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Upscaled and fuzzy probabilistic forecasts: verification results
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1 Introduction

The combined use of high resolution models and ensemble forecasting techniques is expected
to be an optimal framework to provide probabilistic quantitative precipitation forecasts [3].
High resolution models simulate convective processes explicitly and ensemble forecasting
techniques take into account the sources of uncertainty.

However, during a verification procedure, high resolution model forecasts suffer of the well
known double penalty problem [5]. Small displacements in space or time between forecasted
and observed precipitation events penalize twice the forecast in a point to point comparison.
This limitation in terms of predictability should be reflected by an ensemble forecast which
aims to provide information about the uncertainty of the prediction. Nevertheless, ensemble
forecasts of surface variables present very often an important drawback: underdispersiveness.

The double penalty problem affects probabilistic forecasts as long as the uncertainty in posi-
tion is not well represented. Then, it is still meaningful to use spatial verification techniques
in order to better characterize the potential of a probabilistic forecast. Taking into account
the spatial environment of each grid point forecast is a simple way to address this problem
[2] and to perform scale analysis [7]. Neighborhood approaches can also be used to derive or
improve existing forecasts [15, 13].

Two spatial techniques and their derived products are investigated here. First, the neigh-
borhood method, which smoothes the probabilistic forecast, produces a fuzzy probabilistic
forecast. This method is a cheap solution to enlarge the sample of an ensemble forecast.
Secondly, the upscaling technique, which modifies the scale of the forecast, produces an
upscaled probabilistic forecast. The upscaling procedure allows to provide information at
different scales of interest.

The purpose of this report is double: firstly to evaluate the performance of an ensemble
forecasting system, secondly to provide a guideline for the generation of new probabilistic
products. We focus here on daily precipitation.

2 Dataset and Methodology

Dataset

The COSMO-DE-EPS is an ensemble prediction system using the convection-permitting
model COSMO-DE, a 2.8 km grid-spacing configuration of the COSMO model covering the
area of Germany. An experimental version of the system is used where boundary condi-
tions and physics perturbations are applied without initial condition variation [4]. Note that
the introduction of the initial condition perturbations in the new version of the system is
described in [11].

The ensemble forecasts start at 00UTC and comprise 15 members. 55 days are available with
this configuration during the summer of 2009 from 14 June 2009 to 30 September 2009. The

No. 11: February 2011



4 Predictability and Ensemble Methods 125

precipitation observations are radar data. The observations possibly affected by bright band
effects are rejected from the verification process.

The neighborhood method: fuzzy probabilistic forecasts

The first spatial technique applied here is the so-called neighborhood method, developed by
[15]. Originally, this method was designed to derive probability forecasts from deterministic
ones. [13] describe how to apply this method to ensemble forecasts. The processed probability
at a given grid point corresponds to the mean probability within a given environment. This
environment is a circular neighborhood defined by a radius of influence (called hereafter size
parameter of the process).

The upscaling process: upscaled probabilistic forecasts

The second spatial procedure performed here consists of dividing the domain into squared
windows. In this procedure, the length of the window is the size parameter. The maximum
value of each member within each window represents the precipitation field on the new spatial
scale. The upscaled probability fields are calculated from those values and refer then to an
event that occurs anywhere within the defined window.

For verification purposes, other types of upscaling can be investigated. Rather than the
maximum, the 90 percent quantiles within the windows (or the 95%, 99%) can be chosen
to represent the realization of a member at the new spatial scale. The use of the quantiles
instead of the maximum allows to alleviate the sensitivity to possible outliers in observation
data and small scale variability [14].

Figure 1: Example of 18 June 2009: Probability of precipitation exceeding 1mm/24h (top) and 10mm/24h
(bottom). From left to right : original products, fuzzy products (the neighborhood method is applied with
a size parameter of 10 grid points), upscaled products (within 10×10 grid points boxes).
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Example of processed probability fields

An example of fuzzy and upscaled probabilistic forecasts is shown in Figure 1. The fuzzy
probabilistic forecasts are a common application in image processing which is called low
pass filtering or convolution kernel [12]. The smoothing of the original field can be done by
’eye’ since all the information needed to construct the smoothed field is already contained
in the original one. This is not true for the upscaled probability forecast where the spatial
variability of each precipitation forecast (of each member) must be known beforehand.

3 Verification measures

Score measure

Among the numerous existing verification scores, the most common one for the evaluation of
probabilistic forecasts is the Brier score (BS). It is defined as the average square difference
between the forecast probability and the observation. The BS can be decomposed in three
terms [10]: reliability (REL), resolution (RES) and uncertainty (UNC).

