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Editorial 11 Introdu
tion
This COSMO Newsletter documents a few of the many presentations given at the last
COSMO General Meeting which took place from 7 to 11 September 2009 in Offenbach,
Germany. With over 100 participants, it was the largest COSMO General Meeting since its
beginning in 1999.

Additional to this Newsletter, final reports of the COSMO Priority Projects VERSUS and
SREPS have in the meantime been published as COSMO Technical Reports, and the QPF
Priority Project has published its final results in the December 2009 issue of Meteorologische
Zeitschrift. This reflects our aim to more often publish in peer-reviewed journals rather than
COSMO-internal publications to further increase the visibility of COSMO.

With Russia as the newest member of COSMO, the next COSMO General Meeting will take
place from 6 to 10 September 2010 in Moscow, Russia. - See you there!

Marco Arpagaus
COSMO Scientific Project Manager

Figure 1: Participants of the 11th COSMO General Meeting in Offenbach
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1 Working Group on Data Assimilation 2

Soil initialization strategy for the COSMO model

Francesca Di Giuseppe, Giovanni Bonafé, Davide Cesari

ARPA-Servizio IdroMeteoClima, Bologna, Italy

1 Introduction

Soil initialization is not a straightforward task for a number of reasons. Firstly there are
almost no suitable measurements for operational analysis. In situ observations are rare and
heterogeneous. The Global Soil Moisture Data Bank project [5] is an example of collection,
dissemination, and analysis of gravimetric observations of soil moisture and temperature data
from around 600 sites over the globe, but until now has served mainly the scope of creating a
dataset for verification and initialization of climate simulation, without attempting to satisfy
the real-time needs. Remotely sensed surface soil moisture data are available with mostly
daily frequancy, but the detected radiation is directly linked only to the model’s uppermost
soil layer and therefore can only provide partial information. Moreover soil moisture retrieval
from microwave frequencies requires accurate specification of the vegetation cover and soil
type at the pixel location which, is not usually possible with the desidered precision. In
addition to the lack of useful observations, it has to be mentioned the small representativity
of soil measurements, where they exist. Correlation lenght for soil moisture, for example, can
be as small as 10 m [8], making the design of an observational network almost an utopia.

The need for soil initialization without representative measurements has led the interest in
indirect determination of soil prognostic variables. In this work, three different choices to
initialise limited area model soil fields are compared, with the aim of identifying the most
suitable strategy which combines ease of implementation, improvement in forecast skills and
realistic estimations of soil paremeters, expecially in the light of hydrological applications.
The regional model COSMO is used as limited area model forecasting system. The ECMWF,
IFS model as global model.

For a three month long integration period spanning September-October-November (SON)
2008, the COSMO soil scheme TERRA is initialised either by a simple interpolation from
the IFS soil moisture analysis or by fields generated by a COSMO previous integration
or by a local soil analysis implemented with a variational scheme which uses screen level
temperature to adjust the soil hydric content to minimises the distance between background
and observations.

Extensive comparisons with observations show that most of the improvements are achieved
when passing from a simple interpolation from ECMWF experiment to a free running
COSMO model, while the soil moisture correction adds a marginal benefit to the predic-
tion of surface fluxes. This suggests that keeping the model soil fields in good equilibrium
with the soil scheme, especially for what concerns temperature, is more relevant than the
subsequent correction of soil moisture provided by an analysis scheme.

2 Models, data and experiment design

In this section the set-up for the experiments is desccribed in details as well as the validation
dataset used for the comparison. Since soil moisture analysis based on atmospheric obser-
vations is indirect and relies heavily on the underlying model, a brief summary of the main
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1 Working Group on Data Assimilation 3

features of the land surface schemes in the operational ECMWF model (IFS) (used in the
experiment named ECMWF) and in the COSMO model is given.

2.1 Experiment strategy

To isolate the effect of soil prognostic variables (i.e. temperature and humidity) on the model
analysis, only the methods for initialzing those fields are varying among the three different
experiments, while all other model configurations, external fields and boundary fields are kept
invariant. The bottom layer soil temperature and humidity and the sea-surface temperature
are interpolated from the global model IFS. In all experiments the atmospheric forcing is
prescibed from the previous COSMO analysis as in the operational implementation. A three
month long integration is performed starting the 1st of September 2008 (SON period). Each
cycle lasts 24h starting at 00 UTC, 3-hourly boundary conditions are provided by IFS run
at roughly 25 km resolution.

Three soil moisture intialization methods are implemented.

• Initialization by interpolation from the ECMWF soil analysis (hereandafter ECMWF
experiment). The soil moisture and temperature fields are initialised using IFS analysis.
At the beginning of each assimilation cycle the soil temperature and moisture fields
are re-initialised with interpolated fields from ECMWF. The interpolation is firstly
performed horizontally by taking the nearest IFS land point, and then vertically by a
linear fit.

• Free running soil initialization (hereandafter COSMO experiment). The initialization
is performed using the soil moisture and temperature fields from the previous COSMO
run. After the first few days of start up the soil moisture of this experiment represents
the equilibrium between the source terms (precipitation, dew, rime, snow) and the sink
terms (evaporation from bare soil, transpiration from plant, run-off). The temperature
profile is instead calculated with the force-restore method using the energy budget at
the surface and it’s therefore a direct consequence of the atmospheric model radiative
forcing.

• Free running soil initialization plus variational soil moisture analysis using surface 2
m synop observations (SMA experiment) A local soil moisture analysis is performed
using the variational scheme from [10]. The soil moisture is adjusted to minimize the
distance between background and synop observations. The soil temperature is initial-
ized from the previous COSMO run but, being the soil heat capacity a function of
the soil moisture, it will predict a soil temperature profile which is different from the
one of the COSMO experiment. Moreover a different soil moisture produces a different
radiative coupling with the atmosphere. (sono giuste le correzioni qui?)

In table 1 a brief summary of the three experiment is reported

2.2 The COSMO soil moisture analysis

The soil moisture analysis used in the SMA experiment is based on a variational approach
outlined in [10]. Firstly, a T an

2m analysis field is obtained by optimal interpolation of synop

observations and model background coming from the previous, T fg
2m, COSMO run. Then,

increments, ∆T2m, at 12 and 15 UTC are calculated as T an
2m − T fg

2m. Finally, ∆T2m are con-
verted in moisture increments ∆wgi at the various soil levels using a parameterized form of
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1 Working Group on Data Assimilation 4

Exp Name Temperature Soil Moisture Comments

ECMWF Interpolated from
IFS

Interpolated from
IFS

COSMO From the previous
COSMO run

Interpolated from
COSMO

Bottom layer from IFS.
First initialization from
IFS

SMA From the previous
COSMO run

Adjusted with a
local soil moisture
analysis based
on T2m from the
synop network

Bottom layer from IFS.
First initialization from
IFS

Table 1: Summary of the main characteristic of the three experiments under analysis

the jacobian
∂wg

∂T2m

. ∆T2m are evaluated at two instants only when the soil-atmosphere cou-
pling is supposed maximum. One should therefore expect that the major benefit from the soil
moisture analysis arises primarily for situations the scheme is designed for, i.e. correcting
forecast errors at the time the observations are assimilated, which is around noon. If the
bias does not change its sign, the scheme should nevertheless be able to improve screen level
errors caused by misspecification of bowen ratio at other lead times. On the other hand, in
cases in which the soil is characterised by a substantial heating during daytime and cooling
during night, as it happens for example in very dry soil conditions, then the application of
this kind of soil moisture correction can exacerbate the reduction in soil thermal inertia with
a worsening of the biases during nightime.

All these aspects will be investigated in the following sections.

2.3 The IFS soil analysis

The IFS soil scheme has four prognostic soil layers for moisture and temperature, with a free
drainage and a zero heat flux condition at the bottom of the deepest layer. It also includes a
precipitation interception layer and a skin temperature level. From the surface to the bottom,
the layer thicknesses are, respectively, 0.07, 0.21, 0.72, and 1.89 m. The three top layers cor-
respond to the root zone with a total depth of 1 m. The root density decreases exponentially
with depth. The surface evaporation has a bare soil part controlled by soil moisture in the
top layer and a vegetation part. The role of the vegetation is represented explicitly, through
a transpiration term and an interception loss term corresponding to the evaporation of dew
and intercepted rain at the potential rate. The transpiration is controlled by the leaf area
index (LAI) and the stomatal conductance, which is regulated by the water availability in
the root zone (top three layers) and the photosynthetically active solar radiation.

The IFS implements a soil moisture analysis which employs an Optimal Interpolation (OI)
method proposed by [4]. Similarly to the SMA experiments described above, it is based on the
analysis increments of 2 m temperature and relative humidity. Every 6 h, corrections applied
in each soil layer (analysis increments) are linear combinations of atmospheric increments of
2 m temperature and relative humidity. The details of the method can be found in [1], while
for full details on the quality of the IFS soil scheme and comparison with observations we
refer to [7].
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1 Working Group on Data Assimilation 5

2.4 The verification dataset

The verification dataset is composed of three sources; surface flux measurements collected by
the EU-funded research project CARBOEUROPE Integrated Project (CEIP), soil humidity
data collected at the ARPA-SIMC meteo station located at San Pietro Capofiume (SPC)
in the middle of the Italian Po Valley and the standard network of synop surface stations
( 400) which cover the COSMO-I7 domain.

The CARBOEUROPE project has the main aim of quantifying the relationship between
carbon fluxes and vegetation characteristics. Therefore, great attention has been posed to
locate observing stations over different land use/cover types. Measurements 1 are recorded
since 2004 half-hourly on more than one hundred Eddy flux stations over Europe. The col-
lected dataset therefore potentially possesses a good representativity of fluxes over different
ecosystem types. The location and the vegetation characteristics of the stations which fall
into the COSMO-I7 domain and were active during the validation period (SON 2008) are
reported in table 1.

SPC meteo station is an intensive observation meteo station managed by ARPA-SIMC. In
addition to the conventional meteorological measurements including SYNOP and TEMP
variables, since 2007, is operating a Time-Domain Reflectometer (TDR) which measures soil
water content and temperature profiles at 8 unevenly spaced levels below the ground between
10 and 100 cm. At the time of the experiments, SPC was not provided with instrumentation
for surface fluxes measurements. Finally, global diagnostic are calculated using the synop

Figure 1: Type and location of the observational dataset used in this study. The displayed area is the
operational domain of the COSMO-I7 suite.

network which comprises more then 400 surface stations over land. A map of the location of
the stations used for the comparisons is reported in figure 1.

3 Problem diagnosis and impact of soil initialization

The main motivation for investigating a different soil moisture initialization strategy from
the simple ECMWF interpolation are systematic annual biases in screen-level temperatures
and humidities. As soil variables were initially interpolated from the IFS model it was often

1data available at www.carboeurope.org
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observed that in the Po Valley, in early spring, temperatures were systematically too high
while in summer they were too low. Figure 2 shows the diagnosis of the various problems
to be faced. The seasonal variation of the outgoing longwave radiation clearly shows a shift
in the annual wave phase, which is superinposed to the delay in the daily cycle. The soil
model appears to be too conductinve and thus unable to buid-up thermal enargy during
the summer. Moreover the weak daily cycle and its offset of few hours is responsible for a
warm nighttime bias and a cold daytime bias. The first prevents the establishment of stable
stratified PBL conditions typical of fog formation, the latter inhibits strong daytime mixing
with dalay in the triggering of local convection.

Figure 2: Seasonal versus daily outgoing longwave radiation at SanPietroCapofiume location as measured
by the CNR-1 (upper panel) radiometer and as predicted by the COSMO-I7 model (lower panel). The data
are averaged over two years 2007-2008.

The September-October-November 2008 period chosen for verification was a typical autumn
season with an intermittent series of heavy precipitations and dry spelt days. Figure 3 shows
the daily averaged observed precipitation and T2m at the SanPietroCapofiume location. The
first 10 days of October experienced no precipitation and have been marked as ’Dry Period’.
Between the 24th of October to the 2nd of November several rain bands were moving estlerly
from a low pressure minimum located in the middle of the mediterranean sea. Ten days of
almost continous precipitation were recorded and have been marked as ’Wet period’. Figures
4 and 5 show the 3-hourly 2m temperature and relative humidity for the 10 days during the
’Dry Period’ and the ’Wet period’.

Figure 3: Observed daily precipitation at SPC during the SON period 2008

As expected the largest model discrepancy with the observations is at nightime during the
dry period. These biases are exacerbated in the relative humidity due to the fact that the
model is evidently also slighly dry. In dry condition, the best performance during daytime
is achieved by the SMA initialization as one would expected. Under strong radiative forcing
screen-level temperature, used as predictors, strongly depend on the soil moisture content.
Moreover soil moisture incremens are only calculated during daytime and it is when the
scheme works at its best. If, as it happens, the daytime bias has opposit sign with respect
to the nighttime bias, the SMA approach will tend to dry-up a soil which is already too
dry exacerbating the nighttime bias as shown, for example, at day 38 in figure 4 where
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correcting the max 2m temperature brings a worsening of the minimum night temperature.
The limitation depited is inherent in the methodology which applays increments calculated
at ’noon’ to the whole assimilation window.

Figure 4: Time series of 3-hourly 2m temperature and relative humidity for the 10 days during the ’Dry
Period’.Observations are from the rain gauges while the model simulations are from the three different
intializations.

Figure 5: Same as figure 4 but for the wet period

The ’wet period’ is characterised by smaller biases, with the exception of day 59 when all
the three model simulations missed completly the observed precipitation. It is worth nothing
that in this wet regime when the soil moisture is close to its field capacity value the SMA
experiment produces unrealistic warm increments. This is a side effect produced by the
missing strong coupling between the soil and the boundary atmospheic level. Indeed care
has to be taken regarding the applicability of a soil moisture scheme when the information
content at screen level is weak. Some thinning is therefore recommended to exclude synoptic
situations with weak coupling between soil and atmosphere and when horizontal coupling
between neighbour grid points is weak (cloud free, not too strong advection).

Biases of up to -4 K in the T2M and 20 % in the RH2M highlight problems in the estimations
of both turbulent surface fluxes which can be due both to ground temperature and humid-
ity estimations and/or wrong surface turbulent coefficients. Figure 6 shows the mean-day
sensible and latent heat fluxes at one of the CARBOEUROPE station taken as example
averaged over 10 days during the dry and wet periods identified. Since the other sites show
very similar results they have not been included. On average both sensible and latent heat
fluxes are always underestiamted (see also figure 8), nevertheless, during nightime there is a
substantial over-estimation of both turbulet fluxes. The nightime bias is expecially marked
in the ECMWF experiment as was diagnosted by the excess in the outgoing longwave emis-
sion of figure 2. The soil–atmosphere interface is too warm and prevents the formation of
nightime stratified stable boundary layer conditions.

