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1. Introduction

Data assimilation for numerical weather prediction (NWP) at the convective scale meets with
a number of challenges. They include: strongly flow dependent and unknown spatial balances
between the different model variables, importance of nonlinear processes, non-Gaussian er-
ror statistics and large forecast errors in ’weather’-parameters due to imperfections in the
physics, in particular in the cloud and boundary layer formulations.

The Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) offers some very
attractive features: it is a simple algorithm, no tangent linear and adjoint versions of the
prognostic model are required, and the forecast error covariance matrix is cycled and thus
flow-dependent.

At Deutscher Wetterdienst (DWD) it is planned to use the LETKF on the global scale
(GME/ICON, in a hybrid approach together with 3dVar) as well as on the local scale
(COSMO-DE). COSMO-DE is a nonhydrostatic COSMO-version with a horizontal reso-
lution of 2.8 km, covering Germany and parts of its neighbouring countries (Baldauf et al.,
2010). The LETKF analysis ensemble will also serve as initial conditions for COSMO-DE
EPS, a convection permitting EPS system under development at DWD.

The outline is as follows: we will give a short overview on the LETKF in section 2. In section
3 we present the results of our LETKF experiments and we conclude in section 4.

2. LETKF theory

Our Implementation follows (Hunt et al., 2007). The basic idea of the LETKF is to do the
analysis in the space of the ensemble perturbations. This is computationally efficient, but
also restricts corrections to the subspace spanned by the ensemble. An explicit localization
is necessary to confine the ensemble size; this means to compute a separate analysis at every
grid point, where only certain observations are selected. Thus, the analysis ensemble members
are a locally linear combination of first guess ensemble members.

The analysis mean x̄a is given by

x̄a = x̄b + XbP̃a(HXb)TR−1(y − ȳb) (1)

where x̄b is the first guess mean; H is the (linearized) observation operator and Xb are the
first guess ensemble perturbations. The analysis ensemble is obtained via

Xa = Xb[(k − 1)P̃a]1/2 = XbWa. (2)

Here, k is the number of ensemble members and P̃a is the analysis error covariance matrix
which is (in the ensemble space) given by

P̃a = [(k − 1)I + (HXb)TR−1HXb]−1. (3)
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3. Experiments and results

We performed several preliminary experiments with successive LETKF assimilation cycles.
In all experiments, 32 ensemble members were used. The initial ensemble members where
drawn from the 3dVar B-Matrix of the global model GME. Conventional observations from
the global network were assimilated. We have run a 3-hourly cycle up to 2 days (7-8 Aug.
2009: 1 quiet + 1 convective day) and used lateral boundary conditions (BC) from COSMO-
SREPS (3 * 4 members) or deterministic BC.

In our first experiments we concentrate on general topics, such as the rms/spread ratio of the
ensemble, the noise (as measured by dps/dt) and the general behaviour of LETKF (analysis
increments, spread structures). The effect of parameter variation (e.g. localization length
scales) was tested, but fine tuning is left to be done with longer running experiments.

The set of analysed variables is given by u, v,w, T, pp, qv, qcl, qci (wind components including
vertical velocity w, temperature, pressure pertubation, humidity, cloud water and cloud ice
content). Here, ’analysed’ means that linear combination is applied to these variables; other
variables are taken from first guess ensemble members or ensemble mean.

We verify the LETKF results (i.e. the analysis mean) against the nudging analysis and ob-
servations. When comparing with the nudging analysis one has to take into account that the
nudging scheme uses a larger set of observations. A verification tool (deterministic/ensemble
scores) is currently under development within the COSMO consortium.

Figure 1: spread (wind component u in m/s) of first guess on 7 Aug. 2009 at 12 UTC (after 4 analysis
cycles) for deterministic BC (left) and ensemble BC (right)

Fig.1 shows the spread of the u-wind component of the first guess ensemble, obtained with
deterministic and ensemble BC, respectively. In the case of deterministic BC we observe a
lack of spread at the lateral boundaries, whereas “new” spread is coming in from the west
with ensemble BC. This demonstrates the need to use ensemble BC’s, and it can be seen
that a large amount of the whole domain is influenced by the spread stemming from the BC.
As we will see later, the use of ensemble BC leads to some difficulties.

In order to test the implementation of the LETKF and it’s capability of making use of
observations we compare the analysis produced by the LETKF with a free forecast which
uses the same BC but no observations. Fig.2 shows the temporal development of the first
guess and free forecast rmse of the u-component of wind velocity (as measured with respect
to the nudging analysis) on the 500 hPa level. One can see that the LETKF performs better
than the free forecast on all levels.

