the molecular destruction (dissipation) rate of the co-

variance 〈a′b′〉, and κa and κb are the molecular diffusivities for the quantities a and b,
respectively. The transport equations for the variances of qt and θl and for their covariance
are obtained from Eq. (1) by setting a = b = qt, a = b = θl, and a = qt and b = θl,
respectively.

The turbulent transport terms in the scalar (co-)variance equations, i.e. the divergence of the
velocity-scalar triple correlations as given by the third term on the right-hand side of Eq. (1),
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are parameterized through advanced “diffusion+advection” formulations that account for
the skewed nature of convective motions [12]. The scalar skewness is obtained from its own
transport equation where closure assumptions for the unknown terms are formulated with
due regard for non-Gaussianity of fluctuating fields [5, 6]. The turbulent transport term in the
TKE equation (the divergence of the velocity-velocity triple correlation and the pressure-
velocity correlation) is parameterized through a down-gradient diffusion formulation. The
pressure scrambling terms in the Reynolds-stress and scalar-flux equations are parameterized
with due regard for turbulence anisotropy. The dissipation terms in the TKE and in the scalar
(co-)variance equations are parameterized through relaxation approximations in terms of
dissipation time scales. The various time scales, viz., the dissipation time scales in the TKE
and scalar (co)-variance equations and the return-to-isotropy time scales in the Reynolds-
stress and scalar-flux equations, are set proportional to each other and are expressed in terms
of turbulence length scale and the TKE. The formulation for the turbulence length scale
accounts for the effect of static stability. A statistical cloud scheme is used to parameterize
the effect of sub-grid scale (SGS) condensation (cloudiness) on the buoyancy production
of TKE. A Gaussian scheme [20] modified to account, in a very approximate way, for the
skewness of temperature and humidity fields [2] is utilized.

A detailed description of the TKESV scheme will be given in subsequent publications. An
extended discussion of turbulence parameterization schemes used in numerical models of the
atmosphere is given in [11].

It should be emphasized that within the framework of the current COSMO-model turbu-
lence scheme [17, 18, 1], the time-rate-of-change and the turbulent transport terms are re-
tained in the TKE equation only, whereas all other second-order moments, including scalar
(co-)variances, are determined from the algebraic diagnostic expressions. As a consequence,
the expressions for the scalar fluxes do not include non-gradient terms and do not allow for
up-gradient heat transfer that is known to occur in many convective flows, e.g. in the cloud-
free convective planetary boundary layer (PBL) or in the sub-cloud layer of cloud-topped
PBLs. This can be readily verified by neglecting the left-hand side and the third term on
the right-hand side of Eq. (1) and setting a = b = θ, where θ is the potential temperature
(θl is equal to θ if clouds are absent). Then, −〈u′

3θ
′〉 ∂ 〈θ〉/∂x3 − ǫθθ = 0, indicating that

the up-gradient hear transfer, when the temperature flux 〈u′
3θ

′〉 and the temperature gradi-
ent ∂ 〈θ〉 /∂x3 have the same sign, would mean physically impossible negative temperature-
variance dissipation rate. It should also be noted that the current COSMO-model turbulence
scheme utilizes a Blackadar-type turbulence length scale formulation independent of static
stability and a quasi-Gaussian statistical cloud scheme (see [1] for details).

3 Single-column tests

The TKESV scheme is tested through a series of single-column numerical experiments. Re-
sults from experiments with the TKESV and the TKE schemes are compared with observa-
tional and numerical large-eddy simulation (LES) data from dry convective PBL and from
cloudy PBLs (BOMEX and ARM shallow cumulus cases and DYCOMS-II stratocumulus
case).

Figure 1 shows vertical profiles of potential temperature in the shear-free dry convective
PBL driven by the surface buoyancy flux. As revealed by comparison of model results with
the LES data from [13], the TKESV scheme clearly outperforms the TKE scheme. A well-
mixed character of (the bulk of) dry convective PBL and up-gradient heat transfer in the
upper part of the mixed layer, where the potential-temperature gradient and the heat flux
are both positive, are well reproduced by the TKESV scheme. The TKE scheme gives an
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excessive (negative) potential-temperature gradient in most of the PBL and is incapable of
reproducing up-gradient heat transfer due to the use of down-gradient formulations for the
scalar fluxes. In Fig. 2, vertical profiles of the TKE and of the potential-temperature variance
computed with the TKESV and the TKE schemes are compared with the LES data. Results
from numerical experiments with the TKESV scheme are in better agreement with data,
although both schemes invite further improvements. Note that the TKE scheme yields zero
potential-temperature variance in the upper part of the mixed layer where the temperature
gradient changes sign. This result is spurious. It stems from the neglect of the third-order
transport (diffusion) of scalar variances within the TKE scheme, where the scalar-variance
equations are reduced (truncated) to the balance between the mean-gradient production
and dissipation. The TKESV scheme does account for the third-order transport of scalar
variances and yields better estimates of the variances throughout the convective PBL.