The diurnal cycle, almost completly absent in the ECMWF experiment, is highly improved
by both the COSMO and SMA experiments, showing the role played in turn by the ground
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temperature and humidity initialization. Moreover this highlights the main danger of external
interpolation from global models as a strategy for surface initialization. TERRA in its present
implementation is very conductive, so that, deep levels heating is conveyed to upper layers
very efficiently, while IFS SVAT scheme is tuned to a much lower conductivity. When the
interpolation is performed the initial ground temperature profile given to TERRA is therefore
not optimal for the new scheme which then predict a completly unrealistic cycle of the diurnal
cycle. As an example, figure 7 shows the daily variation of the ground temperature at two
levels as predicted by the three assimilation cycles at Collelongo during the dry period.
Despite the fact that SMA and COSMO have a more pronounced diurnal cycle the most
stricking feature is the very high temperature predicted by the ECMWF experiment in the
deeper ground levels. The use of this value into the TERRA scheme probably causes the
unrealistic noctournal heating diagnosted in figure 8. Most of the improvements are achieved
when passing from the ECMWF experiment to the COSMO one while the SMA initialization
only adds a marginal benefits to the prediction of surface fluxes. This also suggests that a
correction of soil temperature is more relevant then the subsequent correction of soil moisture
at least in dry condition. In other words, when the soil is close to its wilting point it is
hard to estimate the dominating effect between thermal inertia and radiative cooling and
possibly simply running the forecast model can furnish the zero-order correction to the
soil initialization problem. Near surface variable biases are strongly dependent on the soil
conditions. Therefore schemes which for their design only correct for errrors on a selective
basis can therefore only be able to ’conditionally’ correct them.

Figure 6: Top panel.Comparison of model and observed meanday sensible and latente heat fluxes for the
dry period under study. Low panel. as on the top panel but for the wet period. Similar results have been
found in the other CARBOEUROPE sites (not shown)

Keeping these caveats in mind it is nevertheless important to assess the global statistical
performance of the various experiments in terms of forecast scores. Figure 8 shows the com-
parison between H and LE at two CARBOEUROPE locations for the three methods as
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Figure 7: Mean day temperature profiles at two model levels as predicted by the three initialization
scheme.

compared to the observations for the whole period. The fit accross the data is performed
locally. That is, for the fit at given point x, the fit is made using points in a neighbourhood
of x, weighted by their distance from x following [9]. These diagnostics are calculated for the
whole period so different soil condition are sampled. On average the model underestimates
both sensible and latent heat during daytime and nighttime. It is clear that even on domain
mean statistics the improvements produced by the COSMO experiment with respecty to
ECMWF interpolation largely offset the addictional benefit of also performing a soil mois-
ture analysis. Similar conclusions can be drawn if looking at 2m diagnostics evaluated using
the synop network over the whole COSMO-I7 domain and reported in figure 9. Most of the
bias contribution is due to the cold bias at noon which is reduced by both the COSMO
and SMA experiments. The nightime warm bias, even if smaller in size, is nevertheless very
significative from the point of view of weather inpact. It is likely infact that these biases
cause the missing prediction of local weather phenomena such as fog and brine formation.

4 Conclusions

Given the lack of any representative soil measurement network and the often insufficient
knowledge of surface pedology, lithology, and vegetation characteristics, at the present soil
analysis should be considered simply as a tuned lower boundary condition to drive at its best
lower level atmospheric processes. The first and more obvious consequence of this strong
assertion is that soil outputs from atmospheric models are not appropriate to drive for
example hydrological models, as absolute soil moisture content strongly depends on the
design of the soil model [6]. Onces this is given for acquired, there are a number of practical
considerations which directly stems from this acknowledgment. They have been proved along
this work in which different soil initialization methods have been compared in the quest for
the best strategy to provide a soil analysis in regional models. They main findings are now
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Figure 8: SON 2008 period statistics for the latent and sensible heat fluxes at two Carboeurope locations.

Figure 9: Global domain statistics of the T2m variable as predicted by the three experiments. The bias
is calculated using the 400 stations of the synop network.
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synthesized in this conclusive section.

Firstly, there are serious problems in trying to use soil analysis derived from a global model
into a limited area model if the two models are different. While this is certainly a suitable
option for the atmospheric fields which to some extend represent the true atmospheric state
it looses any validity for the soil prognostic variables if, as it is at the present, they only
represents parameters to be tuned to compensate for various model biases. It is clear that
SVAT models with different characteristics will also adjust to different thermal and hydro-
logical equilibria with little connection to the reality. If the global model and the regional
one have varying assumptions, the consequences on the surface fluxes estimation can be se-
vere especially under selective circumstances (i.e. dry condition, little advection, large cloud
cover, etc). In our study we found, for example, that initializing the regional model COSMO
SVAT moudule TERRA by interpolation from the global IFS model induce in COSMO a
strong warn nighttime bias and a weakening of the diurnal cycle in both latent and sensible
heat surface fluxes. The cause was identified in the different specification of the soil thermal
conductivity between the two models. What therefore could be appropriate (.i.e. ’tuned’) for
IFS is probably not optimal when used into another model.

Simply using COSMO in a freely running configuration can avoid these imbalances and it is
found a winning and therefore recommended strategy especially for situation when the soil is
close to its wilting point. This condition are particularly challenging since higher amplitudes
in soil heating during daytime and cooling during night are expected. The correct prediction
of the soil vertical temperature profile becomes then fundamental. Soil temperatures profiles
which are in balance with the soil scheme are the zero order factor for correct surface flux
estimations. Any subsequent improvement in the soil moisture estimation performed, for
example, using indirect measurements such as T2m only adds a marginal benefit. This appar-
ently striking result is justified by the design of current soil mositure schemes which, using
near surface observations, as predictors for soil moisture increments, assume that atmosphere
is informative about soil moisture. However, forecast errors of atmospheric temperature and
humidity do not always contain useful information. For instance, during rain, at nighttime,
and with low solar insulation, this method is likely to fail. In the COSMO implementation the
soil moisture correction is evaluated at two instants around noon when the soil-atmosphere
coupling is supposed maximum. The major benefit from the soil moisture analysis arises
therefore primarily for situations the scheme is designed for i.e. correcting forecast errors at
the time the observations are assimilated which is around noon. In situation in which the
bias does change its sign during the day, it is intuitive that the scheme can dangerously act to
exacerbate the bias already present. A possible, and already proposed solution [2] would be a
selective application of soil moisture increments only on those cases for which the underline
hypothesis are stickily verified. This is nevertheless again an ’ad hoc’ solution which doesn’t
help envisage a substantial improvement of the absolute quality of soil analysis.

The use of other observations such precipitation, satellite derived surface soil moisture can
help on future soil moisture analysis. Nevertheless it is clear from this study that a substan-
tial benefit can immediately arise from including temperature as a control variable in the
assimilation scheme and from a concreat refinement of the model itself as was also outiled
by the intercomparison work done by [3].
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An Empirical Radar Data Quality Function for LHN: Experiments with
COSMO-2

Andrea Rossa1, Franco Laudanna del Guerra1 and Daniel Leuenberger2

1 ARPA Veneto, Teolo, Italy

2 MeteoSwiss, Zurich, Switzerland

1 Introduction

The meteorological and hydrological modelling communities are increasingly using radar ob-
servations and place specific demands on the description of the corresponding data quality. A
recent concerted effort has been the COST 717 Action Use of radar observations in hydrolog-
ical and NWP model [13]. Several approaches have been proposed based on how significant
the radar data quality control algorithms impact the observations [6, 5, 16]. One element
which can be considered common to all these efforts is that a detailed knowledge of the radar
systems is a prerequisite to derive an error information, whereas some methods rely on extra
information from complementary observations, such as disdrometers [1] or a high-resolution
rain gauge network [7], for instance, which makes the task more demanding.

The fact that many NWP centres have recently taken into operations convection-permitting
forecast models, many of which assimilate radar data, there is the need for a pragmatic
approach to providing quality information in order to avoid that radar errors degrade the
model’s initial conditions and, therefore, its forecasts [14]. Such pragmatic approaches have
been applied and can be as simple as parametrizing the radar data quality with range [10].

In this contribution a pragmatic and empirical approach to deriving a radar data quality
description is proposed to be used in radar data assimilation, more specifically for the latent
heat nudging (LHN) scheme [12]. In section 2 the data sets, the NWP, and two cases are
briefly described, while section 3 is devoted to the formulation of the quality function. Results
will be shown and discussed in section 4, and conclusions given in the final section.

2 Data sets, NWP model, and cases

Radar data The Swiss Radar Network [7] consists of three C-band Doppler radars pro-
viding full volume information every five minutes. The data are preprocessed and available
on a cartesian grid with a mesh size of 2 × 2 km3 for the network composite.

The Veneto Radar Network (VRN) consists of two EEC single polarization C-band Doppler
radars, one located on Mt. Grande a 470 m hill top 25 km southwest of the city of Padova,
one at sea level close to the border between Veneto and Friuli in northeast Italy. Their data
are post processed by the Hydrometeorological Decision Support System [2]. Here a number
of quality control algorithms are applied and surface QPE is derived in the QPE-SUMS
algorithm [9]. The QPE is available every 10 minutes.

The COSMO NWP model COSMO-2 is the operational MeteoSwiss implementation of
the high-resolution version of the non-hydrostatic weather forecasting model of the COSMO
(Consortium for small-scale modelling) community presently operational at several European
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Weather Services (Doms and Schattler, 2002, Steppeler et al., 2003). The COSMO-2 model
domain covers the Alpine arch (520 x 350 grid points, 60 vertical levels) and uses a horizontal
mesh size of 2.2 km. Its forecasts are driven by the regional COSMO-7 model with 6.6km
mesh size and covering central Europe, which in turn is nested in the global IFS model
of ECMWF. The COSMO-2 model uses a data assimilation system based on a nudging
technique (Schraff, 1997) for conventional observations from surface stations, radiosondes,
aircrafts and wind profiler.

Radar rainfall assimilation Radar surface rainfall observations are assimilated by the
Latent Heat Nudging scheme [10]. The main principle of LHN is to correct the model’s
latent heating at each time step by a factor derived from the ratio of observed and model-
estimated surface precipitation based on the basic assumption that the vertically integrated
latent heating is proportional to the surface rain rate. This is accomplished by adding an
extra term to the prognostic temperature equation, resulting in a gradual adjustment of
the other fields according to the full, nonlinear model. The introduced change in buoyancy
provokes an enhancement or dampening of the vertical velocity and the associated cloud
and precipitation processes. The vertical shape of the applied forcing is taken from the
model latent heating, ensuring consistency with the microphysical parametrisation. At each
grid point with non-zero temperature increments, the specific humidity is also adjusted
such that the relative humidity is conserved. Latent Heat Nudging has proven to work well
in the kilometre-scale COSMO model for idealized and real convection cases [11]. When
precipitation is treated as a prognostic model variable and is advected in all three space
dimensions, a basic assumption of the LHN scheme is violated. [15] proposed a modified
LHN scheme to take into account the spatial and temporal separation of the rate of change
in latent heating and surface precipitation and make the LHN algorithm more compatible
with the prognostic precipitation scheme of the COSMO model. This improved LHN scheme
is part of the operational implementation of COSMO-2 and used for all experiments presented
in this study.

Case studies In this section a brief description of the cases is given along with the impact
of the LHN on the analysis, in order to be able to assess the impact of the quality function
on the LHN analyses.

Veneto case 26 September 2007 This rainfall event was exceptional in terms of rainfall
intensities and accumulations (up to 120mm in 1 hour, 90mm in 30min, and 24mm in
5min), and overall accumulation 320mm in 6h and caused flooding of the urbanized area of
Venice Mestre. A surface low located on the Gulf of Genoa was associated with an upper-level
trough which advected cold air from Northern Europe towards the Alps and subsequently
onto Veneto, giving rise to organized convective activity.

The COSMO-2 analysis cycle confirms the heavy precipitation but with incorrect timing
and extension (Fig.3). A first of two passages took place in the morning hours and hit a
much larger area. In the late afternoon the second passage brought even larger intensities
over the region. The analysis cycle produced a local precipitation maximum which is quite
close to the observed but, on top of that, a number of even stronger and larger maxima were
simulated which were not observed (e.g. just east of Mestre over the coast line, and some
50 km northwest of Mestre).

Figure 3 panel b) shows that the latent heat nudging (LHN) of the Veneto radar data
managed to reduce the incorrect precipitation to a large extent, for instance reducing values
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Figure 1: Conceptual definition of the radar data quality function. Rest clutter identification is performed
on the very high-frequency pixels, which then are set to zero. Pixels with frequency higher than f0 are set
to one, while the quality is lowered for frequencies below f0. See text for further explanations.

of more than 100mm in the the area northwest of Mestre to under 40mm (20mm) for
the greenish (blueish) colors, values that are in line with the rain gauge measurements (not
shown). The highest accumulations simulated just to the east of Mestre were almost entirely
suppressed in the LHN run. On the other hand, it successfully triggers the precipitation in
the area where it was observed with about the right accumulation.

In summary, the LHN has a very large impact on the simulation in analysis mode featuring
a very efficient drying of the excess precipitation and excellent triggering of the observed
convection. There is a clear response of the low-level wind and convergence field illustrating
that the LHN method is able to modify the microscale circulation around the precipitation
systems.

Swiss case 11 August 2008 The case studied over the SRN domain is a less exceptional
case of the passage of several frontal rain bands over Switzerland. On 11 August 2008 an
extensive long wave trough was situated over Western Europe. An associated low pressure
system over the Brithish Isles with a core of 990 hPa was associated to a warm and a cold
frontal passage in central Europe on that and the following day. On 11 August in the af-
ternoon, a first rainband associated with the warm front crossed Switzerland, causing up to
18 mm of precipitation. In the night the coldfront entered the SRN domain from west and
passed slowly over Switzerland during the 12 August. This coldfront led to heavy frontal and
convective rainfall with sums up to 70 mm in northern Switzerland.

In this case, the overall effect of the LHN was to insert the main convective activity observed
over northern Switzerland, along with a significant drying over the main Alpine crest in
central Switzerland, where evident convective activity was suppressed (Fig. 4 panels a and
b). Even on the minor precipitation peaks the LHN managed to improve the precipitation
analysis.
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a) Veneto DJF b) Veneto JJA

a) Swiss DJF b) Swiss JJA

Figure 2: Radar data quality function for VRN and SRN for winter and summer period.

3 Empirical radar data quality function

Simple, economical schemes for cloud-scale radar data assimilation, one of which is Latent
Heat Nudging (LHN), have recently received considerable attention for deployment in rapid
update cycles, and were reported to produce beneficial results [4, 3]. There is, however, no
explicit accounting of the observation quality in LHN, a fact which makes the scheme vul-
nerable, for instance to non-rain echoes which may be significantly amplified in convectively
unstable environments [14].

Another typical situation which can lead to problems in the assimilation cycle are areas in
which the radar has a greatly reduced visibility or is ’blind’. Suppose that the model has
precipitation in an area which are badly seen by the radar. Without accounting for this
reduced radar quality the LHN scheme tries to reduce or suppress the model precipitation
by cooling the profile, which can induce subsidence. If this happens close to a boundary of
the radar domain such a subsidence can act to produce an outflow boundary which, in turn,
can create a low-level convergence able to trigger precipitation.

Motivated by [8] who pointed out the structural similarity of the long-term radar QPE
accumulation with the visibility map of the radar, an empirical radar data quality function
is proposed here based on a long-term frequency analysis of precipitation occurrence f , which
counts for each radar pixel the number of times when precipitation is observed. The main
idea is to attribute quality to these pixels as follows (Fig. 1):

• pixels which are seen too many times are likely to be rest clutter and are assigned
w(x, y) = 0 for f ≥ fc;

• pixels which are regularly seen are likely to be of sufficient quality to be taken verbatim,
i.e. w(x, y) = 1 for f0 ≤ f ≤ fc;
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• pixels which are rarely seen are likely to be in blocked areas and are assigned w(x, y) =
g(f) → 0 for f → 0;

The lag correlation of the time series for each pixel is found to discriminate clutter pixels
from rain pixels, in that the decorrelation length is shorter for the former. This is used to
identify plausible values of fc. The function g(f) = 1 − 1/(1 + e0.7f−4) is chosen such as to
provide a smooth transition between the good and the still acceptable pixels.