Next we verify the LETKF analysis against observations; the results are shown in Fig. ??.
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Figure 2: rms of u,(m/s) (interior) of first guess and free forecast; results for det BC.

The reduction of spread between first guess and analysis indicates that the LETKF makes
use of the observations. As also the rmse of the analysis is smaller than that of the first guess
we conclude that the LETKF is able to use the information contained in the observations.
The spread of first guess and analysis is much smaller than the corresponding rmse; this
means that the ensemble is underdispersive.
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Figure 3: time average (20090807 15 UTC - 20090809 00 UTC)of obs-fg and spread of u,(m/s) (whole
area), AIREP

The lack of spread is (partly) due to model error which is not accounted for so far. One
(simple) method to increase spread is multiplicative covariance inflation:

Xb → ρXb (4)

with Xb being the ensemble perturbations and ρ > 1. The tuning of the inflation factor ρ
takes much time, and it is expected that the optimal value will change in time, depending e.g.
on observation density. For this reason, an adaptive procedure is preferable. (Li et al., 2009)
propose an online estimation of the inflation factor. The idea is to compare the “observed”
obs minus first guess, given by (y−H(xb)) with the “predicted” one, given by (R+HPbH

t).
This method was applied in a LETKF environment by Bonavita et al. (2010), where ρ was
time and space dependent. Here, in a first step, we tested a version with a space independent
ρ.

It is also assumed that the observation errors and thus the R-matrix are specified incorrectly,
and a correction is desirable. This can be achieved by comparing the observed observation
covariance with the assumed one (in ensemble space) and correcting R automatically if
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necessary. Both methods (est. of inflation factor / R matrix) have been tested with reasonable
numerical cost and success with a toy model, and have been implemented in the COSMO
LETKF. For deterministic BC, a positive effect of the adaptive ρ inflation is visible, which
is shown in Fig.4. In the case with ensemble BC the method was not succesful. Currently, an
improved version with a space dependent ρ and doing the computation in ensemble space is
tested.

Figure 4: intercomparison of first guess rms and spread of u,(m/s) (interior); results for det BC and
constant inflation factor ρ (exp1004) and adaptive covariance inflation (exp1006)

The LETKF produces an analysis ensemble as a (local) linear combination of the first guess
ensemble. The analysis fields obtained are not necessarily balanced, and noise (e.g. external
gravity waves, measured by dps/dt) might be present when starting the integration. Indeed
we find an increased level of noise (as compared with the nudging scheme). Fig.5 (left plot)
shows that noise is present in the whole domain.

We observed that the diagonal elements of weight matrices W are larger than the off diagonal
elements; this means that the analysis ensemble member k gets the largest contribution from
first guess ensemble member k plus (smaller) corrections from members i 6= k. Thus, the
difference between analysis and first guess ensemble member k (the analysis increment) is
small compared to the full fields, and hydrostatic balancing can be applied to this increment:
this leaves the full fields nonhydrostatic as it should be in a nonhydrostatic model.

Figure 5: area plots of noise (dPs/dt) at the first time step; ens BC without hydrostatic balancing (left)
and with hydrostatic balancing applied (right).

Applying this method reduces the noise in the interior of the domain (Fig.5, right plot); at
the boundaries, there is still noise present.

No. 11: February 2011



1 Working Group on Data Assimilation 31

4. Conclusions

We have tested the LETKF in preliminary, short assimilation cycles. The LETKF demon-
strated its capability of assimilating conventional observations correctly. Problems such as
a lack of spread and noise introduced by the ensemble BC were identified. The latter could
be alleviated by applying hydrostatic balancing to the analysis increments. The effect of this
balancing on the rms/spread ratio will have to be investigated. Furthermore, we will study
the effect of the remaining noise on e.g. precipitation at the beginning of the integration.

The adaptive covariance inflation, which was tested in a simple version, was successfully
applied in the case of deterministic BC. For ensemble BC a more sophisticated version is
currently tested. Within the COSMO consortium, alternative methods to account for model
errors are developed and will also be implemented in the LETKF.

In the future we will run experiments over a period of weeks or months. In this experiments,
we will use more observations (radar data in particular) and do the analysis more frequently
(≈ all 15 min). With this more realistic setup, parameters as the localization length scales
will have to be tuned.
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