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Abstract

Principal approximations inherent in the Local Ensemble Transform Kalman Filter (LETKF)
are examined, and conclusions about the related approximation errors are drawn. First, the
major difficulty in implementing the LETKF technique in the operational context is its
lack of efficiency in assimilation of non-local, primarily satellite, observations. The cause
of this difficulty is the restriction of the analysis increment to low-dimensional ensemble
space, on the one hand, and large spatial supports of satellite data, on the other hand.
Second, making analysis in small local boxes gives rise to small-scale noise due to local
data selection—as in Optimum Interpolation. Third, an attempt to account for realistically
correlated observational errors makes LETKF and other ensemble-space and model-space
Ensemble Kalman Filters (EnKF) computationally inefficient. Published experimental results
are discussed in the light of the theoretical and experimental findings made in this study.

1 Introduction

In the recent years, a kind of Ensemble Kalman Filter (EnKF), the Local Ensemble (Trans-
form) Kalman Filter (LEKF/LETKF) has become popular. Numerous papers, starting from
(Ott et al. 2004), have explored capabilities of LETKF to deal with different data assimila-
tion issues, including real-data assimilation (Hunt et al. 2007, Szunyogh et al. 2007b, Miyoshi
and Yamane 2007, Bonavita et al. 2008), satellite data assimilation (Szunyogh 2007a, Fertig
et al. 2007), four-dimensional assimilation (4D-LETKF, Hunt et al. 2004, Kalnay et al. 2007,
Harlim and Hunt 2007b), non-Gaussian background-error distributions (Harlim and Hunt
2007a), forecast bias (Baek et al. 2006) and others. The LETKF technique is simple, com-
putationally efficient, and allows for flow-dependent background-error covariances. Different
extensions to the basic LETKF formulation have been proposed. Some of the above papers
report on promising results in near-operational setting. But still there are no operational
implementations.

The questions arise: Is the LETKF technique a real alternative to variational methods (3D-
Var and 4D-Var) as a means of operational (global and limited-area) data assimilation? What
are the conditions under which LETKF can be considered to be really competitive?

To answer these questions, we consider below the details of the LETKF algorithm and draw
some conclusions about its capabilities, especially in the areas of satellite and meso-scale
data assimilation. The focus is on the analysis step, where, as we will see below, the major
limitations of the technique lie.

2 LETKF. Analysis step: brief description

In this section, we derive the LETKF analysis equations, emphasizing approximations (and
thus imperfections) inherent in this technique.
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At each analysis step, we have: the deterministic forecast xf , an ensemble of perturbed
forecasts {xf

i } (i = 1, . . . , ne, ne is the ensemble size), and observations xo. The ensemble

mean is usually used as a background field xb in the analysis. The deviation fields xf
i − xb

are deemed to be independent samples from the unknown true probability distribution of
the (minus) background error xb − x, where x is the true field to be estimated. Here, we

assume that xf
i are already undergone a procedure like ’variance inflation’, which attempts

to take into account errors due to forecast model imperfections (model errors).

The distinctive features of the LETKF analysis are:

1. At each analysis grid point, the analysis is performed locally : using only nearby obser-
vations from a box (cylinder, ellipsoid, ...) surrounding the grid point—as in Optimum
Interpolation (OI) (Gandin 1963, Lorenc 1981).

2. The analysis is performed in ensemble space: within each local box, the analysis incre-
ment belongs to the subspace spanned by ensemble deviations, xf

i − xb.

The details of the technique follow.

2.1 Ensemble space

We start by computing the (global) ensemble vectors,

ei :=
1√

ne − 1
(xf

i − xb), (1)

where the sign := means ‘equal by definition’. The normalization by
√

ne − 1 is introduced
into Eq.(1) only with the intention to simplify the analysis-algorithm formulae.

Next, we proceed by forming (theoretically) the ensemble matrix

E = (e1 · · · ene
). (2)

Note that, as it follows from Eqs.(1) and (2), the ensemble sample covariance matrix Be is

Be = E ·ET . (3)

Now, we introduce ensemble space E := Span{e1, · · · , ene
}, so that any z ∈ E can be

expanded in the ensemble vectors:

z =

ne∑

i=1

z̃iei ≡ Ez̃ (4)

Here are below, by tilde, we denote coordinates of a vector in the ensemble ‘basis’, {ei}.
Note that the set of ensemble vectors {ei}ne

i=1 does not constitute a true basis in E if xb is the
ensemble mean (as {ei} sum up to zero and are thus not linearly independent). This implies
that the expansion Eq.(4) does exist but can be not unique.