In the perspective of updating such an analysis by adding the latest day while taking out
the oldest in the data set, the length of the period should be long enough to avoid too
large day-by-day variability, while it should be short enough to allow for at least seasonal
differences. One-month periods proved to be rather short, while three-month periods seem
more adequate. Figure 1 upper panels shows the results for the summer and the winter
seasons for the Swiss radar network. It can be easily seen that the main and well known
error prone areas are reproduced by the quality function, i.e. the scarse visibility in the
valleys like the Valais and the Engadin, the cones due to nearby obstacles of the La Dole
radar, the range effect in all three radars, as well as a number of small scale clutter-prone
areas.

The seasonal variability is also plausible in that in summer the precipitation systems are
higher-reaching than in winter so that they are seen at longer ranges in summer yielding
better quality. In particular, in winter the quality at long ranges is reduced, the orographic
blocking as well as the cone of the La Dole radar extending to the northeastmuch much
more pronounced. The rest clutter pixels (white wholes) are remarkably stable and tend to
be larger in winter than in summer.

For the Veneto radar network (Fig. 1 lower panels) the cones due to two closeby hill peaks
are well visible in the quality function, as are the shielded areas behind the pre-Alpine chain
to the north. The range effect, however, is inverted especially for the Mt. Grande radar,
showing good quality at longer and reduced quality in large patches at shorter ranges. The
lower quality regions close to the radar occur mostly over completely flat terrain and still
require explanation. Also, there is a significant difference between the two radars of the
network, with the Concordia Sagittaria radar exhibiting a frequency of occurrence which
is significantly lower than for the Mt. Grande radar. This fact is unlikely to depend on
differences in the precipitation climatology but is expression of differences in the performance
of the two radars.

The seasonal differences are well in line with those found for the SRN. Most evident features
include the longer ranges over the mountains to the north. Again, the maximum quality is
found out to the border of the radar domain in summer.

4 Impact of the quality function on radar data assimilation

In order to assess the impact of the quality function on the LHN scheme assimilation exper-
iments were run as listed in Tab. 1. In the following two subsections this impact is described
for the cases presented in Section 3.

Veneto case 26 September 2007 The main impact of the quality function in experiment
REF RQ as compared to REF R is the reduced dipolar structure at the western border (Fig. 3
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a) b) c)

d) e) f)

Figure 3: 24-hour precipitation accumulation (in mm) of the Veneto case 26 September 2007 00UTC
simulations as listed in Table 1 (panels a, b, and e), as well as the corresponding differences (panels c, d,
and f). The arrangement of the panels has been chosen to help the comparison of the accumulation and
their differences.

experiment description Swiss case Veneto case
REF without LHN 48h analysis 24h analysis
REF R with LHN, without quality function starting starting
REF RQ with LHN, with quality function 11 Aug 2008 00UTC 26 Sep 2007 00UTC

Table 1: Assimilation experiments for the assessment of the impact of the radar data quality function on
the LHN scheme.

panels d and f) of the radar domain and, most prominently, the differences in the blind cones
of the Mt. Grande radar. In fact, here the quality function allows for the model precipitation
to stay in the simulation. More subtly, and due to the fact that the quality function of the
Veneto radar network is one in this area, the cone constitutes a border between the areas
where the radar is assigned zero and full quality. In this case, the erroneous model rainfall
is suppressed by inducing subsidence, but not in the cone, so that the resulting low-level
outflow produces a convergence and, therefore, enhanced rainfall. This effect is evident in
the difference plots REF - REF RQ and REF R - REF RQ (Fig. 3 panels c and f).

Swiss case 11 August 2008 The most evident feature of the LHN run REF R for this
case is the artificially looking structure in the southwestern border of the SRN domain (Fig. 4.
Infact, the SRN quality is close to zero in this area due to a visibility cone of the La Dole
radar and a progressive range effect. The model analysis simulated significant precipitation
in this area which the LHN sucessfully reduced. Just outside the SRN domain, on the other
hand, there are precipitation bands along the border. Again, these are compatible with the
mechanism discussed above. The quality function recognizes this as an area in which the
radar data should not have a strong impact on the model. Accordingly, the run with the
quality function REF RQ strongly reduces the artifacts, both within the radar domain and
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d) e) f)

Figure 4: As in Fig. 3 but for the Swiss case 11 August 2008 and 48-hours accumulation period.

just across its border. On the rest of the SRN domain the quality function has a minor
impact on the LHN scheme, as the model did not produce precipitation in areas of low radar
data quality.

5 Summary and discussion

In this contribution a novel, yet simple, empirical quality description of radar-derived quan-
tititive precipitation estimates (QPE) was proposed. It was constructed using a long-term
frequency of occurrence of precipitation analysis. Hereby frequent (rare) occurrence of pre-
cipitation is assessed as ’good’ (’bad’) quality, while rest clutter was identified and assigned
quality zero. How and for what frequencies the quality descreases from one to zero is tunable
to some extent, and can be conceived as an overall weight one subjectively intends to assign
to the radar observation. The empirical radar data quality function proposed with a moving
90-day accumulation window has the following characteristics:

• it is conceptually simple and easy to construct;

• it reproduces the main error structures and is, therefore, a plausible way to account
for the average problems in radar QPE;

• it has a sufficiently smooth day-to-day evolution for an Alpine climate;

• it accounts for the seasonal variability of the radar QPE;

• it is, to some extent, generic, in that it can ’easily’ be evaluated for different radar
networks (here for two) and, potentially, also for heterogeneous networks in that it
does not rely on specifics of the radar processing.

The impact of the proposed quality function on the LHN assimilation has been found to be
beneficial in that it:

• reduces artifacts which can be induced close to boundaries of the radar domain;
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• constitutes an additional means to reduce rest clutter and its potentially harmful im-
pact on the analysis;

• does not artificially interfere with the model precipitation in areas where the radar is
(almost) blind;

The limitations of such an empirical radar data quality description are recognized in that:

• it is empirical and not physically based and does, therefore, describe the effects of the
error sources without taking them into account explicitly;

• it is an average, rather than a instantaneous quality description and thus accounts for
average errors, rather than actual real time errors;

• the present formulation will yield good (bad) quality in case of precipitation occurrence
much higher (lower) than climatology, hence not reflecting effective radar data quality;

• the quality is described as a weight between 0 and 1, i.e. an index, rather than in
units of the precipitation and is, therefore, not directly applicable to statistical data
assimilation schemes as ensemble Kalman filters, for instance, nor does it, in its present
form, account for error covariances.

In a radar network single radars may be missing occasionally, or for longer periods, a fact
which is not easily accounted for in the presented approach. A solution to this problem
could be performing the analysis on the single radars and then composited following the
compositing procedure of the network. Alternatively, the quality information thus obtained
could be used in support of the compositing method, preferring the radar with the best
quality for a given pixel.

An obvious extention of this work is to apply the quality function to longer assimilation
periods and assess its impact more systematically. Also, its impact on the free forecasts
has yet to be addressed. In view of the OPERA efforts to make radar data available on a
European scale this approach could be a candidate method to pragmatically deal with the
inevitably very heterogeneous radar data quality in the framework of assimilation methods
like LHN.
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Is the Local Ensemble Transform Kalman Filter suitable for operational
data assimilation?
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Abstract

Principal approximations inherent in the Local Ensemble Transform Kalman Filter (LETKF)
are examined, and conclusions about the related approximation errors are drawn. First, the
major difficulty in implementing the LETKF technique in the operational context is its
lack of efficiency in assimilation of non-local, primarily satellite, observations. The cause
of this difficulty is the restriction of the analysis increment to low-dimensional ensemble
space, on the one hand, and large spatial supports of satellite data, on the other hand.
Second, making analysis in small local boxes gives rise to small-scale noise due to local
data selection—as in Optimum Interpolation. Third, an attempt to account for realistically
correlated observational errors makes LETKF and other ensemble-space and model-space
Ensemble Kalman Filters (EnKF) computationally inefficient. Published experimental results
are discussed in the light of the theoretical and experimental findings made in this study.

1 Introduction

In the recent years, a kind of Ensemble Kalman Filter (EnKF), the Local Ensemble (Trans-
form) Kalman Filter (LEKF/LETKF) has become popular. Numerous papers, starting from
(Ott et al. 2004), have explored capabilities of LETKF to deal with different data assimila-
tion issues, including real-data assimilation (Hunt et al. 2007, Szunyogh et al. 2007b, Miyoshi
and Yamane 2007, Bonavita et al. 2008), satellite data assimilation (Szunyogh 2007a, Fertig
et al. 2007), four-dimensional assimilation (4D-LETKF, Hunt et al. 2004, Kalnay et al. 2007,
Harlim and Hunt 2007b), non-Gaussian background-error distributions (Harlim and Hunt
2007a), forecast bias (Baek et al. 2006) and others. The LETKF technique is simple, com-
putationally efficient, and allows for flow-dependent background-error covariances. Different
extensions to the basic LETKF formulation have been proposed. Some of the above papers
report on promising results in near-operational setting. But still there are no operational
implementations.

The questions arise: Is the LETKF technique a real alternative to variational methods (3D-
Var and 4D-Var) as a means of operational (global and limited-area) data assimilation? What
are the conditions under which LETKF can be considered to be really competitive?

To answer these questions, we consider below the details of the LETKF algorithm and draw
some conclusions about its capabilities, especially in the areas of satellite and meso-scale
data assimilation. The focus is on the analysis step, where, as we will see below, the major
limitations of the technique lie.

2 LETKF. Analysis step: brief description

In this section, we derive the LETKF analysis equations, emphasizing approximations (and
thus imperfections) inherent in this technique.
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At each analysis step, we have: the deterministic forecast xf , an ensemble of perturbed
forecasts {xf

i } (i = 1, . . . , ne, ne is the ensemble size), and observations xo. The ensemble

mean is usually used as a background field xb in the analysis. The deviation fields xf
i − xb

are deemed to be independent samples from the unknown true probability distribution of
the (minus) background error xb − x, where x is the true field to be estimated. Here, we

assume that xf
i are already undergone a procedure like ’variance inflation’, which attempts

to take into account errors due to forecast model imperfections (model errors).

The distinctive features of the LETKF analysis are:

1. At each analysis grid point, the analysis is performed locally : using only nearby obser-
vations from a box (cylinder, ellipsoid, ...) surrounding the grid point—as in Optimum
Interpolation (OI) (Gandin 1963, Lorenc 1981).

2. The analysis is performed in ensemble space: within each local box, the analysis incre-
ment belongs to the subspace spanned by ensemble deviations, xf

i − xb.

The details of the technique follow.

2.1 Ensemble space

We start by computing the (global) ensemble vectors,

ei :=
1√

ne − 1
(xf

i − xb), (1)

where the sign := means ‘equal by definition’. The normalization by
√

ne − 1 is introduced
into Eq.(1) only with the intention to simplify the analysis-algorithm formulae.

Next, we proceed by forming (theoretically) the ensemble matrix

E = (e1 · · · ene
). (2)

Note that, as it follows from Eqs.(1) and (2), the ensemble sample covariance matrix Be is

Be = E ·ET . (3)

Now, we introduce ensemble space E := Span{e1, · · · , ene
}, so that any z ∈ E can be

expanded in the ensemble vectors:

z =

ne∑

i=1

z̃iei ≡ Ez̃ (4)

Here are below, by tilde, we denote coordinates of a vector in the ensemble ‘basis’, {ei}.
Note that the set of ensemble vectors {ei}ne

i=1 does not constitute a true basis in E if xb is the
ensemble mean (as {ei} sum up to zero and are thus not linearly independent). This implies
that the expansion Eq.(4) does exist but can be not unique.

Thus, the control variable we wish to estimate in the analysis is x̃ such that x = Ex̃. The
dimensionality of x̃ is as low as ne (several tens, in practice).

The great advantage of making the analysis in ensemble space is that the dimensionality of
E can be chosen much less than both the number of local influencing observations and the
number of grid points in the local box. As a result of this, the analysis equations can be solved
substantially faster than both in observation space and model space. But this acceleration
comes at a price, which can be high: (low-dimensional) ensemble space can be too poor to
reproduce the background-error spatial variability, resulting in poor analysis. In more detail,
this issue is considered in section 4.2.
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2.2 The ensemble-space observation model

We start with the conventional global-space observation model:

xo = H(x) + η, (5)

where H is the observation operator, x the global-grid state variable (vector), and η the
observation error (which consists of the measurement error and the observation-operator
error). We linearize H(x) around the background xb:

xo = H(xb) + H(x − xb) + η + ηlin, (6)

where H is the tangent linear observation operator and ηlin is the error due to truncation of
the Taylor series in Eq.(6). To simplify the notation, we turn to increments—all denoted by
y:

y := x− xb, (7)

yo := xo −H(xb). (8)

With these increment variables, Eq.(6) writes

yo = Hy + η + ηlin. (9)

This is the linearized global-space observation-increment model. Now, we have to transform
it to ensemble space.

2.2.1 The ensemble truncation (representativeness) error

An observation model in ensemble space relates the state vector in ensemble space, ỹ, to the
observation increment yo. To build this model, we project (with an appropriately selected
scalar product) y onto E , getting

y = ye + yres, (10)

where ye ∈ E and yres ⊥ E . Being in E , ye can be expanded in the ensemble vectors (see
Eq.(4)), ye = Eỹ. The residual in Eq.(10), yres, cannot be represented within ensemble space
and, as a result of this, manifests itself as a source of observation representativeness error.
Indeed, from Eqs.(9) and (10), we obtain

yo = H̃ỹ + η + ηlin + ηet, (11)

where
H̃ = H ·E (12)

and
ηet = Hyres (13)

is the error due to ensemble truncation.

To complete the LETKF ensemble-space observation model, we approximate the tangent-
linear observation operator in Eq.(12) as follows.
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2.2.2 A finite-difference approximation to H

As it is proposed in the LETKF literature, working in ensemble space enables another sim-
plification of the analysis technique: the tangent linear observation operator (and, in the 4-D
case, the tangent linear forecast model) can be usefully approximated by finite differencing.
To do so, we write the first term on the r.h.s. of Eq.(11), using Eq.(12), as

H̃˜̃y ≡ HE˜̃y ≡
∑

ỹi ·Hei (14)

and approximate Hei by 1
s (H(xb + sei) − H(xb)), where s :=

√
ne − 1 and xb + sei ≡ xf

i ,
getting

H(x) −H(xb) =
1

s

∑
ỹi · (H(xf

i ) −H(xb)) + ηlin + η′fd. (15)

Here, η′fd represents the finite-differencing error.

It can be shown that if ỹ is multivariate Gaussian with zero mean and H is only second-order
non-linear, then the covariance matrix of the sum ηlin +η′fd is larger than that of ηlin (in the
sense that difference of the two covariance matrices is a positive-definite matrix). In order to
find out how important this loss of accuracy is, we need to know intricate properties of the
tensor ∂2Hk/∂xi∂xj , which is beyond the scope of this article. For realistic weakly non-linear
observation operators the difference is expected to be small, e.g. for linear H, both ηlin and η′fd

are equal to zero. In addition, Lorenc (2003b) noted that the linearized observation operator
is encountered in the analysis equations only combined with error covariance matrices. As the
latter are known only approximately, there is little sense in making the linearized observation
operator ‘very accurate’. So, the finite differencing error is only a minor problem, at least
for not too non-linear observation operators.

