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1 Introduction

A budget analysis tool has been implemented into the code of the non-hydrostatic COSMO
model in order to diagnose both temperature and moisture tendencies. The implementation
allows for the extraction of both physical and dynamical tendencies of either temperature or
potential temperature and of moisture scalars. Application of this tool may serve different
purposes ranging from numerical developments to process studies and climate science.

A brief description of the retrieval of tendencies is given here and the applied method is
exemplified by two simulations. Firstly, an idealized rising warm-bubble test (Wicker and
Skamarock 1998) is conducted to explain the underlying temperature tendencies. Secondly,
erroneous cold-pool formation in a real-case simulation is studied and the cause for unrealis-
tic cold temperatures will be determined from the budget analysis. As will be demonstrated,
the split-explicit time-stepping applied in COSMO complicates the diagnosis of temperature
advection tendencies. A further complication is introduced by the COSMO option of solv-
ing the heat equation either for temperature or potential temperature. Moisture tendencies
related to advection can be obtained much more easily, since the moisture tendencies are nu-
merically solved using discretization schemes without mode-splitting (e.g., a positive-definite
scheme).

2 COSMO heat budget

Derived from the first law of thermodynamics the temperature equation solved in COSMO
is given as

aT 1 dp

— = ADVp+ —— + My, +Mr+ Mo+ Msso +Mgr + Mup + Mgrx. (1)

ot pCpq dt
The terms on the right hand side are the heating terms due to advection, pressure changes,
latent heating My, turbulent flux divergence Mp = —pclpdv - H, parameterized convection
M¢, parameterized drag due to subgrid-orography Mgso, radiative flux divergence Mg, com-
putational mixing My p, and relaxation at lateral and top boundaries Mgy x. The advective
tendency is written as

1 oT’ or'\1 9T  dT,
ADVp = — | — (& TN ¢ e, 2
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HADVy,

Here X\, ¢, and ( are the transformed coordinates. Primes indicate deviations from the
model’s base-state temperature Ty(z), HADVy is the horizontal advection of T’ p is the
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density of air, and a is the Earth’s radius. Alternatively, a potential temperature equation
can be solved in COSMO (namelist options itheta adv=1,2), given as

00 0
1 o o9 .09 wi  for & =0
ADVe = - [a cos(yp) <uﬁ * UCOS(@%)] R { 0 for & =46 )
HADV

with My~ an abbreviation for all diabatic temperature tendencies introduced above. Thereby,
advection can be computed for either ® = § or ® = ¢’. All temperature tendencies in Egs. (1)
and (3) are evaluated at mass points.

The adiabatic part of the temperature equation is solved using a time-splitting method
(Wicker and Skamarock 2002). Thereby, terms related to acoustic and gravity-wave propa-
gation are typically solved implicitly on smaller timesteps. In COSMO the term related to
the total derivative of pressure (see Eq. (1)) and the vertical advection of the temperature
base-state Ty (alternatively ) (last terms in Eqgs. (2) and (4)) are solved on small timesteps,
while the remaining advective tendencies are evaluated on Runge-Kutta substeps (see also
Gassmann and Herzog 2007). In case of ® = 6 the complete temperature equation is solved on
Runge-Kutta substeps without fast-mode contributions. In total three different formulations
are available in COSMO to solve the heat equation using Runge-Kutta time-integration (see
also Tab. ?77). All other M terms are computed as slow processes outside the Runge-Kutta
integration.

itheta_adv 0 1 2
equation for T 0’ 0
1 d dTy 9
fast-mode o & - w'd_zo —wh . -
slow-mode | HADVyy — (9F | HADVy — (%% | HADVy — (52

Table 1: Overview of three different available methods (set by namelist switch itheta_adv=0-2) for solving
the temperature equation in COSMO. For each option the dynamic temperature tendencies computed on small
and large timesteps (i.e., Runge-Kutta substeps) are indicated. Note that in any case diabatic tendencies Ms~
are computed outside the Runge-Kutta integration.