Thus, the control variable we wish to estimate in the analysis is x̃ such that x = Ex̃. The
dimensionality of x̃ is as low as ne (several tens, in practice).

The great advantage of making the analysis in ensemble space is that the dimensionality of
E can be chosen much less than both the number of local influencing observations and the
number of grid points in the local box. As a result of this, the analysis equations can be solved
substantially faster than both in observation space and model space. But this acceleration
comes at a price, which can be high: (low-dimensional) ensemble space can be too poor to
reproduce the background-error spatial variability, resulting in poor analysis. In more detail,
this issue is considered in section 4.2.
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2.2 The ensemble-space observation model

We start with the conventional global-space observation model:

xo = H(x) + η, (5)

where H is the observation operator, x the global-grid state variable (vector), and η the
observation error (which consists of the measurement error and the observation-operator
error). We linearize H(x) around the background xb:

xo = H(xb) + H(x − xb) + η + ηlin, (6)

where H is the tangent linear observation operator and ηlin is the error due to truncation of
the Taylor series in Eq.(6). To simplify the notation, we turn to increments—all denoted by
y:

y := x− xb, (7)

yo := xo −H(xb). (8)

With these increment variables, Eq.(6) writes

yo = Hy + η + ηlin. (9)

This is the linearized global-space observation-increment model. Now, we have to transform
it to ensemble space.

2.2.1 The ensemble truncation (representativeness) error

An observation model in ensemble space relates the state vector in ensemble space, ỹ, to the
observation increment yo. To build this model, we project (with an appropriately selected
scalar product) y onto E , getting

y = ye + yres, (10)

where ye ∈ E and yres ⊥ E . Being in E , ye can be expanded in the ensemble vectors (see
Eq.(4)), ye = Eỹ. The residual in Eq.(10), yres, cannot be represented within ensemble space
and, as a result of this, manifests itself as a source of observation representativeness error.
Indeed, from Eqs.(9) and (10), we obtain

yo = H̃ỹ + η + ηlin + ηet, (11)

where
H̃ = H ·E (12)

and
ηet = Hyres (13)

is the error due to ensemble truncation.

To complete the LETKF ensemble-space observation model, we approximate the tangent-
linear observation operator in Eq.(12) as follows.
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2.2.2 A finite-difference approximation to H

As it is proposed in the LETKF literature, working in ensemble space enables another sim-
plification of the analysis technique: the tangent linear observation operator (and, in the 4-D
case, the tangent linear forecast model) can be usefully approximated by finite differencing.
To do so, we write the first term on the r.h.s. of Eq.(11), using Eq.(12), as

H̃˜̃y ≡ HE˜̃y ≡
∑

ỹi ·Hei (14)

and approximate Hei by 1
s (H(xb + sei) − H(xb)), where s :=

√
ne − 1 and xb + sei ≡ xf

i ,
getting

H(x) −H(xb) =
1

s

∑
ỹi · (H(xf

i ) −H(xb)) + ηlin + η′fd. (15)

Here, η′fd represents the finite-differencing error.

It can be shown that if ỹ is multivariate Gaussian with zero mean and H is only second-order
non-linear, then the covariance matrix of the sum ηlin +η′fd is larger than that of ηlin (in the
sense that difference of the two covariance matrices is a positive-definite matrix). In order to
find out how important this loss of accuracy is, we need to know intricate properties of the
tensor ∂2Hk/∂xi∂xj , which is beyond the scope of this article. For realistic weakly non-linear
observation operators the difference is expected to be small, e.g. for linear H, both ηlin and η′fd

are equal to zero. In addition, Lorenc (2003b) noted that the linearized observation operator
is encountered in the analysis equations only combined with error covariance matrices. As the
latter are known only approximately, there is little sense in making the linearized observation
operator ‘very accurate’. So, the finite differencing error is only a minor problem, at least
for not too non-linear observation operators.