Figure 1: Potential temperature minus its minimum value vs. dimensionless height (h is the
PBL depth) in the dry convective PBL. Black dashed curve shows LES data [13], and solid
curves show results from numerical experiments with the TKE (red) and TKESV (blue)
schemes.

The application of the TKESV and TKE scheme to the stratocumulus-topped PBL (DYCOMS-
II test case, see [21]) reveal a similar performance of the two schemes. The TKESV scheme
brings about minor improvements as to the scalar variances

〈

θ′2l
〉

and
〈

q′2t
〉

. In the shallow-
cumulus regime (BOMEX test case, see [9, 19]), the application of the TKESV scheme leads
to a better prediction of the scalar variances (Fig. 3), and to slight improvements with re-
spect to the TKE, the vertical buoyancy flux and the mean temperature and humidity. A
detailed analysis of results from numerical experiments suggests that the major difficulties in
modelling the shallow cumulus regime are associated with the representation of the fractional
cloud cover and its effect on the buoyancy flux. A quasi-Gaussian cloud parameterization
used operationally in the COSMO model strongly overestimates fractional cloud cover in the
cumulus-topped PBL. A modified parameterization with an ad hoc non-Gaussian correction
[2] improves the fractional cloud cover. Both cloud parameterizations fail to accurately de-
scribe the effect of fractional cloudiness on the buoyancy flux (buoyancy production of TKE)
in the shallow cumulus regime (although the parameterization with non-Gaussian correction
does a slightly better job). A somewhat more sophisticated cloud scheme that accounts for
non-Gaussian effects (e.g. through the skewness of scalar fields) is required.
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Figure 2: TKE (left panel) and potential temperature variance (right panel) vs. dimensionless
height (h is the PBL depth) in the dry convective PBL. Black dashed curves show LES data
[13], and solid curves show results from numerical experiments with the TKE (red) and
TKESV (blue) schemes. Profiles are made dimensionless with the Deardorff [3, 4] convective
scales of velocity, w∗, and temperature, θ∗.

4 Implementation into COSMO model

The TKESV scheme is implemented into the COSMO model and tested through a series
of parallel experiments including the entire COSMO-model data assimilation cycle. Both
COSMO-EU and COSMO-DE model configurations operational at DWD are used. The
horizontal mesh size of these configurations is ca. 7 km and ca. 2.8 km, respectively. In
the parallel experiments, the skewness-dependent “diffusion+advection” parameterizations
of the third-order moments in the scalar (co-)variance equations are not used; instead, the
third-order moments (fluxes of (co-)variances) are determined through the down-gradient
formulations. Although the diffusion+advection parameterizations are available as an op-
tion, they are not recommended for immediate use with the full-fledged COSMO model.
The use of the skewness-dependent third-order moments reduces numerical stability of the
entire scheme. Then, a smaller time step is required, making the scheme computationally
too expensive for current operational applications.

Results from the COSMO-EU and COSMO-DE parallel experiments with the TKESV scheme
performed to date look promising. Verification of results against observational data indicate
perceptible improvements as to some scores, e.g. two-metre temperature and humidity. Ver-
ification results show marginal improvements with respect to fractional cloud cover and no
detectable changes with respect to precipitation. Performance of the TKESV scheme is ex-
emplified by Figs. 4 and 5. The use of the TKESV scheme within COSMO-DE leads to a
noticeable reduction of both bias and root-mean-square error (RMSE) of two-metre temper-
ature and dew point depression. It should be emphasized that the curves in Figs. 4 and 5
are the result of averaging over the entire COSMO-DE domain. Local positive effects of the
TKESV scheme on the COSMO-DE performance are often more pronounced.

As the results from the LES study of Mironov and Sullivan [16] demonstrate, the stably
stratified PBL should be parameterized with due regard for the SGS heterogeneity of the
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Figure 3: Variances of the liquid water potential temperature (left panel) and of the total
water specific humidity (right panel) in the shallow-cumulus-topped PBL. Black dashed
curves show data from LES of BOMEX shallow cumulus case performed by Heinze [7], and
solid curves show results from numerical experiments with the TKE (red) and TKESV (blue)
schemes. Both schemes use the cloud parameterization proposed in [2].

Figure 4: Bias (left panel) and RMSE (right panel) of two-metre temperature over the period
from 1 July 2011 through 30 September 2011. Blue curves show operational COSMO-DE
results, and red curves show results from parallel experiment with the new TKESV scheme.
The curves are obtained by means of averaging over the COSMO-DE domain.

underlying surface, first of all, with respect to the temperature. An LES-based analysis of
the second-moment budgets shows that the enhanced mixing in the heterogeneous stably
stratified PBL is mainly due to a strong increase of the temperature variance near the un-
derlying surface and the ensuing decrease of the magnitude of the (negative) buoyancy flux
(cf. the importance of scalar variances in convective PBLs). As discussed in [16], there are
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Figure 5: The same as in Fig. 4 but for the two-metre dew point depression.