An implicit Crank-Nicholson discretization is applied in the fast-wave solver. This results
in a time-averaged equation for the updated temperature (either T or ) after one small
timestep A7 , given in case of 2nd-order accurate differencing as

T = T+ (fRRAT (5)
1
_ P ey At G (g, —w) + Al —w)Y (6)
Cod Py, Cpd P
1 dp
PCpd dt
dly , ,_— —
_E(ﬂ wyk+/8+wu+1]€)- (7)

Th—advection

Here (f})y, corresponds to the slow-mode tendencies at time step n and level k, which are kept
constant during all Runge-Kutta stages, and (D,lfl)k is the horizontal divergence. Detailed
information on the fast-mode discretization and the notation is given in the COSMO docu-
mentation (Doms and Schéttler 2002, pp. 64-68). In COSMO the total derivative of pressure
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consists only of the divergence term (6); the effects from diabatic heating are neglected. In
more sophisticated cloud models these effects are included. As mentioned earlier, the advec-
tion of the temperature base-state (7) is computed for 7" and ¢’ advection (itheta_adv=0,1).

To diagnose the complete advective tendencies the fast-mode advection is accumulated over
all small timesteps during the final Runge-Kutta stage and added to the slow-mode advective
tendencies. Since the pressure tendency term in (1) is not computed in case of a 6 formulation
(itheta_adv=1-2), the temperature advection can not be obtained from potential tempera-
ture advection in these cases. The other way round, in case of T"-advection (itheta_adv=0)
the potential temperature advection can be diagnosed at the end of each large timestep as
the difference of net potential temperature tendency and diabatic tendencies. To summa-
rize, while advective 0 tendencies can be retrieved for itheta_adv=0--2, T" advection is only
diagnosable in case of itheta_adv=0.

Moreover, for optimal physical interpretation of advective tendencies, the horizontal and
vertical components should be related to advection in physical space, not transformed space.
Thus, vertical advection is additionally diagnosed each timestep using second-order centered
differences in physical space.

3 COSMO moisture budget

COSMO includes several bulk microphysics parameterizations for grid-scale precipitation.
The most complex single-moment formulation (Reinhardt and Seifert 2006) distinguishes
between the specific humidity ¢,, cloud water ¢., cloud ice g;, rain water ¢,, snow g5, and
graupel gg4, in total six budget equations. To keep the amount of output small, the budget tool
diagnoses only the tendencies of two classes of hydrometeors: precipitating (g, + ¢s + g4) and
non-precipitating hydrometeors (g. + ¢;). Together with the budget of water vapor ¢,, three
moisture budgets are diagnosed and all involved tendencies are evaluated at mass points.
For each class ¢, the budget equation can be written as

% =ADVy + QL+ Qr +Qc + Qup + Qrrx (8)
with advection ADV,, microphysical exchange processes (including sedimentation) Qp, tur-
bulent transport ()7, parameterized convection ()¢, computational mixing Q) p, and relax-
ation at the domain boundaries Qryx. All tendencies are computed as slow tendencies
outside the RK-dynamics. Thus, the diagnosis of the moisture advection tendencies is not
plagued by the complexity introduced by the split-explicit method in case of temperature.
Note that COSMO does not compute subgrid-turbulence tendencies for precipitation hy-
drometeors (thus Q7 = 0). The 3D advective tendencies result from either a Semi-Lagrangian
(Staniforth and Coté 1991) or a positive-definite (Bott 1989) discretization. As for temper-
ature, truly vertical advection is diagnosed each timestep.