In Eq.(15), it can be preferential to replace H(xf
i ) − H(xb) by H(xf

i ) − H̄ with H̄ =
1
ne

∑ne

j=1 H(xf
j ), as it is done in the LETKF literature. Denoting the error of this approxi-

mation by ηfd, we finally obtain

yo = Zglob · ỹ + η+ ≡
∑

ỹi · zi + η+, (16)

where Zglob is the matrix of the same size as H̃ whose columns are zi := (H(xf
i )−H̄)/s, and

η+ = η + ηlin + ηet + ηfd (17)

is the total effective observation error.

Thus, the observation model relating the local ensemble-space increment vector ỹ to the
observation increments yo is derived—Eq.(16). Note that the corresponding observation er-
ror, η+, has one major additional LETKF specific component, ηet (due to finite ensemble
size), and one minor additional component, ηfd (due to the finite-differencing error). The
larger the observation error, the less information it bears, the less accurate the analysis. How
important these additional errors are for the performance of LETKF is further discussed in
section .

2.3 The analysis equations

Note that all the above equations are written for the global state variable and the global
ensemble vectors. Now, it is time to localize the analysis. We achieve this by performing the
analysis for each analysis grid point independently and limiting the number of observations
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used in each local analysis (only observations in a local box surrounding the analysis grid
point are selected).

Specifically, from the global matrix Zglob, we build its local version, Z, by leaving only rows
that correspond to the selected observations. We also build the local version of E, Eloc, by
dropping rows that correspond to grid points not within the support of any of the selected
observations. Thus, the number of rows in Eloc equals the number of observed degrees of
freedom in the current local analysis. It is important to notice that if non-local satellite
observations are used, the Eloc matrix is enlarged due to the grid points that can be outside
the selected box but within the supports of these observations. This enlargement is further
discussed below in section .

For any analysis grid point, having selected ‘influencing’ observations, and with the obser-
vation model, Eq.(16), in hand, we easily write down the (linear) analysis equation

xa = xb + Eloc · K̃ · yo, (18)

where K̃ is the gain matrix in ensemble space,

K̃ = (I + ZTR−1Z)−1ZTR−1, (19)

R = Eη+(η+)T is the (local) observation-error covariance matrix, E denotes the mathe-
matical expectation, and the equality B̃ ≡ Eỹ · ỹT = I is used following, e.g. (Hunt et al.
2007). Note that if R is diagonal, then the only matrix that requires non-trivial inversion in
Eq.(19) is I+ZTR−1Z, its order being as small as ne. This results in the very fast numerical
algorithm and, essentially, makes it possible to perform multiple analyses at all grid point
separately.

An additional ‘observation localization’ is sometimes applied: the R−1 entries are multiplied
by a monotonically decaying function of the distance between the center of the box and the
particular observation (within the box). This ad hoc device acts to reduce the influence of
distant observations, which, first, diminishes the detrimental impact of sampling noise in the
background error covariances at large distances, and second, makes the transition from one
analysis grid point to the adjacent more smooth.

3. Advantages of the LETKF analysis technique

• Simplicity

The LETKF analysis algorithm does not require any background-error covariance
model, which is the major simplification as compared to 3D-Var or 4D-Var.

• Computational efficiency

First, the LETKF analysis algorithm is fast because of working in low-dimensional
ensemble space. Second, as in local OI, LETKF analysis computations at all grid points
are completely mutually independent, which enables very efficient parallelization in
implementations on present and future massively parallel computers.

• Flow-dependent covariances

Ensemble statistics allows to easily introduce flow dependence in the background con-
straint, which is a very desirable feature.

• 4D-LETKF

The technique is easily and naturally extended to the 4-D case.
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4. Weaknesses of LETKF

The above mentioned strengths of the LETKF analysis algorithm are detailed in the LETKF
papers, so let us concentrate here on LETKF problems.

4.1 With non-local satellite observations, the effective box size becomes large

As it follows from the above description of the LETKF analysis and as it was proposed by
Fertig et al. (2007), if the support of an observation does not lie within a local box, global
ensemble (zi) vectors are used to fit the observation in the local analysis. This implies that
the effective box includes supports of all non-local (non-point-support) observations. In other
words, if we wish to fit a non-local observation (with the support larger than the set of grid
points surrounding the observation point), there in no choice other than to control the fields
within its support. As a result, the actual domain in physical space where the local analysis
is done (which we call the effective box) is enlarged:

ai ≥ |suppH|i, (20)

where ai is the effective box extent (diameter), i = x, y, z, |A|i denotes the diameter of the
set A along the coordinate axis i, and suppH denotes support of H.