In Eq.(15), it can be preferential to replace H(xf
i ) − H(xb) by H(xf

i ) − H̄ with H̄ =
1
ne

∑ne

j=1 H(xf
j ), as it is done in the LETKF literature. Denoting the error of this approxi-

mation by ηfd, we finally obtain

yo = Zglob · ỹ + η+ ≡
∑

ỹi · zi + η+, (16)

where Zglob is the matrix of the same size as H̃ whose columns are zi := (H(xf
i )−H̄)/s, and

η+ = η + ηlin + ηet + ηfd (17)

is the total effective observation error.

Thus, the observation model relating the local ensemble-space increment vector ỹ to the
observation increments yo is derived—Eq.(16). Note that the corresponding observation er-
ror, η+, has one major additional LETKF specific component, ηet (due to finite ensemble
size), and one minor additional component, ηfd (due to the finite-differencing error). The
larger the observation error, the less information it bears, the less accurate the analysis. How
important these additional errors are for the performance of LETKF is further discussed in
section .

2.3 The analysis equations

Note that all the above equations are written for the global state variable and the global
ensemble vectors. Now, it is time to localize the analysis. We achieve this by performing the
analysis for each analysis grid point independently and limiting the number of observations
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used in each local analysis (only observations in a local box surrounding the analysis grid
point are selected).

Specifically, from the global matrix Zglob, we build its local version, Z, by leaving only rows
that correspond to the selected observations. We also build the local version of E, Eloc, by
dropping rows that correspond to grid points not within the support of any of the selected
observations. Thus, the number of rows in Eloc equals the number of observed degrees of
freedom in the current local analysis. It is important to notice that if non-local satellite
observations are used, the Eloc matrix is enlarged due to the grid points that can be outside
the selected box but within the supports of these observations. This enlargement is further
discussed below in section .

For any analysis grid point, having selected ‘influencing’ observations, and with the obser-
vation model, Eq.(16), in hand, we easily write down the (linear) analysis equation

xa = xb + Eloc · K̃ · yo, (18)

where K̃ is the gain matrix in ensemble space,

K̃ = (I + ZTR−1Z)−1ZTR−1, (19)

R = Eη+(η+)T is the (local) observation-error covariance matrix, E denotes the mathe-
matical expectation, and the equality B̃ ≡ Eỹ · ỹT = I is used following, e.g. (Hunt et al.
2007). Note that if R is diagonal, then the only matrix that requires non-trivial inversion in
Eq.(19) is I+ZTR−1Z, its order being as small as ne. This results in the very fast numerical
algorithm and, essentially, makes it possible to perform multiple analyses at all grid point
separately.

An additional ‘observation localization’ is sometimes applied: the R−1 entries are multiplied
by a monotonically decaying function of the distance between the center of the box and the
particular observation (within the box). This ad hoc device acts to reduce the influence of
distant observations, which, first, diminishes the detrimental impact of sampling noise in the
background error covariances at large distances, and second, makes the transition from one
analysis grid point to the adjacent more smooth.

3. Advantages of the LETKF analysis technique

• Simplicity

The LETKF analysis algorithm does not require any background-error covariance
model, which is the major simplification as compared to 3D-Var or 4D-Var.

• Computational efficiency

First, the LETKF analysis algorithm is fast because of working in low-dimensional
ensemble space. Second, as in local OI, LETKF analysis computations at all grid points
are completely mutually independent, which enables very efficient parallelization in
implementations on present and future massively parallel computers.

• Flow-dependent covariances

Ensemble statistics allows to easily introduce flow dependence in the background con-
straint, which is a very desirable feature.

• 4D-LETKF

The technique is easily and naturally extended to the 4-D case.
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4. Weaknesses of LETKF

The above mentioned strengths of the LETKF analysis algorithm are detailed in the LETKF
papers, so let us concentrate here on LETKF problems.

4.1 With non-local satellite observations, the effective box size becomes large

As it follows from the above description of the LETKF analysis and as it was proposed by
Fertig et al. (2007), if the support of an observation does not lie within a local box, global
ensemble (zi) vectors are used to fit the observation in the local analysis. This implies that
the effective box includes supports of all non-local (non-point-support) observations. In other
words, if we wish to fit a non-local observation (with the support larger than the set of grid
points surrounding the observation point), there in no choice other than to control the fields
within its support. As a result, the actual domain in physical space where the local analysis
is done (which we call the effective box) is enlarged:

ai ≥ |suppH|i, (20)

where ai is the effective box extent (diameter), i = x, y, z, |A|i denotes the diameter of the
set A along the coordinate axis i, and suppH denotes support of H.

Supports of real observation types can be quite large:

(i) Nadir radiances are often influenced by a part of the atmospheric vertical column compa-
rable in depth to the whole atmosphere, e.g. AMSU-A channels 6-10 have supports as large
as 20-30 km in the vertical (e.g. Goldberg et al. 2001). So, including such observations in a
local analysis makes it, effectively, global in the vertical.

(ii) Limb observations (which look through the Earth atmosphere from space to space) imply
large effective horizontal extents of the local boxes. Indeed, a limb radiance measurement or
a radio-occultation observation both depend on a horizontal path in the Earth atmosphere.
For a thin atmosphere, the length of this tangent path is l ≈ 2

√
2Red, where Re is the Earth

radius and d the effective depth of the atmosphere. If d = 30 km, l ≈ 1200 km. If d = 15
km, l ≈ 900 km.

Thus, we see that assimilation of (very informative in practice) non-local nadir and limb
satellite observations makes the effective size of the local boxes large. We cannot avoid this
enlargement without cutting distant parts of the observational support (i.e. without nullifying
their influence on the observation operator), which would have a serious detrimental impact
on their assimilation. With non-local satellite data, the effective boxes can cover (almost)
the whole model atmosphere in the vertical and have horizontal extents greater than 1–2
thousand km.

4.2 Within large effective boxes, affordable ensemble size implies poor analysis
resolution and hence accuracy

As discussed, defining the control variable in ensemble space E is essential for LETKF because
it yields the very fast computational algorithm, but, at the same time, it is the major
limitation of the technique. Indeed, as we have seen in section 2.2.1, working in E entails the
additional observation representativeness error, ηet, due to the inability of a small number
of ensemble vectors to span the physical space within the (effective) local box. This error
reduces the analysis accuracy, especially in cases with large difference between the (low)
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dimensionality of E and the (large) number of observed degrees of freedom in the local
analysis.

The implications of the ensemble being too small can be also explained from a more conven-
tional perspective. Namely, as it is stressed many times in the LETKF and other literature
and as it follows from Eq.(18) above, the local analysis increment is a linear combination
of the local ensemble vectors. So, as noticed by Lorenc (2003b), in order for an EnKF anal-
ysis to be capable of fitting observation, the ensemble size should be comparable with the
number of observations within the localization domain. If observations are plentiful whilst
the ensemble size is small, the analysis will inevitably smooth the observational information,
which can lead to loss of analysis accuracy. Note that this problem is also encountered in
particle filters (Tsyrulnikov 2007). So, we need to make the ensemble size commensurable
with the number of observed degrees of freedom within an effective box:

ne ∼ nodof . (21)

If the local spatial variability is high (the most practically important case) and this high
variability is captured by the existing high-resolution observing systems, then we need high-
dimensional analysis space (not available in LETKF) in order to represent the observed
variability in the analysis increments. This is especially important on the meso scale, where
small-scale phenomena are abundant both in the horizontal and in the vertical: fronts, jets,
inversion layers, convective systems, polar lows, etc.

In other words, small dimensionality of analysis space implies poor resolution in a local
analysis. In a local box with the effective extents ai, not more than ne features can be resolved
in the local analysis. The resulting local analysis resolution measured by the effective mesh
sizes heff

i is

heff
i ∼ ai/ 3

√
ne. (22)

Realizing that the typical ensemble size is ne = 30−100, we conclude that the effective local
resolution is only about 3

√
ne÷4 pieces of information in each of the three spatial dimensions.

Note that in the 4-D version of LETKF, the local resolution can be even less ( 3
√

ne should
be replaced by 4

√
ne in Eq.(22)).

On the other hand, we have seen in the previous subsection that assimilating non-local
satellite data implies that local boxes become, effectively, as large as (1 − 2) · 103 km in
the horizontal and (almost) the whole model atmosphere in the vertical. Therefore, if these
observations are assimilated, the analysis resolution within a box appears to be very poor:
3–6 km in the vertical and 200–500 km in the horizontal, which is far less than we would
require even from a global analysis, let alone limited-area meso-scale assimilation.

It is worth noting that poor resolution in a local analysis means that even if there are (useful)
high-accuracy observations near the centre of the box, they simply can be not resolved. As
a result, the accuracy of the resulting analysis at the centre of the box is reduced. It is
important to stress that the very attempt to assimilate non-local satellite data using an
ensemble-space analysis technique can make assimilation of all observations inefficient.

The above 3
√

ne dependency implies that high resolution in a local box cannot be even
reached with the ensemble-space analysis technique in practical NWP applications. Indeed,
the effective 20-km mesh size in the horizontal (100 pieces of information for a 2000-km box)
and 50 levels in the vertical would require unimaginable ne ≈ 100·100·50 = 500, 000 ensemble
members, which is, certainly, not feasible. Bishop and Hodyss (2009) proposed to use a kind
of resampling technique in order to ‘statistically’ increase the ensemble size up to thousands.
In its simplest form, their idea can be used to generate ‘synthetic’ ensemble perturbations by
y∗

s = Ea, where a is a pseudo-random vector with the unit covariance matrix and s = 1, . . . , S
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denotes the number of the generated perturbation. Thus defined, any y∗

s has the covariance
matrix exactly equal to Be (conditional on the forecast ensemble). Appending the ‘synthetic’
perturbations to the forecast ensemble perturbations increases ensemble size, improving the
local resolution and reducing the ensemble representativeness error. But not dramatically,
because the required very large ‘synthetic’ ensembles are expensive: with the dimensionality
of a practical problem as large as n = 108 and ne = 102, just generating S = 104 ‘synthetic’
perturbations would require huge n · ne · S = 1014 flops. So, we conclude that an ensemble-
space EnKF analysis technique cannot yield high spatial resolution in practice.

Summarizing, we claim that with LETKF, it is not possible to efficiently assimilate non-local
satellite data in the presence of high local spatial variability when this variability is observed.

4.3 Small local boxes can led to small-scale noise in the analysis increments

The LETKF analysis algorithm can be viewed as an attempt to reintroduce OI but with
ensemble covariances instead of analytic ones. As a result, many OI drawbacks are inherited
by LETKF. In particular, changes in the sets of influencing observations from one analysis
grid point to another can lead to small-scale noise: horizontal and vertical analysis gradients
become contaminated. As the gradients directly enter the prognostic equations, their accu-
racy is as important as accuracy of the fields themselves. In addition, inaccurate gradients
can destroy balances (hydrostatic, geostrophic, . . . ).

In order to make the resulting small-scale noise reasonably low, one should ensure that
in each box, observations close to its boundaries have low weights in the analysis. With
observation errors similar in magnitude to background errors (a typical situation in modern
data assimilation), this is the case if background-error correlations between the center of the
box and the boundaries are sufficiently low. This can be achieved either by increasing the box
size or by implementing the above ‘observation localization’. It is worth noting, however, that
severe localization distorts the effective background-error correlations: their length scales Li

may become unrealistically small, which can substantially reduce the accuracy of the analysis.
So, we cannot use ‘observation localization’ to radically reduce the background-error length
scales, which, thus, appear to be the approximate lower bounds for the respective box radia:

ai

2
≥ Li. (23)

Otherwise, we say the box is small. Now, we show that with small boxes, the noise can really
be generated. We carried out a simple 1-D experiment. We supposed that the analyzed field
had analytic correlation function C(r) = (1 + r/L) exp(−r/L), where r is the distance on
the circle and L the length scale. We selected L = 300 km as a typical value for background-
error correlations. The field was assumed to have unit variance. The ensemble size was
chosen to be ne = 50. The analysis domain was a (latitude) circle. The grid spacing was
h ≈ 55 km (1◦ at latitude 60◦). Realizations of both the pseudo-random ‘truth’ and forecast
perturbations were generated by forming the covariance matrix of the grid-point values,
whose entries are Bij = C(|ri − rj|), performing its eigen-decomposition, and perturbing
the ‘principal components’ according to their variances given by the respective eigen-values
of B. Observations were placed at grid points with the spacing hobs = m · h. The pseudo-
random Gaussian observation noise with unit variance was added. Observation errors were
assumed to be uncorrelated. ’Observation localization’ was implemented with the Gaussian
localization function, exp(−0.5(r/l)2), where l is the localization length scale.

In Fig.1. we show results of the experiment with m = 4 (each fourth grid point was observed),
box diameter as small as 12h, and l = 3h. The effective box diameter with the observation
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localization can be roughly assessed as aeff = 2l = 6h ≈ 330 km, which is close to L = 300
km, so the boxes are nearly small in the above sense. The solid thick curve represents one
arbitrarily chosen realization of a reference-analysis increment produced using large local
boxes (with diameter 50h) and exact background-error statistics (OI, essentially). The solid
thin curve represents the LETKF analysis increment. The dotted curve corresponds to the
analysis produced on a coarser grid (here, 8 times coarser than the analysis grid) and post-
interpolated using the weight interpolation proposed by Yang et al. (2009).

Figure 1: Analysis increment, one realization: OI box diameter 50 (solid thick curve), LETKF box
diameter 12, localization length 3 (solid thin), and LETKF on coarse grid with post-interpolated ensemble
weights (dotted).

From Fig.1, one can see that indeed small boxes can cause excessive and spurious extrema
in LETKF analysis increments. Weight interpolation is seen to smooth somewhat the noisy
analysis increments but only slightly. With the coarse-grid mesh size equal to 3h, the resulting
interpolated increment (not shown) appeared to be almost indistinguishable from the full-
grid (solid thin) LETKF curve. So, the noise is really generated in spite of ‘observation
localization’ and weight interpolation. With larger boxes, denser observation network and
smaller observation errors, the noise in the increment field reduces. We remark that the these
experimental results depend only on the ratio L/h, so they are equally valid for, say, h = 1.8
km and L = 10 km.
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Finally, we note that, as it was proposed by Lorenc (1981) for OI and by Bishop and Hodyss
(2009) for LETKF, one can suppress the small-scale noise by simultaneously updating a
number of grid points near the centre of the box. But this can be only achieved at the ex-
pense of increasing the box size, which can exacerbate the ensemble-space-analysis resolution
problem discussed in the previous section.

4.4 Observation-error correlations can destroy the LETKF computational effi-
ciency

At first glance, the number of floating-point operations involved in the LETKF analysis
algorithm Eqs.(18)–(19) does not critically depend on the number of observations, nobs,
because the (small) ensemble size (and thus the dimensionality of the system of algebraic
analysis equations to be solved) remains untouched. With the increasing nobs, the number
of entries in the Z matrix and thus the number of floating-point operations (flops) in the
analysis grows as O(nobs). But this slow growth of the floating-point operation count with
the box size becomes badly fast if we try to account for spatial dependencies (correlations)
between the observation errors.

Indeed, if the local R matrix is dense 2, its factorization involved in the application of R−1

in Eq.(19)) requires as large as O(n3
obs) flops (e.g. Golub and van Loan 1989). In this case,

we state that the computational advantage of the LETKF algorithm disappears. This issue is
most important for satellite data assimilation and on the meso scale (where radar data do
have spatially correlated errors (Xu et al. 2007)).