4 Rising bubble test

To illustrate the retrieval of advective tendencies for the three different types of temperature
advection a rising warm-bubble simulation is conducted here in two dimensions. The setup
closely follows the description given by Wicker and Skamarock (1998). The domain is 20 x 10
km? large and a uniform grid-spacing of 100 m is applied. The long timestep is 2 s and neither
computational nor subgrid turbulent diffusion is used. If not mentioned otherwise, horizontal
and vertical advection are discretized using a 5th-order upstream scheme and the model’s
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base-state temperature profile equals a dry neutral stratification with § = 300 K. The initial
thermodynamic conditions are prescribed by a potential temperature disturbance, given as

, o (TL . T — Xe 2 Z— Z¢ 2
0" =2cos” | — with L = + , (9)
2 T, Zr

that is added to the dry neutrally stratified atmosphere (§ = 300 K). The disturbance with
radius x, = 2z, = 2 km is placed at x. = 10 km and z. = 2 km.

Results are analyzed after 1000 s, when the bubble has risen to the center of the domain.
The potential temperature and vertical velocity distributions (see Figs. la,d) are hardly
dependent on the formulation of temperature advection (not shown). All three formulations
result in maximum vertical velocities of 14.6 m s~! and maximum @’ perturbations of 2 K
and are therefore very similar to results presented using other numerical codes (Wicker and
Skamarock 1998; Bryan and Fritsch 2002). However, as a side note, a 2nd-order implicit
Crank-Nicholson scheme, which is commonly applied within COSMO for vertical advection,
significantly deteriorates the bubbles characteristics (see Figs. 1b,e). A recently developed
3rd-order implicit discretization (see Baldauf 2009) yields considerable improvements (see
Figs. 1lc,f).
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Figure 1: Results of the dry bubble simulation after 1000 s using 7”-advection (itheta_adv=0): (a—c) Po-
tential temperature perturbation contoured every 0.2 K, (d—f) vertical velocity contoured every 2 m s
Vertical T'-advection is computed using (a,d) a 5th-order explicit, (b,e) a 2nd-order implicit scheme, and
(c,f) a 3rd-order implicit scheme.

In the following the diagnosis of potential temperature tendencies with help of the new
implementations is described. Figure 2a shows the net potential temperature tendency, which
results from 3D potential temperature advection (see Fig. 2b). Since for this setup the base-
state is isentropic the fast-mode tendencies would be zero not only for itheta_adv=2, but also
for itheta_adv=1. The estimated tendencies for vertical advection of # appear meaningful
(see Fig. 2d), as the difference between 3D advection and estimated vertical advection (see
Fig. 2e) yields a reasonably good agreement with the actually computed tendencies from
horizontal advection, which have also been extracted here (see Fig. 2c).

Finally, the temperature tendencies are studied using itheta_adv=0. For the given base-state

with Ng = 0s7! (% = gcgdl) the net temperature tendency (see Fig. 3a) is determined solely
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Figure 2: Potential temperature tendencies (K s™') obtained after 1000 s using #-advection (itheta_adv=2):
(a) Net tendency, (b) 3D advection, (c) horizontal advection, (d) estimated vertical advection, and (e) hori-
zontal advection diagnosed as the difference between full advection and estimated vertical advection.

from advection computed on the Runge-Kutta substeps. The tendencies stemming from the
fast-mode solver are negligibly small, as temperature changes due to expansion (see Fig. 3c)
and due to base-state advection balance each other in adiabatic ascent to a very high degree.
Due to this compensation the sum of total advection and pressure forcing (see Fig. 3e) equals
the slow-mode advection without base-state advection (see Fig. 3d). Figure 3f indicates that
the total advection is primarily determined by vertical advection. Tendencies from horizontal
temperature advection (not shown) are similar to horizontal advection of 8 (see Fig. 2c).

A second simulation using a base-state of Ng = 0.01 s~! (not shown) further illustrates the
partitioning of fast-mode tendencies into base-state advection and pressure forcing. Since for
this setup the temperature profile deviates more strongly from its base-state, the magnitude
of the T"-advective tendencies evaluated on Runge-Kutta substeps increases and the fast-
mode equilibrium with the pressure forcing is disturbed correspondingly.

5 “Cold-pool” case study

Potential applications of the budget diagnosis tool are manifold. It can be used to further
the physical understanding of a specific weather or climate phenomenon as well as to aid
model development and problem solution. Here, we present an example of its application to
the investigation of the formation of unrealistic cold-pools in steep valleys.