Supports of real observation types can be quite large:

(i) Nadir radiances are often influenced by a part of the atmospheric vertical column compa-
rable in depth to the whole atmosphere, e.g. AMSU-A channels 6-10 have supports as large
as 20-30 km in the vertical (e.g. Goldberg et al. 2001). So, including such observations in a
local analysis makes it, effectively, global in the vertical.

(ii) Limb observations (which look through the Earth atmosphere from space to space) imply
large effective horizontal extents of the local boxes. Indeed, a limb radiance measurement or
a radio-occultation observation both depend on a horizontal path in the Earth atmosphere.
For a thin atmosphere, the length of this tangent path is l ≈ 2

√
2Red, where Re is the Earth

radius and d the effective depth of the atmosphere. If d = 30 km, l ≈ 1200 km. If d = 15
km, l ≈ 900 km.

Thus, we see that assimilation of (very informative in practice) non-local nadir and limb
satellite observations makes the effective size of the local boxes large. We cannot avoid this
enlargement without cutting distant parts of the observational support (i.e. without nullifying
their influence on the observation operator), which would have a serious detrimental impact
on their assimilation. With non-local satellite data, the effective boxes can cover (almost)
the whole model atmosphere in the vertical and have horizontal extents greater than 1–2
thousand km.

4.2 Within large effective boxes, affordable ensemble size implies poor analysis
resolution and hence accuracy

As discussed, defining the control variable in ensemble space E is essential for LETKF because
it yields the very fast computational algorithm, but, at the same time, it is the major
limitation of the technique. Indeed, as we have seen in section 2.2.1, working in E entails the
additional observation representativeness error, ηet, due to the inability of a small number
of ensemble vectors to span the physical space within the (effective) local box. This error
reduces the analysis accuracy, especially in cases with large difference between the (low)
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dimensionality of E and the (large) number of observed degrees of freedom in the local
analysis.

The implications of the ensemble being too small can be also explained from a more conven-
tional perspective. Namely, as it is stressed many times in the LETKF and other literature
and as it follows from Eq.(18) above, the local analysis increment is a linear combination
of the local ensemble vectors. So, as noticed by Lorenc (2003b), in order for an EnKF anal-
ysis to be capable of fitting observation, the ensemble size should be comparable with the
number of observations within the localization domain. If observations are plentiful whilst
the ensemble size is small, the analysis will inevitably smooth the observational information,
which can lead to loss of analysis accuracy. Note that this problem is also encountered in
particle filters (Tsyrulnikov 2007). So, we need to make the ensemble size commensurable
with the number of observed degrees of freedom within an effective box:

ne ∼ nodof . (21)

If the local spatial variability is high (the most practically important case) and this high
variability is captured by the existing high-resolution observing systems, then we need high-
dimensional analysis space (not available in LETKF) in order to represent the observed
variability in the analysis increments. This is especially important on the meso scale, where
small-scale phenomena are abundant both in the horizontal and in the vertical: fronts, jets,
inversion layers, convective systems, polar lows, etc.

In other words, small dimensionality of analysis space implies poor resolution in a local
analysis. In a local box with the effective extents ai, not more than ne features can be resolved
in the local analysis. The resulting local analysis resolution measured by the effective mesh
sizes heff

i is

heff
i ∼ ai/ 3

√
ne. (22)

Realizing that the typical ensemble size is ne = 30−100, we conclude that the effective local
resolution is only about 3

√
ne÷4 pieces of information in each of the three spatial dimensions.

Note that in the 4-D version of LETKF, the local resolution can be even less ( 3
√

ne should
be replaced by 4

√
ne in Eq.(22)).

On the other hand, we have seen in the previous subsection that assimilating non-local
satellite data implies that local boxes become, effectively, as large as (1 − 2) · 103 km in
the horizontal and (almost) the whole model atmosphere in the vertical. Therefore, if these
observations are assimilated, the analysis resolution within a box appears to be very poor:
3–6 km in the vertical and 200–500 km in the horizontal, which is far less than we would
require even from a global analysis, let alone limited-area meso-scale assimilation.