Hunt et al. (2007) discussed using ‘batches’ of observations with zero correlations of obser-
vational errors between different ‘batches’. But this assumption is, generally, not met in case
of data with spatially and temporally almost continuous coverage (satellites and radars). So,
the ‘batch’ approach cannot help with these data (the ‘batches’ will be too large, say, all
AMSU-A data will be one ’batch’).

Another device capable, in principle, of removing the problem is the diagonalization of the
R matrix before the analysis (e.g. Fertig et al. 2007). However, this approach again requires
O(n3

obs) flops to compute the matrix R−1/2, which transforms the original observations xo

to new ‘pseudo-observations’ with uncorrelated errors:

x̌0 := R−1/2 · xo. (24)

In addition, these ‘pseudo-observations’ become substantially non-local because their ob-
servation operator involves left-multiplication by R−1/2 (as it follows from Eq.(24)), which
complicates their efficient assimilation in an ensemble-space analysis (as discussed above in
section ()). So, diagonalizing the R matrix is not likely to give rise to a computationally
efficient LETKF algorithm with correlated observation errors.

Thus, with the existing methodologies, allowing for correlated satellite and radar observation
errors makes the LETKF analysis algorithm computationally inefficient (we have to solve
large systems of linear algebraic equations at every analysis grid point).

Finally, we note that R−1 enters the equations of the (L)ETKF analysis ensemble generation
scheme (e.g. Hunt et al. 2007), which can compromise the applicability of the Ensemble
Transform analysis technique in the presence of correlated observational errors.

2Bormann et al. (2003) report that for AMV (atmospheric motion vectors) observations, the horizontal
observation-error correlation falls to 0.5 at 300 km and to zero at about 1000 km.
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4.5 Meso-scale issues

On the meso scale, a kind of scale separation technique can be a remedy for the above prob-
lems with the LETKF assimilation of non-local satellite data. Namely, satellite observations
can be assimilated in a global variational analysis, which is used as a first guess for the
‘meso’ analysis, which, in turn, updates meso scales by using only locally supported ‘meso’
observations. In this case, the above limitations are greatly relaxed.

Indeed, first, large supports of satellite observations no longer limit the effective box size
from below (as there are no ‘meso’ data with comparably large supports). The boxes can
be made small so that the effective resolution within a box, see Eq.(22), can be reasonably
high. Second, analyzing only meso scales implies small background-error length scales, so it
can be easy to satisfy the requirement Eq.(23). Third, balances are known to be weak on
the meso scale (e.g. geostrophy is not valid because the Rossby number is large), so there is
little danger to destroy them by localization.

Thus, boxes can be made sufficiently small, which would result in enhanced spatial resolution
within a box without excessive smoothing of observations, without generating small-scale
noise, and without destroying multivariate balance constraints. However, at scales less than
about 1 km, the radar error correlations appear to be significant (Xu et al. (2007) report on
the 2-km decorrelation radius). In this case, the LETKF algorithm can lose its computational
efficiency and its real-data applicability becomes questionable.

We also note that on the meso scale, strong non-linearity of forecast equations can lead to
highly non-Gaussian background-error distributions. But Lawson and Hansen (2004) showed
that the ensemble transform technique is incapable of properly blending the non-Gaussian
prior distribution and the largely Gaussian observation-error distribution. So, on the meso
scale, a perturbed-observations technique seems to be more suitable than an ensemble-
transform based technique.

5. Published experimental evidence

(1) Concerning satellite data, we state that the only attempt to assimilate real radiances
with the LETKF methodology was reported in (Szunyogh et al. 2007a) but without detailed
presentation of the results. Simulated radiances were assimilated by Fertig et al. (2007). All
peer-reviewed papers reporting on real-data assimilation (listed in the Introduction) do not
involve satellite radiances, in spite of the fact that these latter are known to be the crucial
part of the global atmospheric observing system (e.g. Kelly and Thépaut 2007).

(2) The necessity of the above relationship, Eq.(21), between the ensemble size and the
number of observed degrees of freedom within a box is largely confirmed by the published
experimental results: practical schemes appear to work reasonably well if this condition is
met. Specifically, Szunyogh et al. (2005) found that for ne = 40, when every 9-th horizontal
grid point was observed, the best results were obtained with about ndof = 500 model variables
within the box (see their Fig.8). We note that in this optimal configuration, the number of
observed degrees of freedom within a box is about nodof = 500/9 ≈ 56, which is very close
to ne = 40.

Fertig et al. (2007) found that simulated radiosonde observations were most effectively as-
similated with ne = 20 if nx = ny = 7 and the boxes were only one level deep. The analysis
variable comprised 4 three-dimensional fields, so a box contained ndof = 7·7·4 ≈ 200 degrees
of freedom. But not all of them were observed. Concretely, they used about 600 simulated
radiosonde profiles, so that with their analysis grid having 48 · 96 = 4600 grid points, only a
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portion of 600/4600 ≈ 1/8 was observed. Hence nodof = ndof/8 ≈ 25, which is in excellent
agreement with ne = 20.

Miyoshi and Yamane (2007) came up with the following optimized parameters of their
LETKF scheme. In their OSSE1 experiments, the box size for ne = 40 was: nx = 11 with the
Gaussian observation localization length equal to 3 mesh sizes and nz = 7 with the vertical
localization length 2 mesh sizes. As the localization lengths are smaller than the respective
box extents, we easily assess the effective box sizes in each of the two horizontal dimensions
as 2 · 3 + 1 = 7 grid points and, in the vertical, 2 · 2 + 1 = 5 grid points, so that there were,
roughly, 7 · 7 · 5 = 245 grid points within a box. With 5 three-dimensional analysis fields, we
obtain ndof = 5 · 245 = 1225 effective analysis degrees of freedom. But only each hundredth
degree of freedom was observed, which yields nodof = 1225/100 ≈ 12. This small number
explains why Miyoshi and Yamane (2007) found that even ne as small as 10 could be used.

(3) As regards the possible generation of small-scale noise due to the local nature of the
LETKF analysis, Liu et al. 2008 reported on a very successful behaviour of LETKF. They
used low resolution in the horizontal (about 450-500 km), so that the box size was large (ax ≈
3000 km). With the box size this large, it is likely that our condition Eq.(23) was satisfied.
Indeed, this is the case if the horizontal background-error length scale is as large as L ≤ 1500
km, which is significantly higher than the typical length scales (300–500 km). Similarly, local
boxes in (Szunyogh et al. 2005) were, in their base experiment, about 1000÷1400 km broad.

On the other hand, tiny nx = ny = 3 boxes in (Harlim and Hunt 2007b) did lead to small-
scale noise, as we would expect (see their Figs. 3 and 5).

(4) No attempt to account for realistic observation-error correlation was reported on yet, so
we cannot check the conclusions of section 4.4.

Summarizing this section, we note that our theoretical inference on the applicability of the
LETKF analysis does not contradict to the existing experimental evidence and seems to
provide explanation for some experimental results.

6. Discussion

We have shown that the major deficiency of the present formulation of the LETKF analysis
is its inability to efficiently assimilate non-local satellite observations. This is because in
each local LETKF analysis, the analysis increment is confined to be a linear combination of
(a small number of) the forecast ensemble perturbations. With other EnKF formulations,
this limitation can be relaxed. Solving the analysis equations in observation space allows us
to apply covariance localization (e.g. Houtekamer and Mitchell 2006), so that the analysis
increment no longer belongs to the low-dimensional ensemble space. Another suitable ap-
proach is to use spatially averaged covariances (Raynaud et al. 2008). Hybrid EnKF-3DVar
schemes also allow us to avoid the ‘curse of (low) dimensionality’ of ensemble space (Hamill
and Snyder 2000, Lorenc 2003b, Wang et al. 2007).

The experimental fact that LETKF can quite successfully (despite locality and ensemble-
space restrictions) assimilate conventional observations, suggests that the ensemble data
assimilation principle is indeed promising for operational and other purposes. We notice,
however, that good results reported in the LETKF and some other ensemble data assimila-
tion papers (e.g. Whitaker et al. 2008) were obtained without satellite data, i.e. for poorly
observed flows, where the errors have time to develop complicated anisotropic structures.
With the addition of frequent and ubiquitous satellite observations, it is likely that the effect
of flow-dependent covariances may appear to be less dramatic.
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7. Conclusions

The main findings of this study are:

• Non-local satellite observations (both nadir and limb) are shown to make the effective
size of local LETKF boxes large: extended by supports of all used observations.

• Small ensemble size implies small number of resolvable features in local LETKF anal-
yses. Large effective boxes and small ensemble size imply, thus, low spatial resolution
within a local box, which can make the assimilation of all observations inefficient— if
non-local satellite data (radiances, in particular) are assimilated.

• Without non-local satellite data, the local-box extents are limited from below by the
respective background-error length scales. Smaller boxes can give rise to significant
small-scale noise in the analysis increments.

• Allowing for realistic correlations in observation errors (e.g. for satellite and radar
data) removes the advantage of LETKF in computational efficiency as compared to
observation-space formulations.

All in all, we state that the LETKF approach in its present formulation does not seem to
be a good general method of choice for operational data assimilation on the global scale.
LETKF can be utilized as a means of meso-scale data assimilation in a scale-separation
scheme without non-local satellite observations. The LETKF technique, being simple and
cheap, can be successfully used to solve some other particular data assimilation problems
and in other applications (research, education, etc.).
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The importance of small-scale analysis on the forecasts of COSMO-DE

Klaus Stephan and Christoph Schraff

Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany

1 Introduction

With respect to the development of a new assimilation method for COSMO (within the
COSMO priority project KENDA) the question arises, which benefit can be expected from
small-scale details in the analysis on the quality of COSMO-DE forecasts. To address this
question three experiments were conducted for a 2-week-convective summer period in June
2007. This period was dominated by weak anti-cyclonic conditions with frequent air-mass
convection in the afternoon. A convective period was chosen, small-scale features in the
analysis are expected to be more relevant than in periods governed by large scale circulation.

2 Experimental Setup

Three experiments were conducted, each of them starting forecasts at 00, 06, 12 and 18 UTC
( denoted hereafter as 00-UTC, 06-UTC, 12-UTC and 18-UTC runs) from different analyses:

1. starting from an interpolated COSMO-EU analysis,

2. starting from a COSMO-DE analysis with LHN of radar derived rain rates,

3. starting from a COSMO-DE analysis without LHN of radar derived rain rates.

All experiments were performed with COSMO model version 4.8, using the new setting of
the PBL parameters suggested by Seifert et al. (2008). The boundary conditions for the
forecasts are the one’s of the operational setup, which means there were derived from 3
hour old COSMO-EU forecasts. To achieve the best comparability the soil moisture at the
beginning of each forecast and analysis run was identical in all 3 experiments by setting equal
to the first experiment (i.e. interpolated analysis). Furthermore all forecast were started from
the respective analysis of the assimilation cycle in contrast to the operational setup, where a
forecast starts from its time-critical analysis. This means that the data cut off is considerably
larger than in the operational setup and the set of observations used in the three different
analyses of this study are nearly the same.

3 Results

The model results were verified against different observation types, i.e. ground base SYNOP
stations, radiosondes, radar derived precipitation rates and integrated water vapour measured
by GPS. The verification results in general indicated that the more small-scale feautures
are represented within the analysis the better are the forecasts. That means, model runs
assimilating radar derived rain rates are the best ones followed by the runs starting from the
small-scale analysis. Forecast starting from an interpolated analysis were found to have the
lowest quality. In some situations the forecast quality is quite similar. But in cases where
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the weather conditions are dominated by small-scale phenomena the differences are biggest.
This leads to the fact, that 00-UTC or 06-UTC runs are more comparable than 12-UTC or
18-UTC runs. This may be related to the fact, that more benefit is found from the small-scale
analysis in 12-UTC or 18-UTC runs than for 00-UTC and 06-UTC runs.

• verification against SYNOP observations:
Both experiments starting from small-scale analyses tend to improve the quality of
the forecast. Especially in the first forecast hours the quality is generally better. Both,
RMSE and BIAS are improved. The biggest improvement due to small-scale analyses
is found for PMSL (see fig. 1) and 2m temperature. Then forecasts tend to be warmer
in 2m temperature and lower in PMSL. The results suggest that the improvements are
largest for 18-UTC and 00-UTC runs, whereas the improvements in 6-UTC or 12-UTC
runs are smaller, but still present.

Figure 1: RMSE (left) and BIAS (right) in PMSL against SYNOP measurements over forecast time. 00
UTC forecasts starting from interpolated COSMO-EU analysis (blue) and COSMO-DE analysis (red).

• verification against radiosondes,
The upper air verification (see fig. 2) depicts the largest difference between the small-
scale analyses and the coarse-scale analysis within the mid troposphere. Here the coarse-
scale analysis verifies worse and tends to be more cold and wet. This is more pronounced
at 12 UTC than at 00 UTC. Also the vertical extent of the difference is greater at noon

Figure 2: Verification against radio sondes at 12 UTC: Bias (left) and RMSE (right) for relative humidity
(upper panels) and temperature (lower panels) at analysis time (black lines) and +12h forecast time (green):
bold lines COSMO-DE analysis with LHN, dotted lines COSMO-DE analysis without LHN, dashed lines
interpolated COSMO-EU analysis.
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and includes the boundary layer. All differences have almost vanished after 12 hour
forecast time.

• verification against radar derived rain rates:
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Figure 3: Equitable threat scores against radar observations (threshold of 0.1 mm/h) for 00-UTC runs
(left) and 12-UTC runs (right): COSMO-DE analysis with LHN (red), COSMO-DE analysis without LHN
(blue), interpolated COSMO-EU analysis (magenta plus sign).

Equitable threat score (fig. 3) show the ability of the LHN analysis to greatly improve
the forecast within the first few hours (up to 6 hours, seefig. 3). This agrees well with
the results from former studies (Stephan et al. (2008)). Even the small-scale analysis
without LHN provides better forecast quality than the coarse-scale analysis. The qual-
ity is improved most in the 12-UTC and 18-UTC runs. Furthermore all experiments
show a strong dependency of forecasting the diurnal cycle of precipitation on the start-
ing time of the forecast (see fig. 4). 12-UTC runs are not able to produce an acceptable
diurnal cycle and in particular they tend to miss the peak of convective precipitation
in the afternoon. All other forecasts show better results and the older the forecast the
more the modell seems to be able to simulate that peak.
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Figure 4: Averaged diurnal cycle of precipitation rate for 00-UTC runs (left) and the 12-UTC runs (right)
starting on: COSMO-DE analysis with LHN (red), COSMO-DE analysis without LHN (blue), interpolated
COSMO-EU analysis (magenta plus sign). The black line depicts the observations.

Also with respect to the diurnal cycle, the small-scale analysis, and especially the LHN
analysis is most beneficial to the 12-UTC and 18-UTC runs, whereas the impact on
12-UTC runs is limited to the first 4-5 hours.