On 11 October 2009 the 12 UTC operational COSMO-2 model run crashed because of a
runaway cold-pool in a steep Alpine valley which developed near-surface temperatures below
140 K. Similar events have been observed before and at other locations, but generally the
unrealistically low near-surface temperature recovers to normal values after some time. Grid
points affected by cold-pools are consistently located within a steep valley which is oriented
almost perfectly along the N-S or S-W grid lines. The grid point which exhibits cold-pools
most frequently is situated in the Saaser valley and corresponds to a local depression with
no outflow (see Fig. 4a).

The 06 UTC COSMO-2 forecast of 5 May 2009 also developed a strong cold-pool in the
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Figure 3: Temperature tendencies (K s™') obtained after 1000 s using T’-advection (itheta_adv=0): (a) Net

tendency, (b) 3D advection, (c)

1 dp
pcpq dt

fast-mode term, (d) 3D advection without base-state advection, (e)

sum of (b) and (c), and (f) estimated vertical advection.
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Figure 4: Overview of (a) model topography and (b) 2m-Temperature in °C on 1100 UTC 5 May 2009 after

5 h into the forecast. The grid point with strongest cold-pool development is indicated by a red box.
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Figure 5: Time series of temperatures at 2 m and on the lowest two model levels (T60, T59).

Saaser valley and is further investigated here. For this event the model did not crash but the
cold-pool was unusually persistent and present in over 30 consecutive COSMO-2 forecasts.
After 5 h of forecast time (i.e., at 11 UTC) the 2m-temperature distribution (see Fig. 4b)
shows a region of unrealistically cold temperatures (75, < 243 K) centered around the lowest
valley grid point. Over the course of the simulation temperatures fall below 150 K (see Fig.
5). Later into the simulation, the cold air which accumulated in the Saaser valley spilled into
the Rhone valley and deteriorated the forecast quality over a large area.
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Figure 6: Time series of hourly 7T-tendencies as determined by the budget diagnosis tool. The budgets are
shown for (a) the grid point with lowest temperature and (b) an average over 5x5 grid points around the grid
point with lowest temperature.

Further analysis indicates that the forcing responsible for the decreasing temperature does
not stem from the surface heat flux, but results from atmospheric cooling that affects the
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Earth’s surface (not shown). In order to further investigate the source of the forcing, the
budget diagnosis tool has been switched on and the simulation repeated. All components
of the temperature equation Eq. (1) are shown as hourly averages in Figure 6a. The values
shown correspond to the grid point exhibiting the lowest temperatures. The component
due to vertical advection (ZADV) has been computed as the difference of the total advective
tendency (ADV) and the tendency due to horizontal advection (HADV). The latter results in
strong cooling and turbulent diffusion (Mp) counteracts this by mixing with warmer air from
higher levels. With the help of the budget diagnosis tool, other processes such as radiative
cooling, microphysics, etc. can be excluded from being responsible for the strong cooling.
Averaging the tendencies over 5x5 horizontal grid points indicates that this result is robust
(see Fig. 6b). Thus, there is a clear indication that in certain topographic configurations
the horizontal advection of temperature may introduce a strong spurious forcing leading to
the development of cold-pools. This hypothesis is supported by the fact that limiting the
temperature advection (ltadv_limit = .true.) prevents the cold-pool formation, and that
implementing the alternative advection of temperature introduced with model version 4.19
strongly inhibits it.

6 Summary

A budget diagnosis tool has been implemented into COSMO. The implementation allows for
the retrieval of heating and moistening rates as computed numerically in the code. Detailed
information about the underlying dynamical and physical processes or numerical discretiza-
tions can be obtained by studying these tendencies. All tendencies may either be written
as instantaneous or as time-averaged quantities. Applications may cover a wide range from
model development to process studies at weather and climate scales. Besides the examples
provided in this document, the tool has already been applied successfully to study the Alpine
heat and moisture budget (Langhans et al. 2011a,b).
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