It is worth noting that poor resolution in a local analysis means that even if there are (useful)
high-accuracy observations near the centre of the box, they simply can be not resolved. As
a result, the accuracy of the resulting analysis at the centre of the box is reduced. It is
important to stress that the very attempt to assimilate non-local satellite data using an
ensemble-space analysis technique can make assimilation of all observations inefficient.

The above 3
√

ne dependency implies that high resolution in a local box cannot be even
reached with the ensemble-space analysis technique in practical NWP applications. Indeed,
the effective 20-km mesh size in the horizontal (100 pieces of information for a 2000-km box)
and 50 levels in the vertical would require unimaginable ne ≈ 100·100·50 = 500, 000 ensemble
members, which is, certainly, not feasible. Bishop and Hodyss (2009) proposed to use a kind
of resampling technique in order to ‘statistically’ increase the ensemble size up to thousands.
In its simplest form, their idea can be used to generate ‘synthetic’ ensemble perturbations by
y∗

s = Ea, where a is a pseudo-random vector with the unit covariance matrix and s = 1, . . . , S

No. 10: January 2010



1 Working Group on Data Assimilation 29

denotes the number of the generated perturbation. Thus defined, any y∗

s has the covariance
matrix exactly equal to Be (conditional on the forecast ensemble). Appending the ‘synthetic’
perturbations to the forecast ensemble perturbations increases ensemble size, improving the
local resolution and reducing the ensemble representativeness error. But not dramatically,
because the required very large ‘synthetic’ ensembles are expensive: with the dimensionality
of a practical problem as large as n = 108 and ne = 102, just generating S = 104 ‘synthetic’
perturbations would require huge n · ne · S = 1014 flops. So, we conclude that an ensemble-
space EnKF analysis technique cannot yield high spatial resolution in practice.

Summarizing, we claim that with LETKF, it is not possible to efficiently assimilate non-local
satellite data in the presence of high local spatial variability when this variability is observed.

4.3 Small local boxes can led to small-scale noise in the analysis increments

The LETKF analysis algorithm can be viewed as an attempt to reintroduce OI but with
ensemble covariances instead of analytic ones. As a result, many OI drawbacks are inherited
by LETKF. In particular, changes in the sets of influencing observations from one analysis
grid point to another can lead to small-scale noise: horizontal and vertical analysis gradients
become contaminated. As the gradients directly enter the prognostic equations, their accu-
racy is as important as accuracy of the fields themselves. In addition, inaccurate gradients
can destroy balances (hydrostatic, geostrophic, . . . ).

In order to make the resulting small-scale noise reasonably low, one should ensure that
in each box, observations close to its boundaries have low weights in the analysis. With
observation errors similar in magnitude to background errors (a typical situation in modern
data assimilation), this is the case if background-error correlations between the center of the
box and the boundaries are sufficiently low. This can be achieved either by increasing the box
size or by implementing the above ‘observation localization’. It is worth noting, however, that
severe localization distorts the effective background-error correlations: their length scales Li

may become unrealistically small, which can substantially reduce the accuracy of the analysis.
So, we cannot use ‘observation localization’ to radically reduce the background-error length
scales, which, thus, appear to be the approximate lower bounds for the respective box radia:

ai

2
≥ Li. (23)

Otherwise, we say the box is small. Now, we show that with small boxes, the noise can really
be generated. We carried out a simple 1-D experiment. We supposed that the analyzed field
had analytic correlation function C(r) = (1 + r/L) exp(−r/L), where r is the distance on
the circle and L the length scale. We selected L = 300 km as a typical value for background-
error correlations. The field was assumed to have unit variance. The ensemble size was
chosen to be ne = 50. The analysis domain was a (latitude) circle. The grid spacing was
h ≈ 55 km (1◦ at latitude 60◦). Realizations of both the pseudo-random ‘truth’ and forecast
perturbations were generated by forming the covariance matrix of the grid-point values,
whose entries are Bij = C(|ri − rj|), performing its eigen-decomposition, and perturbing
the ‘principal components’ according to their variances given by the respective eigen-values
of B. Observations were placed at grid points with the spacing hobs = m · h. The pseudo-
random Gaussian observation noise with unit variance was added. Observation errors were
assumed to be uncorrelated. ’Observation localization’ was implemented with the Gaussian
localization function, exp(−0.5(r/l)2), where l is the localization length scale.