• verification against GPS derived integrated water vapouri (IWV):

No. 10: January 2010



1 Working Group on Data Assimilation 40

Forecast starting from the small-scale analyses verify better against GPS derived IWV
during night (see fig. 5). At daytime, and especially in the early afternoon the quality
of all three experiments are comparable. At these hours the forecasts starting from the
interpolated analysis tend to be even a bit better than the other forecasts. This result
seems to be independent from the starting time of the forecast. Furthermore it reveals
the fact that the forecasts starting from the interpolated analysis tend to be dryer than
the others. The wettest forecasts are the ones which start from the LHN analysis. The
differences are greater for 00-UTC runs than for 12-UTC runs.
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Figure 5: Averaged diurnal cycle of integrated water vapour (IWV, left) and standard diviation (right)
of 00-UTC runs: GPS IWV measurements (black), COSMO-DE analysis with LHN (red), COSMO-DE
analysis without LHN (blue), interpolated COSMO-EU analysis (black plus sign).

4 Conclusions

A study with the convection permitting model COSMO-DE has been made to indicate
whether and how much small-scale detail in the analysis could improve QPF. For the se-
lected two-week summer period dominated by weak anti-cyclonic weather conditions with
air-mass convection, the local weather was expected to be clearly influenced by small-scale
effects. It has been found that in some cases, the additional small-scale detail in the analy-
sis significantly improved QPF, and statistically, the largest benefit has been found for the
forecasts starting at 12 UTC (noon) or 18 UTC. This motivates further investments in high-
resolution data assimilation, and namely in the development of an EnKF-based scheme for
COSMO.
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1 Introduction

The perturbations applied to the COSMO-SREPS ensemble have been recently updated, in
order to improve the representation of the model error in the ensemble system. The new
ensemble configuration is presented in Section 2, where the motivations for this update
are also briefly described. In Section 3, a preliminary analysis of the impact of the new
perturbations is shown, both in terms of the spread/skill relationship for 2m temperature
and in terms of the quality of the different ensemble members.

2 The new COSMO–SREPS configuration

The new ensemble configuration has been selected on the basis of both an extensive testing
of new perturbations of the parameters and some physical considerations about the meaning
of the parameters, carried out by HNMS. The testing of the new perturbations was per-
formed using the CSPERT suite, a test suite running at ECMWF, using Billing Units from
a Special Project (SPITFEAR), where different parameter perturbations are applied. This
suite was run over two seasons: autumn (SON) 2007 and summer (JJA) 2008. The quality
of the different perturbations was assessed through an objective verification performed both
at ARPA-SIMC (over the Alpine area) and at HNMS (over Greece). The outcome of this
analysis, together with the aforementioned considerations on the meaning of the parame-
ters, is presented in the SREPS Priority Project Final Report (Marsigli, 2009) and in the
CONSENS Quarterly Report March-May 2009 (available on the COSMO web site).

The present COSMO-SREPS configuration is shown in Fig. 1.

Figure 1: Scheme describing the new COSMO–SREPS set–up.
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The initial and boundary conditions are provided to the ensemble members by the 4 COSMO
members of the SREPS system of AEMET (Garcia-Moya et al., 2009), which are 4 runs of
COSMO at 25 km horizontal resolution, nested on 4 different global models (IFS, GME, GFS,
UM). Then, 16 different set-ups of the physics parameters are applied to the 16 members,
irrespective of their driving model. It has to be emphasised that the new suite is no longer
symmetric with respect to the perturbations. Hence, for example, the 4 members driven by
IFS are now different from the 4 members driven by GME as well as in the physics set-up,
while before the same set of 4 physics perturbations was applied to each group of members
with the same driving model.

A preliminary analysis of the performance of the new suite over summer 2009 (JJA) is
presented in the next section.

3 Preliminary results

An evaluation of the spread/skill relationship of the ensemble in terms of 2m temperature
is shown in Fig. 2. The rms error is represented against the rms spread as average values
for each class. The classes of spread have been selected in order to be homogenous in terms
of class population. The computation is made over the whole domain, for the verification of
forecasts at 00 UTC (left panel) and at 12 UTC (right panel).

Figure 2: Spread/error relationship of COSMO-SREPS in terms of 2m temperature for the verification
of forecasts at 00 UTC (left panel) and at 12 UTC (right panel). The black line is for the first forecast
range, the red line for the second and the green line for the third.

While at 00 UTC there is a good relationship between spread and error, though with a
strong underdispersion, at 12 UTC the spread does not provide valuable information about
the forecast error. This can be due to the dependence of the model bias on the time of the
day. As discussed in previous analyses (Marsigli, 2009), it is believed that the bias of the
COSMO model in 2m temperature affects this result, by inflating the error to an amount
which cannot be represented by the spread.

In order to ensure that the model perturbations applied in the new COSMO-SREPS suite
are not producing a general worsening of the forecasts, an evaluation of the performance
of the forecasts issued by the 16 members was also carried out. Up to now, this has been
done in terms of 2m temperature only over the Alpine area and in term of the continuous
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parameters (T, U and Td) over Greece. Precipitation has not yet been considered mainly
due to the fact that, during the summer season, precipitation over the two areas was not
strong enough, but it will be considered for the next season.

In Fig. 3, the BIAS and Mean Absolute Error of the 16 forecasts in terms of 2m temperature
are shown, as a function of the forecast range. The scores are computed for the summer season
(JJA 2009), over the alpine domain, using data from the SYNOP stations. The same analysis
has also been done over Greece, using data from SYNOP stations as well (not shown). The
16 lines are plotted with the same grey colour, except for the lines representing the score of
the members where the tur len parameter is perturbed.

Figure 3: BIAS and Mean Absolute Error of the 16 forecasts in terms of 2m temperature over the alpine
area, as a function of the forecast range. The coloured lines represent the score of the members where the
tur len parameter is perturbed.

The effect of these perturbations is generally reasonable, but the run driven by NCEP with
the small tur len value shows high MAE values during daytime. This feature, which also
appears in the verification carried out over Greece, will be monitored in the future, in an
attempt to establish if it is statistically persistent over a longer period.

Figure 4: BIAS and Root Mean Square Error of the 16 forecasts in terms of 2m temperature over Greece,
as a function of the forecast range. The green lines are for the members where rlam heat is increased to
10.

Another parameter which deserves attention in the future is rlam heat. In Fig. 4, the BIAS
and RMSE values for some members of COSMO-SREPS are plotted, for the 2m temperature
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forecasts verified over Greece. The most striking feature is that the members represented by
the green lines (m11 and m12) show a large value of RMSE. These two members are those
where the rlam heat parameter was increased to the value of 10. This feature was not evident
in the verification carried out over the alpine area (not shown). Hence, this parameter will
also be monitored in the future, in order to determine wether this perturbation should be
retained or rejected.

4 Summary and Outlook

A preliminary analysis of the new configuration of the COSMO–SREPS ensemble system
has been carried out. Before drawing any conclusions on the impact of the new parameters,
it is necessary to complete the analysis. The spread/error relationship will also be computed
for other meteorological variables (temperature at 850 hPa, mean sea level pressure, precipi-
tation). Furthermore, the bias and error of the different ensemble members will be calculated
for another season, focussing on precipitation. Up to now some parameters have been iden-
tified as important to be monitored. Finally, new parameters are already under testing in
the experimental CSPERT suite, including parameters of the microphysical scheme. Since it
is believed that perturbing the physics parameters alone it is not sufficient to have a proper
representation of the model error, the perturbation of some soil fields will also be included,
starting from soil moisture. This work is being carried out at HNMS.
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1 Introduction

Observed precipitation fields show a high variability both in space and time and the amount
of rainfall could vary a lot within a short distance.(Zepeda-Arce et al.,2000). The increasing of
horizontal resolution in NWP models seems to enable them to reproduce this variability, even
if frequent errors in time and space positioning make difficult a grid-point based employment
of models QPF. In order to asses the ability of the models in reproducing the variability of the
precipitation fields, we investigated the statistical properties of the observed and forecasted
rain values falling within a predefined geographical area and in a specific time period (also
called boxes). In particular we studied the distribution function (pdf )and evaluated some
summarizing quantities, such as the mean, the maximum value and quantiles for each of the
selected box. Results for different size of the chosen areas and period of time are used to
validate the QPF of the COSMO suites that run operationally at ARPA-SIMC (COSMO-I7
and COSMO-I2) in comparison with the global model IFS-ECMWF.

The aim of this study is to provide an interpretation key for more correct use of models
QPF, especially with respect to high precipitation events.

2 Dataset and methodology

Observed precipitation data consisted of about 1500 rain-gauges made available by the Italian
National Department of Civil Protection and, in the framework of the COSMO Cooperation,
by a number of Italian regions and Meteo-Swiss. The dataset cover almost all the Italian
territory, (see figure 1) even if it is not homogeneous both in space and time. In this work we
considered only precipitation values accumulated over 24h , starting at 00 UTC or, in same
cases , at 6 UTC. The QPF field investigated in this study is provided by COSMO-I7 (7
km horizontal resolution), COSMO-I2 (2.8 km horizontal resolution) and the global model
IFS-ECMWF (25 km horizontal resolution, and 50 km horizontal resolution before 2006).
In most of the cases the 00 UTC runs have been taken into account, and the grid-point
forecasted values refer to the +24h (or +30h) of integration, even if in same tests (not shown
in this work) we considered also the precipitation from +24h to +48h. In order to compare
the observations with the forecasted rain field we devised a strategy that takes into account
all the observed values and grid-point forecasted values falling into a predefined geographical
area, several times wider than the horizontal resolution of the model. As a starting point ,the
domain is dived in squared areas, with size and position chosen subjectively and depending
on the available number of observation stations and geographical features of the territory.
We assumed that the precipitation occurrence in each of the stations points and grid-points
within the selected area is equi-probable. The size and the dimension of the area play a
crucial role in order to consider well-founded this assumption. In this preliminary study
we followed a pragmatic approach: we should have enough forecast and observation points
to perform significant statistics in each box. The precipitation values of all stations and all
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Figure 1: Location of rain-gauges in Italy

model grid-points falling in the same box are aggregated and processed by using two different
approaches, schematically described in figure 2. In the first approach, called “representative
value approach” the evaluation of a summarizing value for the precipitation field in each box,
such as the mean or the maximum, has been performed. The second approach consisted in
the study of full distribution function of the precipitation values in each area, mainly from
a qualitative point of view.

Figure 2: Description of the used approaches to evaluate QPF quality in the selected boxes

3 Results: Validation of QPF using the “representative value approach”

The QPF quality is assessed by making a comparison of a representative value in each
box for observations and forecasts, using a methodology developed in the past years at
ARPA-SIMC for the verification of COSMO-LEPS high-resolution precipitation forecasts
(Marsigli et al.,2008). The verification domain is divided in boxes of 0.5 x 0.5 degree about
50 x 50 Km) in order to contain four IFS-ECMWF grid-points. Each box contains about
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45 COSMO-I7 grid-points, 280 COSMO-I2 grid-points, while, as regards the precipitation
observation, the number of stations vary between 3 and about 40 (only boxes with at least
3 observations inside have been considered in the computation of the verification scores).
Categorical statistics (e.g. Probability of Detection, Frequency Bias, False Alarm Ratio)
have been computed from the elements of contingency tables, on the basis of the exceeding
of some predefined precipitation thresholds by the representative value (mean or maximum)
of forecast and observation for each box over the period of interest. Some results concerning
the period Autumn 2008 are presented as example in figure 3 (mean value exceeding the
threshold of 1 mm/24h), figure 4 (mean value exceeding the threshold of 20 mm/24h) and
figure 5 (maximum value exceeding the threshold of 20 mm/24h), but in outline they are
representative of the verification over other periods.

Figure 3: Probability Of Detection (top panels), False Alarme Ratio (middle panels), Frequency Bias
(bottom panels), for mean value exceeding the threshold of 1 mm/24h for the models COSMO-I2 (left),
COSMO-I7(center),IFS-ECMWF(right)

The results of this type of verification point out a strong dependence on the choice of the
thresholds. For low thresholds (e.g. 1 or 5 mm/24h) and in particular for the mean value
as indicator, the difference in the scores of the three models are small (except for the BIAS
SCORE where IFS-ECMWF has values everywhere greater than one, showing a tendency
to over-forecast the precipitation events) and quite independent on geographical location.
Increasing the thresholds (e.g. 10 or 20 mm/24h) the scores tend to be very sensitive to the
geographical positioning of the considered area and the performance of the models become
very different, in particular if the maximum values are considered. In this case the COSMO
models seem to have better scores, in particular the POD, even if the number of false alarm
cases increases. On the other hand, IFS-ECMWF shows less false alarms but also a noticeably
decreases in the BIAS SCORE, moving from a situation of over-forecast at lower thresholds
to a situation of under-forecast at higher thresholds, especially when the maximum value
is taken into account. The worsening in the scores concerning the maximum values, that
means at least one points should exceed the thresholds, suggests that the lower resolution
models have difficulties in reproducing high localized precipitation events, such as for example
convective events.
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Figure 4: Probability Of Detection (top panels), False Alarme Ratio (middle panels), Frequency Bias
(bottom panels), for mean value exceeding the threshold of 20 mm/24h for the models COSMO-I2 (left),
COSMO-I7(center),IFS-ECMWF(right)

The “representative value approach” has been used also to evaluate the seasonal accumulation
of the precipitation, in order to investigate the ability of the models in reproducing the total
amount of rain occurred, taking no notice of the daily correspondence of observations and

Figure 5: Probability Of Detection (top panels), False Alarme Ratio (middle panels), Frequency Bias
(bottom panels), for maximum value exceeding the threshold of 20 mm/24h for the models COSMO-I2
(left), COSMO-I7(center),IFS-ECMWF(right)
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forecasts. For each box all the forecasted and observed daily mean (or maximum) values are
accumulated over “common days” (depending on the availability of observations). Results
concerning the period March-April 2009 with boxes of 50 km x 50 km are presented in
figure 6 (sum of the mean values) and figure 7 (sum of the maximum values). The maps of
observed total amount, visualized in the bottom-right corners, show a strong dependence on
the geographical positions of the boxes, depicting the morphological feature of the Italian
territory. The observed precipitation pattern is quite well reproduced by COSMO-I7 and
perhaps even better by COSMO-I2, considering both mean and maximum values cases. On
the other hand IFS-ECMWF does not show the observed geographical variability in the
accumulated precipitation pattern and in the case of the maximum values the amount of
rain is definitely underestimated.

Figure 6: Accumulation of daily mean precipitation over the period March-April 2009: Observa-
tions(bottom right),COSMO-I7(top right), COSMO-I2 (top left), IFS-ECFMF (bottom left)

4 Results: Assessment of quality of QPF pdfs

In order to asses the ability of models in reproducing the variability of the precipitation fields
inside a box over a period of time, we focused on the study of their distribution function
(pdf ), mainly form a qualitative point of view. We used a box-plot representation, that
easily provides information about the spread of the distribution and furnishes a roughly
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Figure 7: Accumulation of daily maximum precipitation over the period March-April 2009: Observations
(bottom right), COSMO-I7 (top right), COSMO-I2(top left), IFS-ECFMF (bottom left)

description of the key measures that define it, such as the median, the quartiles, maximum
and minimum values, and a range of values identified as “outliers”. Chronologically our
first attempt to investigate the distribution function of the precipitation fields was done
comparing the models COSMO-I7 and IFS-ECMWF, considering area of about 100 km x
100 km selected on the basis of the geographical position. The idea was to select, for example,
area with homogeneous terrain (almost entirely flat or in the same mountain slope) in order
to consider equi-probable, at least in a first approximation, the precipitation falling in each
point of the area. The subdivision of the Italian territory in 1x1 degree boxes is shown in 8.

The main aim of that study was the assessment of the “climatology” of the forecasted and
observed precipitation in each box over a relative long period of time (e.g. same season for
a couple of years), taking into account, for the study of the distribution functions, all the
daily precipitation in each points of the area of interest.