The reliability term measures the statistical consistency between the probabilistic forecast
and the frequency of occurrence of the observed event given the forecast probability. The
resolution term measures the capacity of the system to distinguish between event and non
event. The uncertainty is a function of the observation only. Another attribute, the sharpness
(SHP ), which depends only on the forecast is also examined here. The sharpness is defined as
the mean squared departure of the forecast probabilities from the climatological probability.
It corresponds to the reliability term of a random forecast [16].

Skill score

We use Brier skill scores (BSS) for the evaluation of the impact of the processes described
above. The BSS is defined as (Wilks 1995):

BSS =
BSref −BS

BSref
, (1)

where BSref is the Brier score of a reference forecast, the object of the comparison. Similarly,
reliability, resolution and sharpness gain are defined as:

GREL =
RELref −REL

RELref
, GRES =

RES −RESref

RESref
, GSH =

SH − SHref

SHref
,

since the reliability is counted negatively (the lower the better) and the resolution and
sharpness positively (the higher the better).

The BS is not well adapted to compare forecast performance at different scales, as we do with
upscaled probabilistic forecasts. In fact, its uncertainty component, which is a function of the
observation only, differs from scale to scale. It is then worth to use a BSS as a measure of the
performance at each scale. Mason [9] has shown that using a random forecast as reference for
the calculation of the BSS leads to a measure of the ‘usefulness of the information’ adapted
to forecasts with high sharpness. We define then the gain in skill score as:

GSS =
BSSran −BSSran

ref

BSSran
ref

,

where BSSran is the BSS of the upscaled forecast compared to a random forecast at the
corresponding scale and BSSran

ref is the BSS of the original ensemble forecast compared to
a random forecast at the original scale.
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Amplitude distribution

We use in this study two more verification measures. The first one focuses on the amplitude
distributions. The discrepancy from uniformity (D) measures the deviation from a uniform
rank histogram. It is defined as [1]:

D =

K+1
∑

i=1

∣

∣

∣

∣

pi −
1

K + 1

∣

∣

∣

∣

,

where K is the number of members and pi is the relative frequency of rank i. This measure
summarizes the information contained in a rank histogram. In other words, it is an estimation
of the fit between forecasted and observed amplitude distributions. A value of 0 indicates a
flat histogram. This measure is applied hereafter to the probability integral transform (PIT)
histogram, equivalent to the rank histogram in probability space [6].

Spatial distribution

The second tool allows spatial structure analysis: the empirical (semi-)variogram. It is com-
plementary to the first one since an amplitude distribution conveys no information about the
spatial structure of a field. The empirical variogram is a well known function of geostatistics
which is also commonly used for meteorological applications (see Marzban and Sandgathe [8]
and references therein). It can be seen as a tool to gauge the texture of a field. It is defined
as:

γ(y) = E
(

|z(i) − z(j)|2
)

,

where z(i) is the value of the field at a location i, y is the distance between the points i
and j and E is the expected value operator. The variogram quantifies the spatial extent of
correlation.

4 Results and Discussion

Fuzzy probabilistic forecasts

We investigate the impact of the neighborhood method in function of its size parameter. First,
we compare the processed fields to the original probabilistic forecast in terms of accuracy,
sharpness, reliability and resolution. The original probabilistic forecast is the reference for
skill scores and gain calculation.

The general impact of the neighborhood method is shown in Figures 2(a) and 2(b). The
method allows to improve the score and we note that an optimal size parameter exists in
terms of BS. The optimum size parameter is similar for all the thresholds, around 40 grid
points. On the other hand, the sharpness decreases linearly with the radius of influence. Fig-
ures 2(c) and 2(d) focus on the two main attributes of the forecast: reliability and resolution.
Fuzziness slightly increases the resolution but has a large positive impact on the reliability.
We can also note that the maximum gain in resolution is reached for smaller size parameters
compared to the maximum gain in reliability.

To go further in the description of the neighborhood method impact, we compare the ampli-
tude distribution of the processed fields and the observation distribution. The discrepancy
from uniformity is shown in Figure 3(a). The fit between the amplitude distributions is im-
proved and has an optimum for a size parameter around 40 grid points. The neighborhood
method enlarges the spatial spread and has a positive impact on the pointwise amplitude
distribution.
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Figure 2: (a) Brier skill score, (b) sharpness gain, (c) resolution gain and (d) reliability gain in function of
the neighborhood method size parameter (in grid points). The reference for the skill and gain calculation
is the original probabilistic forecast.

Figure 3: Discrepancy from uniformity (a) in function of the size parameter (in grid points) of the
neighborhood method and (b) for the upscaling processes.

In order to highlight the reason of the improvement due to the application of the neigh-
borhood method, we analyze the spatial distribution of the original error fields. The error is
defined as the absolute difference between the observation and the original probabilistic fore-
cast. The empirical variogram in Figure 4(a) represents the spatial correlation of this error.
We note that above 40 grid points the spatial correlation of the error is no more significant.
The neighborhood method introduces spatial correlation in the probability field (and then
in the uncertainty representation) that corresponds to the spatial correlation of the original
probabilistic forecast error.