In Fig.1. we show results of the experiment with m = 4 (each fourth grid point was observed),
box diameter as small as 12h, and l = 3h. The effective box diameter with the observation
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localization can be roughly assessed as aeff = 2l = 6h ≈ 330 km, which is close to L = 300
km, so the boxes are nearly small in the above sense. The solid thick curve represents one
arbitrarily chosen realization of a reference-analysis increment produced using large local
boxes (with diameter 50h) and exact background-error statistics (OI, essentially). The solid
thin curve represents the LETKF analysis increment. The dotted curve corresponds to the
analysis produced on a coarser grid (here, 8 times coarser than the analysis grid) and post-
interpolated using the weight interpolation proposed by Yang et al. (2009).

Figure 1: Analysis increment, one realization: OI box diameter 50 (solid thick curve), LETKF box
diameter 12, localization length 3 (solid thin), and LETKF on coarse grid with post-interpolated ensemble
weights (dotted).

From Fig.1, one can see that indeed small boxes can cause excessive and spurious extrema
in LETKF analysis increments. Weight interpolation is seen to smooth somewhat the noisy
analysis increments but only slightly. With the coarse-grid mesh size equal to 3h, the resulting
interpolated increment (not shown) appeared to be almost indistinguishable from the full-
grid (solid thin) LETKF curve. So, the noise is really generated in spite of ‘observation
localization’ and weight interpolation. With larger boxes, denser observation network and
smaller observation errors, the noise in the increment field reduces. We remark that the these
experimental results depend only on the ratio L/h, so they are equally valid for, say, h = 1.8
km and L = 10 km.
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Finally, we note that, as it was proposed by Lorenc (1981) for OI and by Bishop and Hodyss
(2009) for LETKF, one can suppress the small-scale noise by simultaneously updating a
number of grid points near the centre of the box. But this can be only achieved at the ex-
pense of increasing the box size, which can exacerbate the ensemble-space-analysis resolution
problem discussed in the previous section.

4.4 Observation-error correlations can destroy the LETKF computational effi-
ciency

At first glance, the number of floating-point operations involved in the LETKF analysis
algorithm Eqs.(18)–(19) does not critically depend on the number of observations, nobs,
because the (small) ensemble size (and thus the dimensionality of the system of algebraic
analysis equations to be solved) remains untouched. With the increasing nobs, the number
of entries in the Z matrix and thus the number of floating-point operations (flops) in the
analysis grows as O(nobs). But this slow growth of the floating-point operation count with
the box size becomes badly fast if we try to account for spatial dependencies (correlations)
between the observation errors.

Indeed, if the local R matrix is dense 2, its factorization involved in the application of R−1

in Eq.(19)) requires as large as O(n3
obs) flops (e.g. Golub and van Loan 1989). In this case,

we state that the computational advantage of the LETKF algorithm disappears. This issue is
most important for satellite data assimilation and on the meso scale (where radar data do
have spatially correlated errors (Xu et al. 2007)).

Hunt et al. (2007) discussed using ‘batches’ of observations with zero correlations of obser-
vational errors between different ‘batches’. But this assumption is, generally, not met in case
of data with spatially and temporally almost continuous coverage (satellites and radars). So,
the ‘batch’ approach cannot help with these data (the ‘batches’ will be too large, say, all
AMSU-A data will be one ’batch’).

Another device capable, in principle, of removing the problem is the diagonalization of the
R matrix before the analysis (e.g. Fertig et al. 2007). However, this approach again requires
O(n3

obs) flops to compute the matrix R−1/2, which transforms the original observations xo

to new ‘pseudo-observations’ with uncorrelated errors:

x̌0 := R−1/2 · xo. (24)

In addition, these ‘pseudo-observations’ become substantially non-local because their ob-
servation operator involves left-multiplication by R−1/2 (as it follows from Eq.(24)), which
complicates their efficient assimilation in an ensemble-space analysis (as discussed above in
section ()). So, diagonalizing the R matrix is not likely to give rise to a computationally
efficient LETKF algorithm with correlated observation errors.