In figure 9, as an example, by means of the box-plot representation are displayed the distri-
bution of COSMO-I7 QPF (red), observations (green) and IFS-ECMWF QPF (blue) for each
area of the study (along the x-axis), concerning the period Autumn 2005 (named: SON2005)
and Autumn 2007 (named: SON2007). Green dotted lines in each panel represent the 99th
and 90th percentile of the observed rain distributions, while the red and blue lines refer
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Figure 8: distribution of 1x1 degrees boxes over Italian territory

respectively to the model QPF distributions. The distribution of observed rain shows that
the 90 % of rain events throughout SON2005 and SON2007 is generally lower than about
20 mm/24hours, with a large variability due to geographical position of the areas. Events
greater than 50 mm/24hours represent only 1% of the total, but it is noteworthy that these
are just the events in which forecasters are interested in for the issue of high impact weather
warnings.

COSMO-I7 distribution seems to be fairly realistic, at least since the 90th percentile, even
if in many areas also the 99th percentile is well described. Greater differences are due to
outliers, with large overestimation of the maxima in many areas. However, it should be
noted that very often the results could be affected by spatial representation problems, such
as in costal areas that present sea points not covered by observation. The features of the
observed pdf, and in particular the spread of the tail of the distribution, seem to be reasonably
well reproduced. On the other hand, the spread of IFS-ECMWF pdf does not cover all the
range of the observed values, with large underestimation both of 90th and 99th quantiles.

In the “representative approach” the daily comparison among forecasts and observations
was performed using only some indicator of the distribution of the precipitation fields, nev-
ertheless, even in a small area (e.g. 2500 Km2) , the difference in the amount of rain from a
station to an other one can be large. In figure 10 is presented ,as an example, the time-series
of the daily distribution for the month April 2009 in an area of 50 km x 50 km in the east
of Sardinia.

For each day along the x-axis , the box-plot represents the distribution of the amount of rain
within the selected area. Considering, for example, the observed rain for the 12th of April (
presented in the bottom-right corner): it ranged from a minimum of about 15 mm/24h to
more than 60 mm/24h as a maximum, with most of the values around 30 mm/24h. This intra-
box variability is quite well reproduced by the COSMO models, in particular COSMO-I2,
even if in terms of mean values IFS-ECMWF can be considered the more accurate. Of course
the number of grid-points inside a box play an important role (only 4 for IFS-ECMWF),
nevertheless this is the major aspect to be taken into account in order to appreciate the
additional information that higher resolution models can provide. On the other hand this
example pointed out that the precipitation verification based on the comparison of station
point against the nearest grid-point is in general very misleading, in particular for non
homogeneous terrain where orographic effects can influence the precipitation structures, or
in case of convective events.
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Figure 9: Distribution of COSMO-I7 QPF (red, top panel), IFS-ECMWF QPF (blue, central panel) and
observations (green, bottom panel) for the period SON2005 and SON2007 in each area of the study

5 Conclusions

In this study the variability of the observed and forecasted precipitation fields in relatively
small areas has been investigated, considering the COSMO model implementations running
operationally at ARPA-SIMC (COSMO-I7 and COSMO-I2) in comparison with the global
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Figure 10: Time-series of the daily distribution for the month April 2009 in an area of 50 km x 50 km in
the east of Sardinia

model IFS-ECMWF. The study of the distribution functions over a quite long period (e.g.
two seasons) has pointed out, mainly from a qualitative point of view, that the distribution
function COSMO-I7( the higher resolution model in the preliminary study) seems to be fairly
realistic, at least since the 90th percentile, even if in many areas also the 99th percentile is well
described. Greater differences are due to outliers, with large overestimation of the maxima in
many areas. The features of the observed pdf , and in particular the spread of the tail of the
distribution, seem to be reasonably well reproduced. On the other hand, the spread of IFS-
ECMWF pdf (the lower resolution model in this study) does not cover all the range of the
observed values, with large underestimation both of 90th and 99th percentile. The study of
the intra-box variability of the daily amount of rain confirms the ability of higher resolution
models in reproducing the main features of the distribution function of precipitation fields; in
particular COSMO-I2 seems to be the more realistic while COSMO-I7 in many cases presents
too high maximum values. These qualitative considerations about the distribution functions
of forecasted and observed precipitation fields are confirmed also from a quantitative point
of view considering the results of the QPF verification based on the “representative value
approach”. When the mean value is taken into account for the evaluation of the categorical
statistics, the result pointed out the good quality of IFS-ECMWF, especially if lower reference
thresholds are considered. Increasing the precipitation thresholds and taking into account
the maximum value for the evaluation of the statistical scores, higher resolution models tend
to gain respect to lower resolution model, even if the number of false alarm is also relatively
high. On the other hand, IFS-ECMWF presents a greater number of missed alarms when
we choose high reference thresholds. According to most standard verification measures, high
resolution model forecasts would have poor quality, but it might be very valuable to the
forecaster since it provides information on the distribution and variability of the rain field
over the considered region. It’s also interesting to note the strong dependence of the models
behaviour on the geographical positioning of the boxes, on the period of the year and on
weather type occurrence. In some areas models exhibit different behaviour depending on
season, and throughout the same season they perform differently according to a different
weather regime. This aspect is even more evident for higher resolution models because of the
stronger interaction of the synoptic flow with the orography.
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1 Introduction

In this report we present the QPF verification of the 4 model versions at 7 km resolution
(COSMO-I7, COSMO-7, COSMO-EU, COSMO-ME) and 2 model versions at 2.8 km reso-
lution (COSMO-I2, COSMO-IT) using high resolution network of rain gauges coming from
COSMO dataset and Civil Protection Department, that counts about 1300 stations. In detail,
we show an update of the most recent results highlighting the failings and the improvements
of the 00 UTC runs up to +24h. The skills and the scores are calculated considering an
accumulation time of 6h or 24h, averaged over 90 meteo-hydrological basins that cover all
the peninsula with the exception of some Southern regions.

2 Long period verification

We have carried out the seasonal verification for the coarser models for the first and second
day for the following thresholds: 0.2 mm/24h, 2 mm/24h, 10 mm/24h, 20 mm/24 starting
from DJF 2004 to MAM 2009. The main results relatively to the first 24h for the lower and
higher thresholds are reported in the next pictures, Fig. 1 and Fig. 2 respectively:

• for low thresholds it is noticeable a seasonal cycle in Bias with big peaks during sum-
mertime; the biggest overestimation is for Cosmo-I7 (Fig. 1);

• in general it is evident a Bias reduction trend for low thresholds (Fig. 1);

• the Pod index has got a stable or slight worsening trend in time for low thresholds
(Fig. 1);

• the Pod index has got a slight improvement trend in time for high thresholds (Fig. 2);

• the best Pod performance is during spring/summertime for low thresholds (Fig. 1);

• the worst Pod performance is during summertime for high thresholds, probably due to
the difficulty to detect correctly the intense and localized convective events (Fig. 2);

• a Far reduction has been achieved, with the worst performance during summertime
both for low and high thresholds (Fig. 1 and Fig. 2);

• the Ets shows a slight improvement trend in time with a seasonal cycle both for low and
high thresholds: it becomes better during moist seasons and worse during dry seasons
(Fig. 1 and Fig. 2);

• for high thresholds the Bias reduction trend has been confirmed (at least for the lat-
est years, where it appears to have a general good performance); also the seasonal
cycle with the big peaks during spring-summertime (the convective period) has been
confirmed, although it seems to disappear during the latest summer (Fig. 2);
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• Cosmo-7 underestimates the precipitation amount and gets worse in terms of Pod
during the latest seasons both for low and high thresholds (Fig. 1 and Fig. 2).

Figure 1: Bias, Pod, Ets and Far: seasonal trends from DJF 2004 to MAM 2009 for 0.2 mm/24h.
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Figure 2: Bias, Pod, Ets and Far: seasonal trends from DJF 2004 to MAM 2009 for 20 mm/24h.
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3 Verification over the latest years

A focus on the verification over the latest years is reported here.

Comparison between Cosmo-7 and Cosmo-EU

In Fig. 3 we plot Bias, Pod, Ets and 1-Pofd versus increasing thresholds considering a period
from 200806 to 200905. It is noticeable a good performance of Cosmo-EU while Cosmo-7
underestimates the amount of precipitation (even if it forecasts more correctly the non-
events).

Figure 3: Bias, Pod, Ets, Far and 1-Pofd versus increasing thresholds.

In Fig. 4 we show the same indices at a fixed threshold of 20 mm/24h season by season. It
is confirmed the general better results for Cosmo-EU and an underestimation for Cosmo-7.
The slightly positive trend is significant and important for both the models.

Figure 4: Bias, Pod, Ets, Far and 1-Pofd season by season.
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Comparison between Cosmo-I7 and Cosmo-ME In Fig. 5 we plot Bias, Pod, Ets
and 1-Pofd versus increasing thresholds considering a period from 200806 to 200905 and,
in Fig. 6, the same indices season by season. The same results are obtained in both cases:
similar and fairly good performances for the two versions, slightly better for Cosmo-ME.

Figure 5: Bias, Pod, Ets, Far and 1-Pofd versus increasing thresholds.

Figure 6: Bias, Pod, Ets, Far and 1-Pofd season by season.
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Driving model comparison: Ecmwf, Cosmo-I7, Cosmo-I2

In the Fig. 7 the comparison among the three models versus increasing thresholds shows a
general big gap between Ecmwf and the Cosmo-models. Moreover, Ecmwf overestimates for
low thresholds and underestimates for the higher ones (it is an intrinsic feature and behaviour
for hydrostatic and coarser models). In general, Cosmo-I7 is better than Cosmo-I2 (Cosmo-I2
underestimates the precipitation and, consequently, it has a smaller Far).

Figure 7: Bias, Pod, Ets, Far and 1-Pofd versus increasing thresholds.

In the following picture (Fig. 8) we plot the indices season by season at a fixed thresholds of
20 mm/24h: it is confirmed the big gap between Ecmwf and the Cosmo-models. Both Cosmo-
models show a slightly positive trend, but Cosmo-I2 has got an underestimation tendency,
more pronounced during summer (convective) periods.

Figure 8: Bias, Pod, Ets, Far and 1-Pofd season by season.
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Driving model comparison: Ecmwf, Cosmo-ME, Cosmo-IT

In Fig. 9 the comparison among the three models versus increasing thresholds shows again a
general big gap between Ecmwf and the Cosmo-models. Cosmo-ME and Cosmo-IT display
a similar behaviour, with an overestimation tendency by Cosmo-IT.

Figure 9: Bias, Pod, Ets, Far and 1-Pofd versus increasing thresholds.

In the following picture (Fig. 10) we plot the indices season by season at a fixed thresholds
of 20 mm/24h: it is confirmed again the big gap between Ecmwf and the Cosmo-models.
Both Cosmo-models have a similar performance, but Cosmo-IT overestimates quite a lot the
precipitation, especially during summer (convective) periods.

Figure 10: Bias, Pod, Ets, Far and 1-Pofd season by season.

The diurnal cycle

In the following picture (Fig. 11) we check the models features considering 6h integration
precipitation starting from 06UTC to 72UTC forecast time. We analyze the behaviour of
all the 6 model versions at low and higher threshold (0.2 mm and 10 mm) over the latest
years. In particular, we note a Bias overestimation peak during midday for both thresholds
and, moreover, it is confirmed an underestimation for Cosmo-7, more pronounced for high
precipitation amounts. All the model versions, especially Cosmo-I7 and Cosmo-I2, present a
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spin-up problem for low thresholds, that seems to disappear for the higher ones where the
models underestimate the precipitation during the first 6h. In general it is noticeable a slight
improvement with respect to the previous years results.

Figure 11: Diurnal cycle for Bias and Pod for 0.2 mm/6h and 10 mm/6h.

The spatial distribution of the error

Finally, the latest year skills and scores have been calculated over each meteo-hydrological
basins in order to evaluate the spatial error distribution: here we show only the Bias for
10 mm/24h (Fig. 12) from 200806 to 200905 and the relative error (Fig. 13) for MAM
2009. Observing the Bias distribution over the territory (Fig. 12), apart from the general
characteristics we have found before with the statistical indices, we can underline some more
feature:

• all the versions overestimate the precipitation over the Alpine chain;

• there is a strong underestimation for Cosmo-7;

• there is a quite good general performance for Cosmo-ME, Cosmo-I7 and Cosmo-EU,
with an underestimation over Southern Italy, Sardegna and Tyrrenian regions and an
overestimation over the Adriatic area;

• there is an overestimation for Cosmo-IT and an underestimation for Cosmo-I2.

Eventually, Fig. 13 depicts the relative error distribution ((forecast-observed)/observed) in
percentage during last spring:

• all the versions forecast too much precipitation over the Alpine chain;

• Cosmo-7 and Cosmo-I2 predict too less precipitation over some basins;

• Cosmo-IT predicts too much precipitation over some basins;

• Cosmo-I7 overestimates the precipitation in Central-Southern Italy;

• Cosmo-ME and Cosmo-EU have a general good performance.
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Figure 12: Bias spatial distribution for 10 mm/24h for MAM 2009.

Figure 13: Relative error (%) distribution for MAM 2009.
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Verification of COSMO-2 with independent data from a wind profiler

Christophe Hug, Pirmin Kaufmann and Dominique Ruffieux

Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland

Abstract

Wind profiler data collected during two field campaigns of 3 months each have been used as an
independent measurement source to validate the high resolution numerical model COSMO-2
of MeteoSwiss. This action has taken place within a larger project for nuclear safety and
emergency preparedness, aiming at the development of an improved high resolution weather
prediction model for the Swiss Plateau.

Vertical profiles of wind direction and speed have been compared between wind profiler and
model. The results of this verification show a bias close to zero for both parameters. This
confirms that the model generally reproduces the air flow as observed at the location of the
wind profiler. However the standard deviation of the model error is considerable, indicating
that the model forecast cannot reproduce the profiler measurements during certains time
periods.

1 Introduction

In order to renew and improve the current Swiss warning and dispersion forecast system for
nuclear power plants (NPP), the Federal Office of Meteorology and Climatology MeteoSwiss
has built up a new wind profiler network (Figure 1) and developed a new numerical model
configuration COSMO-2 with a very high resolution of 2.2 km (Calpini 2008). The tools
created for this purpose are the essential component of the CN-MET project. As part of the
validation process of this project, two three-months field campaigns took place, a first from
August to October 2008 and a second from mid-March to mid-June 2009. An independent
mobile wind profiler has been located close to the sites of two different Swiss NPP and the
data collected have been compared to model simulations.

2 COSMO Configuration

MeteoSwiss uses COSMO in two configurations: COSMO-7 with a grid spacing of 6.6 km for
the short-range forecasting over the next 72 hours, and COSMO-2 with a grid spacing of 2.2
km for now-casting and short-range forecasting over the next 24 hours. The development of
the higher resolution of COSMO-2 was for a large part induced by the performance expected
from the new forecasting system developed in the framework of CN-MET.

COSMO-7 uses the lateral boundary conditions from the Integrated Forecast System (IFS)
of the European Centre for Medium-Range Forecasts (ECMWF). A continuous assimilation
cycle has been implemented, ingesting conventional surface observations as well as upper at-
mosphere soundings, aircrafts and wind profilers. Two daily 72 hours forecasts are calculated,
based on the 00 and the 12 UTC analyses, with a 45 minutes cut-off time. At MeteoSwiss
COSMO-7 is calculated on a 393 × 338 grid covering most of Western Europe. COSMO-7
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provides the lateral boundary conditions for COSMO-2. The COSMO-2 domain of 520 ×
350 grid points is centred over the Alps.