Considered as products, we have finally to quantify the usefulness of the fuzzy probabilistic
forecast compared to cheaper solutions. The reference for the computation of the BSS is no
more the raw original probabilistic forecast but the deterministic forecast. To make a fair
comparison, the smoothing is contemporarily applied to the reference and to the probabilistic
forecast. Figure 5(a) shows that the BSS tends to zero in this case. The information within a
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Figure 4: (a) Empirical semi variogram of the absolute difference between probabilistic forecast and binary
observation in function of the distance (in grid points). Empirical semi variogram of binary precipitation
fields defined with a threshold of (b) 0.1mm/24h and (c) 10mm/24h.

Figure 5: Brier skill scores in function of the size parameters (in grid points) of (a) the neighborhood
method and (b) the upscaling process. The reference is the deterministic forecast. The neighborhood
method or the upscaling process is applied contemporarily to the probabilistic forecast and to the reference.

fuzzy ensemble forecast is not useful if the filtering process is too strong: the same information
can be provided by a cheaper fuzzy deterministic forecast.

Upscaled probabilistic forecasts

We analyze now the results of the probabilistic forecast at different scales. Three types of
upscaling are compared using the 90%, 95% and 99% quantiles within a window as repre-
sentative of the variable at the new scales. We first comment the results independently of
the choice of quantile.

The impact of the upscaling processes is shown in Figure . The reference for the gain cal-
culation is the probabilistic forecast at the model grid resolution. In Figure (a), we see an
improvement of the forecast (excepted for the lowest threshold) and in Figure (b) an in-
crease of the sharpness with the size parameter. The impact of the upscaling is especially
remarkable for high thresholds. On Figure (c), the upscaling has a clear positive impact on
the resolution term for medium and high thresholds. The benefit of the upscaling in terms of
resolution increases with the threshold. In terms of reliability (Figure (d)), a loss of quality
is registered for all the thresholds.

The spread reduction is intrinsic to the upscaling technique. The uncertainty concerning the
exact location of an event is reduced as the size parameter increases. The width of the forecast
amplitude distribution is then reduced. The discrepancy from uniformity measured in Figure
3(b) shows that the observations tend to fall more often outside of the forecasts distribution
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Figure 6: (a) Gain in BSS, (b) sharpness gain, (c) resolution gain and (d) reliability gain in function of
the upscaling processes size parameter (in grid points). The gains compare the upscaled probabilities to
the original forecast.

as the scale increases. The spread reduction is too severe compared with observation and
induces then a more pronounced underdispersive situation.

The general usefulness of the upscaled forecast is investigated comparing the upscaled prob-
abilistic forecasts to upscaled deterministic forecasts. We see in Figure 5 that the BSS is
positive for all the upscaling size parameters and for all the thresholds. The upscaled prob-
abilistic forecasts at larger scales can then be considered as better than the deterministic
upscaled forecast.

Finally, we can make some remarks concerning the impact of the choice of quantile. The re-
sults for the 90%, 95% and 99% quantiles show more significant differences for low thresholds.
The spatial variability of the individual members and the observation are then analyzed. Fig-
ures 4(b) and 4(c) show the empirical variograms of the ensemble members and observation
binary fields defined by two thresholds (respectively 0.1 and 10 mm/24h). For the lowest
threshold, we note important differences between the observation spatial variability and the
spatial variability of the different members. Small structures of low intensity are described
within the radar observation fields which are not represented in the forecasts. This situation
can explain the sensitivity of the results to the choice of quantile.

6 Summary and Recommendation

We investigated two spatial methods applied to ensemble probabilistic forecasts. Verification
results have been shown for daily precipitation during a summer period. A guideline for the
use of those methods to generate new probabilistic products can be drawn.

Concerning the application of the neighborhood method, an optimal size parameter in terms
of BS was found. However, we noted that this optimal solution (40 grid points) leads to an
important loss of sharpness and the resulting forecast has a similar quality as a smoothed
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deterministic forecast. Since the maximum gain, specially in terms of resolution, is realized
at the beginning of the environment extension, we advocate the use of a smaller radius of
influence. For example, a size parameter of 10 grid points maximizes the gain in resolution
and improves the reliability up to a factor of 2.

Concerning the upscaling procedure, the choice of the size parameter relies on the expectation
of the user. For all investigated scales, the upscaled probabilistic forecast performs better than
the upscaled deterministic forecast. Moreover, for high thresholds, the forecast resolution
is improved after upscaling compared to the original fine scale probabilistic forecast. The
better discrimination at large scales between event and non event is then of high relevance
for decision making. The negative impact of the upscaling on the reliability can be solved
later by the application of a calibration technique.
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