Thus, with the existing methodologies, allowing for correlated satellite and radar observation
errors makes the LETKF analysis algorithm computationally inefficient (we have to solve
large systems of linear algebraic equations at every analysis grid point).

Finally, we note that R−1 enters the equations of the (L)ETKF analysis ensemble generation
scheme (e.g. Hunt et al. 2007), which can compromise the applicability of the Ensemble
Transform analysis technique in the presence of correlated observational errors.

2Bormann et al. (2003) report that for AMV (atmospheric motion vectors) observations, the horizontal
observation-error correlation falls to 0.5 at 300 km and to zero at about 1000 km.
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4.5 Meso-scale issues

On the meso scale, a kind of scale separation technique can be a remedy for the above prob-
lems with the LETKF assimilation of non-local satellite data. Namely, satellite observations
can be assimilated in a global variational analysis, which is used as a first guess for the
‘meso’ analysis, which, in turn, updates meso scales by using only locally supported ‘meso’
observations. In this case, the above limitations are greatly relaxed.

Indeed, first, large supports of satellite observations no longer limit the effective box size
from below (as there are no ‘meso’ data with comparably large supports). The boxes can
be made small so that the effective resolution within a box, see Eq.(22), can be reasonably
high. Second, analyzing only meso scales implies small background-error length scales, so it
can be easy to satisfy the requirement Eq.(23). Third, balances are known to be weak on
the meso scale (e.g. geostrophy is not valid because the Rossby number is large), so there is
little danger to destroy them by localization.

Thus, boxes can be made sufficiently small, which would result in enhanced spatial resolution
within a box without excessive smoothing of observations, without generating small-scale
noise, and without destroying multivariate balance constraints. However, at scales less than
about 1 km, the radar error correlations appear to be significant (Xu et al. (2007) report on
the 2-km decorrelation radius). In this case, the LETKF algorithm can lose its computational
efficiency and its real-data applicability becomes questionable.

We also note that on the meso scale, strong non-linearity of forecast equations can lead to
highly non-Gaussian background-error distributions. But Lawson and Hansen (2004) showed
that the ensemble transform technique is incapable of properly blending the non-Gaussian
prior distribution and the largely Gaussian observation-error distribution. So, on the meso
scale, a perturbed-observations technique seems to be more suitable than an ensemble-
transform based technique.

5. Published experimental evidence

(1) Concerning satellite data, we state that the only attempt to assimilate real radiances
with the LETKF methodology was reported in (Szunyogh et al. 2007a) but without detailed
presentation of the results. Simulated radiances were assimilated by Fertig et al. (2007). All
peer-reviewed papers reporting on real-data assimilation (listed in the Introduction) do not
involve satellite radiances, in spite of the fact that these latter are known to be the crucial
part of the global atmospheric observing system (e.g. Kelly and Thépaut 2007).

(2) The necessity of the above relationship, Eq.(21), between the ensemble size and the
number of observed degrees of freedom within a box is largely confirmed by the published
experimental results: practical schemes appear to work reasonably well if this condition is
met. Specifically, Szunyogh et al. (2005) found that for ne = 40, when every 9-th horizontal
grid point was observed, the best results were obtained with about ndof = 500 model variables
within the box (see their Fig.8). We note that in this optimal configuration, the number of
observed degrees of freedom within a box is about nodof = 500/9 ≈ 56, which is very close
to ne = 40.

Fertig et al. (2007) found that simulated radiosonde observations were most effectively as-
similated with ne = 20 if nx = ny = 7 and the boxes were only one level deep. The analysis
variable comprised 4 three-dimensional fields, so a box contained ndof = 7·7·4 ≈ 200 degrees
of freedom. But not all of them were observed. Concretely, they used about 600 simulated
radiosonde profiles, so that with their analysis grid having 48 · 96 = 4600 grid points, only a
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portion of 600/4600 ≈ 1/8 was observed. Hence nodof = ndof/8 ≈ 25, which is in excellent
agreement with ne = 20.