Model data are available on 60 model levels. Because model values represent a value averaged
in space over one grid cell, turbulence is not represented on the model grid. The model wind
therefore relates to a measurement with the turbulent contribution filtered by averaging over
a time span of about half an hour to one hour.

The current configuration of COSMO-2 is operational since 27 February 2008. Assimilation
of radar data with Latent heat nudging has been added in Spring 2008 mainly in order to
improve the reproduction of convective precipitation. Because consecutive COSMO-2 fore-
casts are started every three hours and cover 24 hours, each verification time is available in
8 different model forecasts with the respective 8 different lead times. This redundancy is an
additional security element.

3 Wind profiler data

The first field campaign took place in the northern part of Switzerland half way between the
two NPPs Leibstadt and Beznau (Figure 1; Ruffieux et al. 2009). A site representative to
the Leibstadt-Beznau region and to the confluence of the Aare valley with the Rhine Valley
was chosen. It is located north of Kleindöttingen, halfway between Leibstadt and Beznau,
next to the Aare River. The second field campaign was conducted near the NPP Mühleberg.
The wind profiler was located in Wileroltigen, a site representative for the Saane and Aare
valleys west of Mühleberg (Figure 2).

Figure 1: Overview of the CN-MET Network

The data were processed and went trough a 1st level automatic quality control. At the end of
the campaign, an operator made a manual 2nd level QC. The wind profiler has been operated
in two modes, delivering two sets of quasi simultaneous data. The low-mode measured up to
1’100 m above ground and the high mode went to almost 4’500 m. The characteristics of the
mobile wind profiler are summarised in Table 1. The temporal resolution of the measurement
available for the model comparison has been set to 30 minutes during the first campaign and
to 60 minutes during the second campaign.
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Figure 2: Vaisala mobile wind profiler during the second field campaign (March to June 2009) in the
vincinity of the power plant of Mühleberg.

low mode high mode

∆H = 72 m ∆H = 205 m
440 - 1452 m MSL 675 - 4773 m MSL

Table 1: Key numbers of the wind profiler configurations for low-mode and high-mode operation modes.

4 Verification method

Model outputs were available every 10 minutes for the purpose of the validation study. Since
wind profiler data have been produced every 30 or 60 minutes, corresponding time stamps
have then been used for the comparison. The observation data have been interpolated to
model height to perform the comparison during the first campaign, and to profiler hight
during the second campaign. Data of the 3 months field campaigns served as basis for the
analysis. In order to avoid problems with high variability of the wind direction for low
winds, winds with a speed lower than 3 m s−1 have been removed from the sample for wind
statistics. The products that have been generated for the validation and assessment of the
model quality include upper-air verification profiles, histograms of model error, and scatter
plots of observed values versus mode values. All products have been created for both low-
mode and high-mode wind profiler data and for the wind-speed threshold mentioned above.
The profile verification for two sites will be shown in the next section.

5 Results

Vertical profiles of wind direction and speed have been compared between wind profiler and
model. The verification shows a bias close to zero for both parameters (Figure 3). This
confirms that the model generally reproduces the air flow as observed at the location of
the independent wind profiler. However the standard deviation of the model error is quite
large, indicating that the model forecast is inaccurate over short time periods. This occurs
during rapidly changing weather conditions, when the model does not reproduce the fast
changing and sometimes back and forth switching of the measured airflow. A comparison with
the operationally assimilated wind profiler in Payerne (Figure 4) shows a smaller standard
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deviation for the wind direction, although not as small as when the verification is done with
the radio sonde (not shown), which is assimilated during the analysis cycle. The wind speed
bias is very close to zero at Payerne, but the wind direction shows a small bias of about 5◦

below 4000 m a.s.l. This systematic bias is to a smaller extent also found in the operational
COSMO-2 verification with the radio soundings of Payerne and in the surface verification
(Schubiger et al. 2008). The standard deviation is around 40◦ at the lower levels at both sites,
and in Payerne decreases to around 10◦-30◦ towards the top of the profile. The low-mode
results (not shown here) show a value about 5◦ larger. Finally a very positive conclusion
is that the quality of the forecast remains very high over the initial 6 hours of the model
forecast, indicated by all curves in the Figures 3 and 4 that remain in the same range for
bias and standard deviation.
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Figure 3: Vertical profiles of (left) model bias and (middle) standard deviation for the first 6 forecast hours
versus wind profiler in Mühleberg. The numbers in the box on the right show the number of cases. The
top figure shows the statistics for wind direction and the bottom figure for speed, in both cases restricted
to measurements with wind speed above 3 m s−1.
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Figure 4: As Figure 3 but for the assimilated operational profiler in Payerne.

6 Conclusions

Wind profiler data have been collected during a three months field campaign in the complex
topography of the Swiss Jura, and the north slope of the Alps. The high resolution model
COSMO-2 has been compared to these data for the first 6 hours of forecast and a good
average agreement between observation and model could be found especially for the upper
levels of the vertical profile. In the lower part of the profile, a slight positive bias can be
observed for both wind speed and wind direction. The results show only a minor decrease of
quality of the forecast over the first 6 hours. The standard deviation however appears to be
considerable. This indicates that the timing of the model is sometimes incorrect. Analysis of
individual events demonstrate this behaviour (see for example Ruffieux et al. 2009).
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Retrieving tornado’s like wind structure (20.07.2007, Czestochowa,
Poland case) using singular radar Doppler velocity

Jan Parfiniewicz

Institute of Meteorology and Water Management

61 Podlesna str., PL-01673 Warsaw, Poland

1 Poland case, 20.07.2007

This is an addendum to Tornado Case, Parfiniewicz, 2008, presenting results of direct re-
trieval of Doppler radar measurements from Brzuchania. The applied method of retrieval
resembles techniques known as ECUW (combination of Continuity with the uniform wind
technique, Hagen,2002) and VVP (velocity volume processing, Koscielny et al., 1982) but
was developed purely independently on experimental manner. The final algorithm consists
of 3 main steps (the order is important):

1. Retrieval of tangential wind component on polar grid circles (or part of them depending
on the domain) by solving differentiated continuity equation by tridiagonal TDMA
solver.

2. Retrieving averaged Cartesian components from retrieved on the step 1 polar compo-
nents, accounting strictly for proper metrics transformation from polar to Cartesian
grid, when using least square method. The 3D volume estimated to provide best results
is 1 km in vertical ( 3 levels) and 28 km (±14km, 5 grids of 2.8km) in horizontal. It
was necessary to apply this procedure twice (first for horizontally reduced volume) -
possibly to compensate aliasing bias, Gao & Droegemeier, 2004.

3. Finally, instead of formal mixing (or smoothing) the 2D ”Cartesian model” with nudg-
ing term on rhs (replacing pressure gradient) that assures convergence to radial mea-
surements was introduced. 20 iterations (for dt = ±20s with changeable sign every 3
iterations) were found enough, and confirmed stability of solution, even when tested
for 1000 iterations.

The result is presented via 3D streamlines: Fig. 1

2 Post Scriptum

The result concerning tornado and presented above was obtained by merging modeled wind
field (as a first guess) with embedded radial Doppler velocities. As for operational needs we
were forced to test pure retrieval, without modeled wind on input. The same was checked on
the tornado case, showing nearly identical results in vertical wind component while signifi-
cant differences in horizontal ones - thus modifying 3D picture by enhancement of vertical
movement. This is not presented here since it was recognized as less credible, thus confirming
positive impact of modeled wind on Doppler radar retrieval. Acknowledgment: to Bogdan
Rosa for stimulating talks.
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Figure 1: Vis5d was used to obtain 3D streamlines as set of characteristic trajectories. They are colored
by w - vertical velocity in m/s. Scaling for w and topography (in m) is included. Vertical line indicates
tornado localization. Descending spiral motion, that is beginning at about 7 km, is dominating it reaches
maximum downward velocity just above tornado.

References

[1] M. Hagen, K. Friedrich, and J. Seltmann: Wind-field observations with the operational
Doppler radar network in Germany, Proceedings of ERAD (2002): 195-199 Copernicus
GmbH 2002, ERAD 2002

[2] Koscielny, A.J., Doviak, R.J., and Rabin, R., Statistical considerations in the estima-
tion of divergence from single-Doppler radar and application to prestorm boundary-layer
observations. J. Appl. Meteorol., 21, 197-210, 1982.

[3] Jidong Gao, Kelvin K. Droegemeier, A variational technique for daaliasing Doppler
Radial Velocity data, J. Appl. Meteorol., 43, 934 - 940, 2004

[4] J. Parfiniewicz, 20th of July 2007 explosive convection over Europe. The COSMO
perspective. COSMO Newsletter No. 9, 79 - 85, 2008

No. 10: January 2010



5 Working Group on Verification and Case Studies 72

Overview of operational verification results in Poland

Katarzyna Starosta and Joanna Linkowska

Institute of Meteorology and Water Management, Centre of Numerical Weather Prediction, Warsaw

1 Introduction

A goal of this work is to summarize the main results of operational verification in Poland.
The verification results of a few continuous meteorological parameters, as well as 12 and 24h
accumulated precipitation are presented in this paper.The fields from COSMO PL had been
verified with 58 Polish SYNOP stations. The model configuration was: 14 km horizontal grid
spacing, initial time at 00 UTC, the forecast range 72 h. To verify the diurnal behavior of
the model, the couples forecast-observation were stratified according to the hour of the day
(3 hourly frequency for continuous parameters) and the season of the year.The verification
was performed using a new verification tool - VERSUS. The verification results from June
2008 to May 2009 are shown bellow.

2 The verification method

The mesoscale COSMO PL had been verified for four seasons for the selected period (JJA,
SON, DJF, MAM). The verification was performed for following parameters: temperature
at 2m a.g.l, the air pressure at sea level, the wind speed at 10m e.g.l., 12h and 24h accu-
mulated precipitation. For continuous parameters the mean error (ME), the mean absolute
error (MAE) and the root mean square error (RMSE) were calculated. For the accumulated
precipitation indices FBI, POD, FAR, ETS from contingency table were calculated. For the
precipitation verification following thresholds were taken into account: 0.2, 0.4, 0.6, 0.8, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20 mm.

3 Results

3.1 The 2m temperature

Figures 1-4 present a behavior of 2 m temperature forecast errors for all the set of Polish
stations. The diurnal and seasonal cycles were observed. The errors were bigger in summer
than in winter time. During half-yearly period from May to August (MAM,JJA) diurnal
cycle was marked with large amplitude for ME, MAE, RMSE. The errors reached maximum
values around 3UTC and 15 UTC The cold bias was observed during the day and warm
bias during the night time. The diurnal amplitude of ME took values in the range (0, -2,5)
in DJF. The maximum of errors occurred at midday. The ME was negative for the whole
forecast range. ME behavior was quite similar in summer, autumn and spring but the smaller
errors were observed in autumn. In SON the maximum values of ME were at 3 UTC and 12
UTC.
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(a) ME, MAE,RMSE, Tempera-

ture 2m, JJA 2008, Poland

(b) ME, MAE,RMSE, Tempera-

ture 2m, SON 2008, Poland

(c) ME, MAE,RMSE, Tempera-

ture 2m, DJF 2008/2009, Poland

(d) ME, MAE,RMSE, Tempera-

ture 2m, MAM 2009, Poland

Figure 1: Temperature verification results over Poland

3.2 The sea level pressure

Figures 5-8 show ME, MAE, RMSE for the pressure reduced to mean sea level. For all the
seasons we observed clear increasing tendency of RMSE and MAE with the forecast step. No
clear tendency of ME was noticed. The errors (RMSE, MAE) were smaller in the summer
than in the winter. ME error was near zero (-0.5 0.5) in the autumn and winter. The
amplitude of ME was bigger in the spring and summer and took the range (-1.0-1.0).

(a) ME, MAE,RMSE, Sea level

pressure, JJA 2008, Poland

(b) ME, MAE,RMSE, Sea level

pressure, SON 2008, Poland

(c) ME, MAE,RMSE, Sea level

pressure, DJF 2008/2009 Poland

(d) ME, MAE,RMSE, Sea level

pressure, MAM 2009, Poland

Figure 2: SLP verification results over Poland
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3.3 The wind speed 10m above ground level

The verification results of the wind speed 10m above ground level are presented in figures
9-12. Very explicit seasonal runs of errors with a division for two half-yearly period were
noticed. For the first period, summer 2008 and spring 2009, we observed explicit diurnal
cycle of all errors (RMSE, MAE, ME) with maximum at midnight. ME was above zero
during the night and below zero during the day. For the second period, September 2008-
February 2009, the amplitude of errors was small. Despite of the small amplitude of ME
clear diurnal cycle was observed.

(a) ME, MAE,RMSE, Wind speed

10m, JJA 2008, Poland

(b) ME, MAE,RMSE, Wind speed

10m, SON 2008, Poland

(c) ME, MAE,RMSE, Wind speed

10m , DJF 2008/2009, Poland

(d) ME, MAE,RMSE, Wind speed

10m, MAM 2009, Poland

Figure 3: 10m wind speed verification results over Poland

3.4 12h and 24h accumulation precipitations

Figures 13-28 show verification of 12h accumulated precipitations and figures 29-44 show
24 h accumulated onces. For both precipitation sums an overestimation was noticed for
small thresholds (0-2.0 mm) and underestimation for higher thresholds. FBI plots decreased
rapidly for higher thresholds. The results of FBI were better for JJA and MAM. Also POD
diminution with the precipitation thresholds was observed. The curve broke down rapidly
around the threshold of 2 mm. FAR increased monotonous with precipitation thresholds.
The results were better for the first day of forecast. ETS score was quite low for the all
seasons and the precipitation sums. Almost no skill level was noticed. For all indices the
results of verification were better for 24h accumulated precipitation than for 12h accumulated
precipitation.
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(a) (b)

(c) (d)

Figure 4: FBI , 12h accumulated precipitation, June 2008-May 2009, Poland

(a) (b)

(c) (d)

Figure 5: POD, 12h accumulated precipitation, June 2008-May 2009, Poland
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(a) (b)

(c) (d)

Figure 6: FAR, 12h accumulated precipitation, June 2008-May 2009, Poland

(a) (b)

(c) (d)

Figure 7: ETS, 12h accumulated precipitation, June 2008-May 2009, Poland
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(a) (b)

(c) (d)

Figure 8: FBI, 24h accumulated precipitation, June 2008-May 2009, Poland

(a) (b)

(c) (d)

Figure 9: POD, 24h accumulated precipitation, June 2008-May 2009, Poland
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(a) (b)

(c) (d)

Figure 10: FAR, 24h accumulated precipitation, June 2008-May 2009, Poland

(a) (b)

(c) (d)

Figure 11: ETS, 24h accumulated precipitation, June 2008-May 2009, Poland
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4 Conclusions

Operational verification results using a new verification tool VERSUS was presented in this
paper. Diurnal, seasonal and half-yearly period cycles of the errors were observed for the 2
m temperature and the wind speed. The model seems to underestimate 2m temperature for
the winter time. For remaining seasons the temperature is underestimated during the day
and overestimated during the night. For all seasons the wind speed is always overestimated
during the day. MAE and RMSE of sea level pressure increase with the forecast time. The
model underestimates the precipitation for higher thresholds. The verification results were
obtained better for 24 h accumulated precipitation.
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