several conceivable ways to account for this effect. One feasible way is the application of
a tile approach. It allows to account for the enhanced mixing over heterogeneous surfaces
in a physically plausible way and to prevent the PBL turbulence from dying out entirely
as the (grid-box mean) static stability increases1. The idea is successfully tested through
single-column numerical experiments (e.g. the increase of temperature variance and the en-
hancement of mixing over heterogeneous surfaces are reproduced). The number of tiles should
not necessarily be large (otherwise the tiled scheme becomes computationally expensive) but
the tiles with the largest difference in terms of thermal inertia should be accounted for. In
this regard, the treatment of SGS water bodies is crucial. As the thermal inertia of wa-
ter is (much) larger than the inertia of most other land types, the inclusion of SGS water
allows to maintain the temperature difference between tiles and hence to account for the
enhanced mixing due to surface heterogeneity. A parallel COSMO-EU experiment with a
“two-tile” surface scheme is performed, where a “land tile” with the land-use type the same
as in the operational COSMO model and an “inland water tile” (“lake”) are considered in
each COSMO-model grid box. The surface temperature of the inland water tile is computed
with the lake parameterization scheme FLake [10, 14, 15]. Recall that in the operational
COSMO configurations, only the grid boxes with the inland water fraction in excess of 0.5
are treated as the inland-water-type grid boxes whereas the SGS water bodies with fractional
area coverage less than 0.5 are entirely ignored. Results from the parallel experiment indicate
some improvements of the COSMO-model performance, e.g. warm bias of the near-surface
temperature during summer is reduced.

1Cf. a long-standing COSMO-model problem with too large minimum diffusion coefficients that are used
as a (unphysical) proxy for unaccounted mixing processes. These “background” diffusivities are insensitive to
the mixing regime. They prevent the collapse of mixing but are often detrimental for stably stratified PBLs
and for the inversions capping convective PBLs (produce too strong mixing where it is not needed). On the
contrary, the TKESV scheme coupled to a tiled surface scheme is selective in terms of mixing regimes. For
example, it produces enhanced mixing in the core of convective PBL but does not mix too strongly in the
upper part of the stably stratified PBL and in the capping inversion.
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5 Summary and outlook

A turbulence kinetic energy – scalar variance mixing scheme for COSMO is developed and
favourably tested through single-column numerical experiments and through parallel exper-
iments with the full-fledged COSMO model including the entire data assimilation cycle. The
TKESV scheme outperforms the current COSMO-model TKE scheme. Verification of results
from parallel experiments indicate improvements as to some scores, e.g. two-metre temper-
ature and humidity and fractional cloud cover. A detailed scientific documentation of the
TKESV scheme is in preparation. Modifications associated with the TKESV scheme will
soon be included into the official COSMO-model code (for details, see the Priority Project
UTCS Reports and the Model Development Plan at the COSMO web site).

In the future, the following issues should be addressed to further improve the COSMO-model
mixing scheme.

(i) Development of a three-moment (mean, variance, and skewness) statistical cloud scheme
capable of predicting the fractional cloud cover and the buoyancy flux in cloudy PBLs with
due regard for non-Gaussian effects. This work is carried out by A. Seifert and A.-K. Nau-
mann within the framework of the Hans Ertel Centre on Cloud and Convection, Hamburg.
The major part of the work is completed (Naumann, A.-K., A. Seifert, and J. P. Mellado,
2013: A refined statistical cloud closure using double-Gaussian probability density functions.
Submitted to Geosci. Model Dev.).

(ii) Further development and comprehensive testing of transport equations for the skewness
of scalar quantities, coupling the skewness equations with the three-moment statistical cloud
scheme. Closure assumptions for the scalar skewness equations and a skewness-dependent
“diffusion+advection” parameterizations of the third-order moments in the scalar variance
equations are developed and tested through single-column numerical experiments. They are
available as an option within the TKESV scheme. These parameterizations are, however,
not recommended for the immediate implementation into COSMO due to numerical stability
problems (a smaller time step is required). The skewness-dependent parameterizations of the
third-order transport may be used in the future, but further analysis, testing and tuning are
required. However, the scalar skewness equations decoupled from the third-order transport
but coupled to the statistical cloud scheme is a viable next-step option.

(iii) Improved coupling of the scalar (co-)variance equations to the tiled surface scheme to
better account for the effect of surface heterogeneity on the structure and mixing properties of
the PBL (mainly the stably stratified PBL). To this end, effort should go into the analysis of
various flow regimes over heterogeneous surfaces (e.g. temperature-heterogeneous flat surface
versus temperature-homogeneous surface with orographic features such as hills and valleys)
and of the surface boundary conditions for the scalar (co-)variances with due regard for the
surface heterogeneity. This work is to a large extent based on the LES findings reported in
[16]. Further results are expected from co-operative work with P. Sullivan of NCAR.

The LES data set [8, 7], developed at the University of Hannover by R. Heinze and S. Raasch
within the framework of the “Extramurale Forschung” program of the German Weather
Service and the German Universities, will be extensively used to tackle the above issues.
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