Miyoshi and Yamane (2007) came up with the following optimized parameters of their
LETKF scheme. In their OSSE1 experiments, the box size for ne = 40 was: nx = 11 with the
Gaussian observation localization length equal to 3 mesh sizes and nz = 7 with the vertical
localization length 2 mesh sizes. As the localization lengths are smaller than the respective
box extents, we easily assess the effective box sizes in each of the two horizontal dimensions
as 2 · 3 + 1 = 7 grid points and, in the vertical, 2 · 2 + 1 = 5 grid points, so that there were,
roughly, 7 · 7 · 5 = 245 grid points within a box. With 5 three-dimensional analysis fields, we
obtain ndof = 5 · 245 = 1225 effective analysis degrees of freedom. But only each hundredth
degree of freedom was observed, which yields nodof = 1225/100 ≈ 12. This small number
explains why Miyoshi and Yamane (2007) found that even ne as small as 10 could be used.

(3) As regards the possible generation of small-scale noise due to the local nature of the
LETKF analysis, Liu et al. 2008 reported on a very successful behaviour of LETKF. They
used low resolution in the horizontal (about 450-500 km), so that the box size was large (ax ≈
3000 km). With the box size this large, it is likely that our condition Eq.(23) was satisfied.
Indeed, this is the case if the horizontal background-error length scale is as large as L ≤ 1500
km, which is significantly higher than the typical length scales (300–500 km). Similarly, local
boxes in (Szunyogh et al. 2005) were, in their base experiment, about 1000÷1400 km broad.

On the other hand, tiny nx = ny = 3 boxes in (Harlim and Hunt 2007b) did lead to small-
scale noise, as we would expect (see their Figs. 3 and 5).

(4) No attempt to account for realistic observation-error correlation was reported on yet, so
we cannot check the conclusions of section 4.4.

Summarizing this section, we note that our theoretical inference on the applicability of the
LETKF analysis does not contradict to the existing experimental evidence and seems to
provide explanation for some experimental results.

6. Discussion

We have shown that the major deficiency of the present formulation of the LETKF analysis
is its inability to efficiently assimilate non-local satellite observations. This is because in
each local LETKF analysis, the analysis increment is confined to be a linear combination of
(a small number of) the forecast ensemble perturbations. With other EnKF formulations,
this limitation can be relaxed. Solving the analysis equations in observation space allows us
to apply covariance localization (e.g. Houtekamer and Mitchell 2006), so that the analysis
increment no longer belongs to the low-dimensional ensemble space. Another suitable ap-
proach is to use spatially averaged covariances (Raynaud et al. 2008). Hybrid EnKF-3DVar
schemes also allow us to avoid the ‘curse of (low) dimensionality’ of ensemble space (Hamill
and Snyder 2000, Lorenc 2003b, Wang et al. 2007).

The experimental fact that LETKF can quite successfully (despite locality and ensemble-
space restrictions) assimilate conventional observations, suggests that the ensemble data
assimilation principle is indeed promising for operational and other purposes. We notice,
however, that good results reported in the LETKF and some other ensemble data assimila-
tion papers (e.g. Whitaker et al. 2008) were obtained without satellite data, i.e. for poorly
observed flows, where the errors have time to develop complicated anisotropic structures.
With the addition of frequent and ubiquitous satellite observations, it is likely that the effect
of flow-dependent covariances may appear to be less dramatic.
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7. Conclusions

The main findings of this study are:

• Non-local satellite observations (both nadir and limb) are shown to make the effective
size of local LETKF boxes large: extended by supports of all used observations.

• Small ensemble size implies small number of resolvable features in local LETKF anal-
yses. Large effective boxes and small ensemble size imply, thus, low spatial resolution
within a local box, which can make the assimilation of all observations inefficient— if
non-local satellite data (radiances, in particular) are assimilated.

• Without non-local satellite data, the local-box extents are limited from below by the
respective background-error length scales. Smaller boxes can give rise to significant
small-scale noise in the analysis increments.

• Allowing for realistic correlations in observation errors (e.g. for satellite and radar
data) removes the advantage of LETKF in computational efficiency as compared to
observation-space formulations.

All in all, we state that the LETKF approach in its present formulation does not seem to
be a good general method of choice for operational data assimilation on the global scale.
LETKF can be utilized as a means of meso-scale data assimilation in a scale-separation
scheme without non-local satellite observations. The LETKF technique, being simple and
cheap, can be successfully used to solve some other particular data assimilation problems
and in other applications (research, education, etc.).
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